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Abstract: In this paper we define tau functions for holonomic fields associated with
the Dirac operator on the Poincare disk. The deformation analysis of the tau
functions is worked out and in the case of the two point function, the tau function is
expressed in terms of a Painleve function of type VI.
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Introduction

In this paper we introduce τ-functions for the Dirac operator on the Poincare disk
based on the formalism in [12]. The formalism of the first author in [11, 12] is in
turn a geometric reworking of the analysis of Sato, Miwa, and Jimbo [15] (SMJ
henceforth). The prototypical examples of the holonomic fields that are the central
objects of the SMJ theory are the scaling limits of the two dimensional Ising model
from above and below the critical point. The SMJ theory of holonomic fields
provides a beautiful setting for the earlier result of Wu, McCoy, Tracy, and
Barouch [1,8,17,20] that the scaled two point functions of the two dimensional
Ising model can be expressed in terms of Painleve functions of the third kind. Our
work also owes something to the papers of [18,6] on monodromy preserving
deformation theory in the Poincare disk. In the course of explaining our work we
will point out differences with [18].

Our principal goal in this paper is to define and analyze the correlation
functions for a family of quantum field theories on the Poincare disk that are
analogues of the holonomic quantum field theories defined in the Euclidean plane.
Below we will sketch how the theory goes in the Euclidean version in [12] and we
will point the reader to the parallel developments in the hyperbolic case.

Our starting point is a formula for the Schwinger functions of holonomic fields
that can be written

Λ ) . (1)

where τ(α l5 a2, . . . , an) is the vacuum expectation for a product of quantum fields
Φλj{cij) [11]. In this formula the operator Daλ is a singular Dirac operator (on
Euclidean space) with a domain that incorporates functions with prescribed
branching at the point ay The functions in the domain of Daλ are to have
monodromy multiplier ei2πλj in a counterclockwise circuit of α; . In [12] formula (1)
is given rigorous mathematical sense by first localizing Daλ away from branch cuts
emerging from the point α,-. The localization for Daλ takes place in the exterior of
a set S which is the union of strips containing the branch cuts. The localization of
Daλ is completely characterized by a family of subspaces WaλaH*(δS) of the
Sobolev space on the boundary, dS, of S. These subspaces are the restriction to dS
of functions which are "locally" in the null space of Daλ. The subspaces Wa*λ are
contained in a restricted Grassmannian of subspaces of H^(dS) over which there
sits a determinant line bundle [16]. As is explained in more detail in [11, 12],
defining a determinant for the family Daλ is morally equivalent to finding a trivial-
ization δ for the det* bundle over the family of subspaces Wa'λ. Comparing the
canonical section σ of det* with δ gives us a formula for the determinant,

') = δ{W-λ)' ( 2 )
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The analogue of this formula on the Poincare disk is (6.7) below. Both the
canonical section, σ, and the trivialization, δ, are determined by (different) projec-
tions on the subspaces Wa'λ. An explicit representation of these projections is
obtained in terms of the Green function Gaλ for Daλ. The analogue of this
projection formula on the Poincare disk is (6.2) below. In order to analyze (2) it is
useful to compute the logarithmic derivative

dalogτ .

The resulting formula simplifies dramatically because the derivative of the appro-
priate projection in the a variables is finite rank. This in turn is a consequence of the
analogous result for the Green function, Ga*\ namely,

(3)

For simplicity we have taken some liberties in displaying only a schematic version
of (3). The precise version of (3) in the Poincare disk is (4.50) below. The functions
Wv(x) and W*(x) are multivalued solutions to the Dirac equation which are
branched at the points aj9 j = 1,2, . . .,w with monodromy multipliers e2πiλj. Be-
cause of their role in (3) we refer to the wave functions Wv(x) and W*(x) as response
functions. The formula for d log τ which one obtains is

dlogτ= £ {Avdav + Bvdάv} , (4)
v = l

where Λv and Bv are low order Fourier coefficients of the response functions Wv and
W*{x) in the local expansions of these functions about the points αv. The version of
this formula in the Poincare disk is (6.8) below.

We assemble the In response functions into a single column vector

with

w(χ)=ιw1(x%w2(xi . . . , w H ( x ) γ ,

and

W*(x) = [Wf(x),Wϊ(x), . . .,W*(x)γ ,

where [ ] τ is the transpose. Then W(x) satisfies a holonomic system

dXiβW(x) = β(x,*)W(x). (5)

in the variables (x, a), where Ω is a matrix valued one-form whose entries are
determined by the low order local expansion coefficients for Wv and W* near the
branch points α,. The analogue of (5) in the Poincare disk is contained in (5.3) and
(5.20) below. The consistency condition for the holonomic system (5) is the zero
curvature condition

dΩ = ΩAΩ. (6)
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These are called the deformation equations. The analogue in the Poincare disk is
(5.26) below. These deformation equations characterize certain of the low order
expansion coefficients of Wv and W*. In particular it is possible to express the
coefficients Λv and Bv that occur in the formula for the logarithmic derivative of the
τ-function in terms of the solution to (6). The version of this relationship in
hyperbolic space can be found in (6.16) and (6.17) below. The existence of the
holonomic system and the resultant deformation equations is, incidentally, the one
part of this theory that depends strongly on the fact that the Poincare disk is
a symmetric space. The global symmetries of Dirac operator on the Poincare disk
give rise to the holonomic system for W.

In conclusion one sees that it is possible to characterize the logarithmic
derivative of the τ-function in terms of certain solutions to the deformation
equations. In the special case of the two point function in the Euclidean problem
SMJ showed that it is possible to integrate the deformation equations explicitly in
terms of Painleve transcendents of the fifth kind. In the special Ising case a reduc-
tion to Painleve III is possible (see [8]). In Sects. 5 and 6 of this paper we carry out
the analysis of the two point case in the hyperbolic setting. We find that the two
point deformation equations can be integrated in terms of Painleve transcendents
of type VI (Theorem 5.0) and that the logrithmic derivative of the τ-function is
a rational function of the solution to PVi and its derivative (see (6.19)).

We can now explain the principal differences between this paper and [18]. First,
because the response functions are fundamental in this approach to holonomic
fields, the basic finite dimensional space of wave functions for us is the 2n
dimensional space spanned by Wv and W*. In [18], as in SMJ [15], the basic finite
dimensional space is the n dimensional space spanned by the wave functions that
are globally in L2. Formulating the holonomic system in this setting leads to extra
complications, and the deformation equations are not explicitly worked out in
[18]. Because of the difficulties with a direct formulation of the deformation
equations, one of us introduced a hyperbolic Laplace transform of the associated
holonomic system and found that the result was a Fuchsian system of ordinary
differential equations in the complex plane. Tau functions for this transformed
system were introduced by adopting the τ-functions for the associated Schlesinger
theory (see also [15]). In [6] the behavior of these τ-functions was examined in the
limit R -• oo and shown to coincide with the τ-functions for the Euclidean theory.
We have yet to explore, the relation between the τ-functions introduced in [6, 18]
and the ones we consider in this paper. The algebraic complexity of both sets of
deformation equations makes comparisons difficult.

This last point suggests an important question. Why should one believe that the
τ-functions we have introduced in this paper are the Schwinger functions for some
quantum field theory on the Poincare disk? The reason we believe that there is such
a relation is to be found in [12]. In that paper a transfer matrix formalism was
established that allowed one to connect formula (2) above with the scaling limit of
some lattice field theories defined in [10]. It is also this connection that suggested
the "minimal singularity" definition for the domain of Daλ that we adopt here. We
do not think that it would be economical to try to produce a lattice theory which
would scale to the theory we present here. Because of the connection with the Ising
model, however, this is an interesting problem. We should remark at this point that
the analogue of the Ising model on the Poicare disk is not considered in this paper.
There is such an analogue and the deformation theory in Sect. 5 is relevant to its
analysis, but the singular Dirac operator whose determinant gives the correlation
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functions (for the T<TC scaling limit) is different from any of the minimal singular-
ity theories for λj = ±1/2. We expect to discuss this analogue in another place. To
return to the quantum field theory connection; there is a preprint of Segal on
conformal field theory which sketches a "vertex operator" formalism that appears
well suited to address such questions as Osterwalder-Schrader positivity. One of us
is currently investigating this formalism.

Finally we would like to mention that this paper is organized in almost
precisely the reverse of the logical progression (l)-(6) above. The reason for this is
that the existence theory for the response functions and the Green function
proceeds most simply in such reverse order. We have included a table of contents to
help the reader obtain some perspective.

The authors would like to express their gratitude to R. Narayanan whose notes
on local expansions on the disk were very helpful in the early stages of this work.
The second two authors wish to thank T. Miwa for his hospitality and support at
RIMS, Kyoto University and to the National Science Foundation whose support
through grants DMS-9001794, INT-9106953, and DMS-9303413 is gratefully
acknowledged.

1. The Dirac Operator on the Hyperbolic Disk

A covering of the frame bundle. We will begin by identifying a Dirac operator on the
rhyperbolic disk, ΏR, of radius R. The Dirac operator will be defined in the usual
fashion except that we will use the simply connected covering of SO(2) rather than
the two fold covering in our construction. This is done principally because the extra
parameter k associated with the representation theory of the reals does not
significantly complicate any of our analysis and we believe its inclusion might
prove illuminating. Incidentally, the radius R is carried along in all the subsequent
calculations precisely because the zero curvature limit R -» oo is interesting [6].

The additive group of real numbers, R, is the simply connected covering group
of the special orthogonal group, SO(2), in two dimensions with the familiar
covering map

R X^R(λ)J
|_smΛ

To emphasize the role R plays as a covering group for SO(2) we will sometimes
write

R = SO(2).

Next we define a principal SO(2) bundle on ΌR, which we call S(ΌR) together with
a bundle map,

onto the frame bundle, ^(D^), that is compatible with the map R. If geSO(2) and

s -• sg is the right action of SO(2) on the bundle S(DR) then the compatibility we
refer to is,

π(sg) = π(s)R{g), (1.1)
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where R(g)eSO(2) acts on the frame bundle in the usual fashion. By fixing
a trivialization of the frame bundle for ΌR we will be able to use (1.1) to define the
bundle S(DK). The metric we wish to consider on ΌR is,

(1.2)

with the associated invariant measure

R^dx1dx2

n' (R2-xj-:

We fix an orthonormal frame,

dxi '

dx2 '

which identifies the frame bundle, F(ΌR) with

ΌR x SO(2).

Relative to this trivialization of the frame bundle we identify S(ΌR) = ΏR x SO(2)
and the map π with the covering given by

ΌR x SO(2) (p, λ) -> π(p, λ) = (p, R(λ))eΌR x SO(2)

for peΌR. There is a covariance of this construction with respect to global rigid
motions of ΌR that it will be useful for us to understand. Since the (orientation
preserving) rigid motions of ΌR are simplest to understand as fractional linear
transformations we will introduce the complex notation z = xί + ίx2. Consider the
fractional linear transformation

This will be an orientation preserving rigid motion of ΌR provided that

where #eSU(l, 1) if and only if

gj1 θ "L = P 0

and det(#) = 1. The action of a transformation (1.4) on the frame [e1, e2~\ is simplest
in the complexified tangent space and so we also introduce the complex vector
fields

and
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= h ; -Λ

 w r i t e[ABl
IB Aj

For #eSU(l, 1) the pair (g, dg) induces a transformation of the frame bundle which
we calculate in the trivialization {eue2} by first determining the action of dg on the
complex vector fields e and e. One finds

I , (1.5)

and

where

is a number of absolute value 1. Now write

i{ug(z)-

ug(z) +

ug(z))Ί

ug(z) J '
Then without difficulty one sees that (1.5) and (1.6) imply

(dgxe1(z)9dgze2(z))Hei(g(z))9 e2(g(z)))g'(z) . (1.8)

So that in the trivialization of the frame bundle determined by {eu e2} the map
induced by (g, dg) is

(1.9)

where reSO(2). Next we will show that the map (1.9) is covered by a map on S(ΌR).
For fixed #eSU(l, 1) this clearly comes down to defining a continuous logarithm
for ΌRsz -> ug(z). Since the map wg(z) is continuous (|yl|2 — \B\2 = 1 for ^f6SU(l51)
implies that Bji + Ά is never 0 for zeΌR) and never 0 it follows that one can define
a continuous logarithm z -> λ^(z) so that

ιιg(z) = eiΛ ( 2 ) . (1.10)

The bundle map,

(z,λ)->fo(z),λ + λ,(z)), (1.11)

on ΌR x 50(2) then clearly covers the transformation (1.9) on the frame bundle. Of
course, the map λg(z) is not unique; for any integer n the map λg(z) + 2nπ would
serve as well. The fundamental group of SU(1,1) is Z and so we do not expect to
make a canonical choice of such a logarithm for all elements of SU(1,1). We do
expect that the group of bundle transformations of S(ΌR) which covers the action
of SU(1, 1) on F(ΌR) is the simply connected covering group SU(1,1). However,
since there is no simple (i.e. matrix) model for SU(1,1) and since we are more
interested in the lifts of individual elements and of one parameter subgroups in
SU(1,1) we will not pursue this matter. However, it will be convenient for descrip-
tive purposes to refer to a pair (g, λg(z)), where λg satisfies (1.10) as an element of

SΪJ(1,1).
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The Dirac operator. We will now introduce a Dirac operator and observe that the
lift of the action of an element in SU(1, 1) to the bundle S(DR) also acts on the
solution space of the Dirac equation.

The Dirac operator we define will act in the space of sections of an associated
bundle for S(ΌR). The bundle we have in mind is one associated with a complex
unitary representation of SO(2) given by

i(k+i/2μ 0 η

J (1.12)
where k is an arbitrary real number. We write

S(ΌR)xkC
2

for this associated bundle. One can view the elements of this bundle in the usual
fashion as equivalence classes of pairs (s, v), where seS(DR) and υeC2 and (s, v) is
equivalent to (sλ, rk(λ)v) for any 2eSO(2). Because we are working with a fixed
trivialization of the bundle S(DΛ), the associated bundle S(ΌR)xkC

2 can be
trivialized by the map

To avoid confusion we will always work in this trivialization of the associated
bundle.

The reason for choosing the representation (1.12) to define a bundle of spinors
for the Dirac operator has to do with the existence of a complex representation of
the Clifford algebra of R2 on C2 which behaves well with respect to the representa-
tion (1.12). The representation is generated by

and

y2 :=

If we define

then one can easily confirm that

(1.13)

This is the relation that allows one to define a Dirac operator that will have the
appropriate covariance with respect to SU(1, 1).

In order to write down the Dirac operator we first recall some facts about
connections. On a principal bundle, once a local frame has been picked, a connec-
tion is represented by a Lie algebra valued one form over the domain of the
trivialization in the base. In our case we start with the global frame {el9e2}. The
Levi-Civita connection form ω for this frame (which is determined by the torsion
0 condition Vβl e2 — Vβl — \ex, e2] = 0) is

2x2 Γo -:
0
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and
2xi Γθ -

Since the map π: S(DΛ) -> F ( D R ) is a covering map on the fiber one can pull back
the connection on F(ΌR) to a connection, ώ, on S(DΛ). One finds the connection
one form relative to our standard trivialization of S(ΌR) is

R2 '

ώ(e2) = ^ τ ,

where the Lie algebra of SO(2) is identified with R in the usual fashion. The
connection ώ on the principal bundle S(ΌR) induces a connection on the associated
bundle S(ΏR) x k C

2. In the trivialization of the associated bundle defined above
one finds the connection one form

0 Ί2x 2

0 Ί 2xx

The Dirac operator (in the trivialization ΌR x C 2 defined above for the associated
bundle) is then

2

Ac= Σ Ύj(ej + drkώ(ej)) (1-14)
7 = 1

or in complex notation

where

Kk-,:=2{(l-^)az-^zj (1.15)

and

We have written X? for the formal adjoint of Kk with respect to the inner product,

$f(x)g(x)dμ(x),

on ΏR x C. Thus the Dirac operator (1.14) is formally skew symmetric with respect
to the inner product,

$fM g(x)dμ(x), (1.17)
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on ΌRxC2, where u*v = u1v1+u2v2. The indexing by k in (1.14) and (1.15) has
been done so that k = 0 corresponds to the Dirac operator that one would obtain
from the usual two fold covering of SO(2) by itself given by

We remark that Kk is the familar Maass operator (see, e.g., [2]).

Covariance of the Dirac operator. One of the principal objects of study for us will be
multivalued solutions to the Dirac equation Dk ψ = 0 (or more precisely, solutions
to the massive version of the Dirac equation (mI — Dk)ψ = 0) that are branched at
points ajβΏR ϊorj= 1,2, . . . n. In order to understand these solutions to the Dirac
equation in a neighborhood of the point α,- it will be convenient to employ
coordinates for ΌR which are centered at aΓ Of course, we can use a fractional
linear map,

to make such a change of coordinates. However, the function w —• φ(z(w)) no
longer satisfies the Dirac equation in the w variables. This inconvenience can^be
overcome by using the covariance of solutions to the Dirac equation under SU(ί,
1) that is a consequence of the fact that the Dirac operator is a natural operator on
the associated bundle of spinors which depends on a choice of spin structure and
on the representation of the spin group rk but not on the choice of local frame or
base coordinates used to realize (1.14) as a differential operator. We will now
explain this covariance from the passive point of view in which fractional linear
maps on ΌR are regarded as a change of coordinates on ΌR. Let

denote a fractional linear map with

eSU(l, 1).
A

The inverse coordinate change is

[A B

[B A

z(w) =
Bw-ΛR

Also

where

, , Bw-AR
V{W):==B^ΪR

Taking complex conjugates one has

) = v(w)e(w)
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as well. Thus the coordinate representation of the Dirac operator in the w coordi-
nates is

0 v(w)e(w)-- ~^=<*
R2

K o

Now choose a continuous logarithm, iλ(w), for the function w~+v(w) so that

and define

for /eR. Let

vι:=eia

Mk:=
vk+i 0

o «*-*
Ί

Then the covariance property of the Dirac operator under the coordinate change
z <- w is simply expressed by

0 e(w)-y-
R2 w

e(w) +
R2

0
(1.18)

Observe that the right-hand side of (1.18) has precisely the same form in the
w coordinates that the Dirac operator has in the z coordinates. Thus if \j/(z) is
solution to the Dirac equation Dkψ = 0in the z coordinates, then Mfc~

1(w)^(z(w))
will be a solution to exactly the same equation in the w coordinates. An observation
which is useful in checking (1.18) with a minimum of computation is

with

e(w)(v) = [ 1
B

and

with

R2J\BW-AR)>

{v

ι) = lvιe(w){iλ)= -lvιve(w){v-1),

"R2) W\BW-AR)~\ Ίϊ2) \BW-AR

We can rephrase this observation in a slightly different form that will be useful for
us:

Proposition 1.0. Suppose that Ψ(z) is a solution to the Dirac equation

(m-Dk)Ψ=0.
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If g = \ — — \eSU(l, 1) and z —• λg(z) is a continuous function of z defined so that
[_B A\

_Bz-AR_ iλg{z)

then the function,

z-+Ψ{z) = \ ^ ' Z ) 2 , χk_± Ψig-h), (1.20)
L 0 v(g,zf 2 J

remains a solution to the same equation (m — Dk)\j/ = 0.

It will also be useful to identify the infinitesimal symmetries of the Dirac operator
associated with lifts of the one parameter subgroups of SU(1,1) into SU(1,1). It will
be convenient to introduce the notation,

ch t = cosh t,

sh t = sinh t,

One choice of three one parameter subgroups of SU(1, 1) that generate the Lie
algebra su(l, 1) is given by

[chί shίΊ

shί chίj

with generator

~0 Γ

and

ch t ίsh t

"L — ish t ch t

with generator,

and

ιu 0 Ί

0 e~u\

with generator,

Xi =

For

gj(t):=e:=e~'χ'
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one finds

R-th(t)z
v{g1(t)9z) =

v(g2(t\z) =

R-th(t)z'

R-ίth(t)z

~R + ith(t)z9

and

For j = 1,2 we choose the function λg.it)(z) by normalizing it so that λgj(t)(0) = 0. For
7 = 3 we choose λgΛt)(z) = 2t. Define

Then the Fj are infinitesimal symmetries for the Dirac operator . It is very
convenient to introduce the complexified infinitesimal symmetries,

M1:=ϊ(F1-iF2), (1.22)

M2 :=2 (Fί+iF2), (1-23)

and

M 3 := - ί F 3 (1.24)

The reason this is convenient is that the commutation relations for Mj are

[ M 1 , M 2 ] = -

[ M 1 , M 3 ] = M 1 ,

The last two show that M± and M 2 are ladder operators on the eigenspaces of M 3

and this will allow us to parametrize local expansions of solutions to the Dirac
equation in a sensible fashion.

2. Local Expansions

Eigenfunctions for infinitesimal rotations. We next wish to consider multivalued
solutions to the Dirac equation,

(m-Dk)Ψ = 0,

which are branched at a point aeΏR with fixed monodromy about a. Following
SMJ [15] our principal tool in understanding such solutions will be to look at
expansions in eigenfunctions for the infinitesimal "^-rotations" about the point a.
To begin we consider the case a = 0. At a = 0 the infinitesimal generator of
k-rotations is M3. In geodesic polar coordinates (r, θ) centered at 0 we have
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where the relation between the complex Cartesian coordinate z = xx + ix2 and
geodesic polar coordinates is

z = R e " t h ^ . (2.0)

Of course, geodesic polar coordinates are not uniquely determined at a = 0. One
must also specify the geodesic 0 = 0. Thus when we speak of geodesic polar
coordinates we will suppose that a choice of the geodesic θ = 0 has been made. This
will be important for us since the local constructions in this section will give rise to
multivalued functions. These multivalued functions will have different branches
and in this section we will pick out such branches by using the geodesic ray θ = 0 as
a branch cut.

We turn now to the eigenvalue equation,

θ)9 (2.1)

whose solutions will have a monodromy multiplier,

after a counterclockwise circuit of 0. We will now analyse the mutlivalued solutions
of the Dirac equation (m — Dk) Ψ = 0 which are also eigenfunctions (2.1) of M 3 . In
studying solutions to the Dirac equation (m — Dk)Ψ = 0 it is very convenient to
introduce the associated Helmholtz equation

(m - Dfc)* (m - Dk) Ψ = (m2 - Dfc

2) <F = 0 . (2.2)

In the notation of the previous section this is

Λ *) -rrΛ. τr I ^ * \)

We introduce

Ail?(~W -J— 1 ^

Δk= —KIKKΛ 2 — (2-3)

and a little calculation shows

Φφc+l)
Ύ2

= -KKK*+ v ' ' . (2.4)

For reasons that will be clear later on we introduce a parameter s by

. (2.5)

There are two roots to (2.5) and for deίiniteness we will in the future restrict our
attention to the solution 5 of (2.5) with Rs > 1. Another form of (2.5) which is useful
for us is

2

R R2
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If one rewrites the Helmholtz equation using (2.3)-(2.5) the result is

To analyze the solutions of the Dirac equation which are eigenfunctions of M 3

above we will first consider the problem of finding solutions to (see, e.g., [2])

(jj, (2.7)

where

f(r,θ) = eiWΦ(r). (2.8)

Note that we will have to set κ = k±j and l = λ+\ in appropriate places to make
use of (2.7) and (2.8) in the Dirac problem. In geodesic polar coordinates one finds

κ*=~\ e'θ \ d r + i ϊ b d β + { κ + 1 } th 5 } ' (2

and

We make a substitution to deal with (2.7) and the side condition (2.8) [2, 6].
Introduce the change of variables,

(2.12)

with

in (2.7) using (2.11). One finds that F(ή satisfies the hypergeometric equation

t(l-t)F" + (c-(a + b + l)t)F-abF = O (2.14)

with

Rs Rs
a = ——K, b=— + κ + l, c = l+l . (2.15)

Note that it is precisely to simplify the description of these parameters that s was
introduced in (2.5) and (2.6) above. For c φ integer, two linearly independent
solutions to the hypergeometric equations are

F(a,b;c;ή and tι~cF{a-c+\, b-c + l; 2-c t),

where F (a, b; c; t) is the hypergeometric function of Gauss. Putting this together
with (2.8) and (2.12) we see that two linearly independent solutions to (2.7)
satisfying (2.8) are given by

(2.16)
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It will also be useful at this point to record the solution of (2.7) of the form (2.8)
which tends to 0 as \z\ -+ R (or r -» oo). Define

; . - . - t 2.;.-,),

and write
(2.17)

Then v(r,ΘJ,κ,s) is a solution to (2.7) which tends to zero as r-> oo. From the
connection formula for the hypergeometric equation one finds

Λnl

v2(l9κ,s) —
Γ(at-κ)Γ(ai + κ-l)
Γ((x + κ)Γ{oc-κ-l)

Rs
where α = — and we have written v(l, K, S) for ύ(r, θ, I, K, S).

Because we are interested in using the functions Vj and v to construct solutions
to the Dirac equation, it will be useful to compute the action of the operators Kκ

and X* on the functions Vj and ύ. Writing Vj(l, K, S) for the function Vj(r, θ, /, ?c, s) we
now summarize the action of Kκ and X* on these functions:

Kκυ1(l,κ,s) = — Vi(/— 1, κ + 1, s),
K

•>κ,s)=-[— + κ)[—-κ-ί » (/- ! , κ + l , s ) ,

K*v2(l,κ+ί,s)= - - l, K, s),

K*v(l,κ + l,s)= - - v(l+l, κ,s).
R

Finally we introduce the basic wave functions that we will use to analyze the
solutions to the Dirac equation:

1 1

~ 2 ' 2 '

1 , 1
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and

where s is the solution,

2

mR X

2

mRX

1 \
k-r )\

(2.18)

(2.19)

to (2.5). The solution wltk which is well behaved at infinity is

. Γ(α-fc+i)Γ(α + fc-Z) 2le
-iπl

4cos(πί)
- w_z

In order to see that these are indeed solutions to the Dirac equation it is useful
to recompute the action of Kκ and X* on Vj and v in the case where 5 is given by
(2.5). Using

one finds

We have dropped the explicit dependence on 5, it being understood that s is given
by (2.19).

As mentioned in Sect. 1 the operator Mx and M 2 are ladder operators on the
eigenvectors for M 3 . Next we record the action of these infinitesimal symmetries of
the Dirac operator on the wave functions wUk and w?tk:
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, (2.20)

where

2R2

These results provide the rationale for the normalization we have chosen for the
wave functions. The wave functions wlΛ and w?tk are parametrized so that each
becomes less singular at z = 0 as / increases. This is the reason for changing the sign
of / in the definition of w*fc. The action of those infinitesimal symmetries that
increase the local singularity of the wave functions will play an important role in
what follows and the normalization we have adopted make the action of Mx on whk

and of M2 on wftk as simple as possible. Finally we have chosen the normalization
for Wj*k so that the following conjugation symmetry is valid,

= .

i h

where C = . This conjugation will play a role later on and it is especially

important in the case /c = 0, where it is the conjugation with respect to which the
Dirac operator is a real operator.

_̂We will now make use of the covariance of the Dirac operator under the action
of SU(1, 1) to center these wave functions at the point aeΏR. Before we do this we
will establish a convention for dealing with the branches of the mutivalued
functions wίfk and w*fc. Suppose that one has chosen a geodesic ray, /, at the point
a = 0 in DR. Then we fix a geodesic polar coordinate system with {θ = 0} = / and on
D Λ V we choose the branches of wuk and wf>k that are associated with the
determinations (2.16) and (2.17) for υγ and v2 with 0 < # < 2 π .

Now consider the translation to the point a by the rigid motion T[a] on ΌR

given by

| ,2.2.)
a z az + R

Then one easily computes that

As a function of z this clearly does not wind around the origin and we can thus
uniquely specify a branch of the logarithm by

logϋ(Γ[α],0) = 0
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for all aeΏR. Using this choice of the logarithm to determine the fractional powers
of v in the following formulas, we now define the local wave functions centered at
a by

^ u ( r [ f l ] # J , t (7τ- β ]z). (2.22)

and

o , ( r M , z r * J W ί f c ( Γ C - α ] z ) (123)

Note that T\_ — ά]z occurs in this formula not T[a~\ z. Because the functions wz>fe and
wfίk are multivalued the formulas (2.22) and (2.23) do not make sense as they stand.
We make sense of them in the following manner. Suppose the t is a geodesic ray at
a. Then Γ[ — α ] ~ V = Γ[α]/ is a geodesic ray at 0 and hence determines a branch
for W/5k and w*fc.With these branches for wίifc and w*λ understood in (2.22) and
(2.23) the functions wUk(z,a) and wfΛ(z,a) are well defined for z$£ and they are
branched along ί. We will think of whk(z, a) and w?Λ(z, a) as multivalued functions
with specific branches determined by the additional specification of geodesic ray at
z = a.

The importance of these wave functions is that the multivalued solutions to the
Dirac equation branched at "α" that are of interest to us will have local expansions,

W(z)= Σ {anwn+λ(z,a) + bnw*-λ(z,a)} .
neZ + i

Differentiatίng local expansions with respect to the branch points. In this subsection
the dependence of the wave functions wUk and wj% on the parameter k will not be
very important and so we will abbreviate wlk = wt and w?ik = wf. In order to
differentiate local expansions in the a parameter it will be useful to develop
reciprocity relations for the behavior of Wι(z, a) and w?(z, a) as functions of z and a.
Let a(ε) = T\_e.R~\a and z( — ε) = Γ[ — εR~\z. One easily computes that

and

Observe also that under rotations Wj and wf transform as follows,

and

0 J*

Of course, neither of these equations is correct without the proper interpretation of
the multivalued functions Wj and w*. It will suffice for our purposes to note that the
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equations are correct provided that w* and wf are branched along the geodesic ray
ί at 0, we suppose that z<£/, and we suppose that θ is restricted to a sufficiently
small neighborhood of OeR so that the curve θ —• eιθ z does not intersect £.

Now we write

and make use of the expressions for v(T\_ — a(ε)~\,z) and Γ[ — α(ε)]z above. In the
formula for wί(z,α(ε)) that results, the transformation of wz under rotations implies

Γλk+- 0

L 0 λk-
where

\R + έaJ

Furthermore one has

The reader should understand these formulas in the following manner. A geodesic
ray £ at a has been chosen so that zφ£ and ε is chosen in a sufficiently small
neighborhood, U, of OeC so that the range of

R + εa
ί/9ε->——z(-ε)

R + εa

does not intersect £. The functions wt(z,a) and w?(z,a) are understood to be
branched along £ and the functions wz and wf are understood to be branched along

Putting the preceding results together one gets the reciprocity formula,

(2.24)

where we made use of the fact that

In a precisely similar fashion one finds that

(2.25)

These formulae will allow us to compute the local expansions for the derivatives of
the wave functions Wι(z,a) and w?(z,a) in the a variables.
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One reason for the utility of these reciprocity relations for differentiating the
wave functions Wι(z, a) and wf(z,a) are the following easily confirmed formulae,

and

- (2 27)

We will now use the reciprocity formulae above to provide local expansions for
the derivatives of the wave functions Wι(z,a) and w?(z,a) in the "α" variable. The
chain rule gives

z,a)-^ dawt(z9a)\, (2.28)

and

ί | ] (2.29)

with completely analogous formulas for w*(z, a). Differentiating the right-hand side
of the reciprocity formulas (2.24) and (2.25) with the use of (2.26) and (2.27) one
finds,

— Wι(z,a) — M1 Wι(z,a), (2.30)

and

dεwι(z,a(s))\ε = o= —(k + l) — wι(z,a) — M2Wι(z,a), (2.31)

K
with analogous results for w?(z, a). To compute the action of Mί and M2 on wt(z, a)
it is useful to represent Mj for 7 = 1, 2, 3 in terms of the centered operators Mjα)

obtained by conjugate Mj with the action (2.23) of T[ — a]. One finds that,

M χ = - — — I { M (

1

f l ) - P M (

2

f l ) + 25"M(3fl)} ,
l - | o |

1

l - M 5

1

where we have written

(2.32)

for the scaled variable. Now substitute these results in (2.30) and (2.31) and equate
the results with (2.28) and (2.29); one can solve for db wt(z, a) and Sb wt(z, a) to find
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and

5bWι(z,a)= -
1 + |6| 2 " " 1-1-

The analogous results for wf(z,a) are

and

dbwf(z,a)= - , ,,,2 w?(z,a)--—^[M%)wf(z,a)--^^ Mfwf{z,a) I .

It is now a simple matter to use the results (2.20) for the wave functions to get the
local expansions,

dbwf(z,a)=-γ—^wf(z,a)

Estimates at infinity.We conclude this section with results that we will use to justify
some later applications of Stokes' theorem in the non-compact domain ΌR.

If one considers (2.9) and (2.10) or (2.11) then one finds

shr sh 2 r ch 2(i) ch 2(i)

Next we fix s to the value given by (2.19). Then we introduce

for brevity and also because Φι,k,s(r) is real valued. Then

The differential equation (K%Kκ + m2)v = 0 becomes the ordinary differential
equation

chr f I2 κl κ2 , i λ m 2 £ 2 l ^
Hr\ κ s ~1 ~ Vί'j κ s S Λ i 9 / \ 9 \ »v\«v ~Γ 1 / "1 ~ f ^ l K S — ^

shr ' ' (sh r ch (f) ch (f) 4 J

for the radial wave function Φ U ) S . We eliminate the first derivative term in this last
equation with the substitution
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After a little computation one finds that

κ(l + κ\ I2 λ

ι'κ's c h 2 ( ί ) ι'κ>s s h 2 r liK's

As r -• 00 the coefficients of wu>s in the third and fourth terms on the left-hand side
of (2.35) tend to 0 exponentially fast. It is not surprising then that the behavior of
the solutions to (2.35) is governed by the first two terms. When

m2R2 1

4 4

there is one solution to (2.35) which exponentially small at 00 (in Hartmann's
terminology [3] this is the principal solution). Suppose now that κ = k—j. Then

M ^ + κ { κ + ί ) + ^ + k ( 2 3 6 )

4 4 4

is clearly positive and it follows from Theorem 8.1 in Hartmann [3] that the
principal solution uitk-itS to (2.35) has the asymptotics

Uι,k-hs(r) = O(e~Mr) as r-• oo .

Thus

e~Mr\

asr^oo. (2.37)
/

shr/

We are mostly interested in the consequences of (2.37) for the solutions to the Dirac
equation which are well behaved at 00. Since the second component of witk, for
which we write (wLk)2, is just v( — Z+^,/c— ^,s) it follows that

e~Mr

as r-^αo . (2.38)

We would like to have something similar for the first component (wltk)ι. This
component is a solution to the Helmholtz equation

(2.39)

Since,

Kt-iKt-^Ki+iK^-^^, (2.40)
K

it follows from (2.35) that the leading behavior (at oo) of the second order ODE that

governs the radial part of the wave function ΛJshr(wUk)1 is

u"-M2u = 0.

Then one has the following asymptotic estimate for the first component of wltk,

mR ί e~Mr\

! * » ! o a s
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We will now use the estimates (2.38) and (2.41) to establish the following repres-
entation for the L2 norm,

J
No

where

and we write

(2.42)

(2.43)

To prove (2.42) suppose first that / and g are multivalued solutions to the Dirac
equation in DΛ\{0} with the same unitary monodromy about 0. Then a simple
calculation shows that

rn(f g)dμ(z) =
fiQi

idz

Since/ g$ is a smooth single valued function away from the origin Stokes' theorem
implies

f J f g(z)dμ(z) = J Λf-2 idz-
C'ίίJW

idz, (2.44)

where we write

In (2.44) let f=g = wuk. Then substitute geodesic polar coordinates (2.0) in (2.44).
Finally use the asymptotics (2.38) and (2.41) in the resulting equation to evaluate
the limit rx -> oo. One obtains (2.42). The reader should note that the sign change
due to the factor eiπl by which Qι

Rs/2,κ differs from Φι,κ,s is important in getting the
signs to work out properly in (2.42).

Now suppose that in the exterior of the disk \z\<ro — ε the function / is
a multivalued solution to the Dirac equation with monodromy multiplier e2πiλ. If
/ is square integrable in the exterior of \z\<r0 — ε with respect to the measure dμ
then it has an expansion

/= Σ (2.45)

This expansion gives the Fourier series representation for/in the angular variable
θ. If one makes use of this to do the circuit integrals that appear on the right-hand
side (2.44) then one finds,

R2

= Σ \Cn(f)\2cn+λ.k(r) (2.46)
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From (2.42) it is clear that cn + λ,k(r) is a positive, monotone decreasing function of
r which tends to 0 as r -• oo. Thus the monotone convergence theorem (for sums)
and (2.46) imply that

limf ^^2

2idz = 0 (2.47)
\Z\

when/is a multivalued solution to the Dirac equation which is square integrable in
a neighborhood of infinity. Finally, we want to know that something similar is true
if / and g are two multivalued solutions to the Dirac equation both square
integrable in a neighborhood of oo. Consider the Hermitian form,

Then (2.46) shows that this is positive definite and so the Schwarz inequality,

is valid. It follows immediately from (2.47) that

limf - ^ γ ^ i d z = 0 . (2.48)
\Z\r-^oo Cr A \Z\

R2

We summarize these developments in the following proposition:

Proposition 2.0. Suppose that f and g are two solutions to the Dirac equation which
have expansions of type (2.45) in the region Dro O0. Then

Urn \
r->ooCr

3. Existence Results

A model for the simply connected covering DR(a). To understand the asymptotics of
the Green function for a Dirac operator with vertex insertions it will be important
to have an understanding of certain spaces of multivalued solutions to the Dirac
equation. We will follow SMJ [15] here in establishing an L2 existence theory for
wave functions with specified branching and restricted singularities. Let
{α1? α2, . . .,αB} denote n distinct points in the hyperbolic disk ΌR. It will be useful
for us to use complex variables writing aj = ocj + iβj when cij = (<Xj, βj). We will also
write

a = {aua29 . . .,αn} .

Following SMJ [15] we will now show that the space of solutions, w, to the Dirac
equation,

{m-Dk)w = 0,



122 J. Palmer, M. Beatty, C.A. Tracy

which are branched at {α1?α2, . . ,an} with monodromy e2mXj at α,- (with
< i ) and globally in L2 (ΌR,dμ) is an n dimensional space.

It will be convenient (particularly in discussing smoothness questions) to
work in the simply connected covering space of ΌR\{a1,a2, . . .,an}

 a n d w e

will now specify our conventions for such considerations. Write ΏR(a) for
ΌR\{aί,a2, . . .,an} and ΌR(a) for the simply connected covering space of the
punctured disk ΌR(a). Multivalued functions on ΌR(a) can, of course, be regarded
as functions on ΌR(a). Introducing appropriate branch cuts, /,-, at Uj a multivalued
function is also specified by a particular branch defined on Dn\{A>^2> >̂ «}
Both descriptions will be important for us and to pass easily from one to the other
we will always work in a specific model for ΏR(a). Fix a base pointy a0 in ΏR

differernt from any of the points α1 ? a2, . . . , an. We take our models of ΌR(a) to be
the homotopy classes of paths in ΌR(a) which start at α0. The projection, pr, from
T>R(a) onto ΏR(a) maps a path γ onto its endpoint y(l). This model of ΏR(a) comes
with a distinguished point, a0, in the fiber over a0 which is the class of the constant
p a t h t —• a0.

For simplicity we fix the convention that our branch cuts {$ are always geodesic
rays joining the point Uj to a point on the boundary of ΌR. If {Λ,/2> > «̂} *s

a pairwise disjoint collection of branch cuts then the inverse image of

under the projection,

pr.ΌR(a)->ΏR ,

splits into path components on which the projection is a diffeomorphism. Let C0(ί)
denote the path component of this inverse image which contains the point ά0. If/is
a map defined on ΏR(a) then we will refer to the restriction of / to the path
component C0(O as the principal branch of / The principal branch of such
a function/can also be regarded as a function defined on ΌR\{/1, /2> Jn\ and
we will do this without further comment. Conversely if/ is a function defined on
D ι Λ { / 1 , ^ >*M w e c a n r e S a r d it as a function on Co(/) For multivalued
functions that have a natural extension to maps on ΌR(a) this gives a unique way to
go from a branch for such a function to a function defined on ΏR(a). For example,
we have already described how to fix a branch of the multivalued function wt(z, a,j)
when we are given a branch cut, /,-, at α,-. We can regard this as a function on Co(/)
which has an obvious extension to a smooth function defined on ί)R{cι). When we
wish to regard wz( ,α7 ) as a functionjon ΏR(a) we will write Wι(z,aj) with the
understanding that z is a point in DR(a) which projects onto zet>R(a). It is
understood that a branch cut /,- must be chosen before the function wt(z,aj) is
uniquely determined.

Let [a,-] denote the homotopy class of the simple a0 based loop, αy, about α,- in
ΏR(a) which circles a,j in a counter-clockwise fashion and does not wind around
any of the other points α̂  with £Φj. Let R^ denote the deck transformation on ΌR(a)
which maps ά0 to the point in ΏR(a) which corresponds to the homotopy class [α,].
To simplify notation in what follows we will, as above, write z for points in ϊ)R(a)
and z = pr(z) for their projections in ΌR(a). Suppose that/is a smooth function on
ΌR(a) for which
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If F is the principal branch of such a function / for some choice of branch cuts
{£γj2, ^n) with aoφ/j for7 = 1,2, . . . ,n then we will say that F is branched at α,-
with monodromy multiplier e2πιλj for7 = 1,2, . . . , « .

Multivalued solutions with specified branching. We now turn to the consideration of
multivalued solutions, w, to the Dirac equation with specified monodromy at the
branch points α7 . We can locally expand such functions near the branch points in
Fourier series in the angular variables θ of geodesic polar coordinates suitably
modified to reflect the appropriate monodromy. As in SMJ [15] these Fourier
series translate into local expansions

w(z)= for z near (3.0)

where (3.0) is given a precise meaning when the choice of a pairwise disjoint
collection of branch cuts {/i,^2> -'^») ^ a s been m a < i e w r t r l aoΦ^j f° r

7 = 1,2, . . .,n.
The following local asymptotics for the wave functions may be deduced from

the formulas for wt(z) and wf(z) in the preceding section:

wι{z) =

and

(3.1)

- + 0(rl+i)

(3.2)

From these asymptotics we deduce that Wι and w? are locally in L2 (dμ) provided
that l> —\. Thus in the expansion (3.0) of an L2 wave function we expect that the
coefficients aJ

m(w) will vanish unless n + λj> —\ and the coefficient b{(w) will vanish
unless n — λj> — \. This leads us to define

and

a λj<o

4

bί(w) if λj>0

(3.3)

(3.4)

The coefficients c/w) and cj'(w) are the lowest order coefficients that can occur (i.e.,
be non-zero) in an expansion of type (3.0) for a function which is locally in L2 (dμ).
We will now make this more precise with a formula for the L2 inner product of two
multivalued solutions to the Dirac equation with the same monodromy. The
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infinitesimal version of formal skew symmetry for Dk is

g + Dkf g)dμ{z) =

R2 R2

(3.5)

The d on the right-hand side is the usual exterior derivative. This is true if/and
g are smooth functions on ΌR and it will remain true for functions/and g that are
smooth branched functions with the same unitary monodromy at the points a$ for
j = 1,2, . . ., n - at least if one stays away from the branch points. In this case each
side of (3.5) will be single valued on ΌR\{aua2, . . .9an}.

Theorem 3.0. Suppose that f and g are multivalued solutions to the Dirac equation,

(m-Dh)f=(m-Dk)g = 0 ,

which are branched at a^,a2, . . .,an with monodromy e2πιλj at a^. Ij f and g are in
L2 (DΛ, dμ) then

m3R , - —

16
J f(z).g(z)dμ(z)= - Σ \Sj\cj(f)c*(g)= - £ \sj\cf(f)cj(g) , (3.6)

. 7 = 1

where Sj = sinπλj.

Proof. Substituting D k /=m/and Dkg = mg in Eq. (3.5) one finds

m(f.g)dμ(z) = idz- K idz

In fact, calculating the exterior derivatives of each of the terms on the right-hand
side of this last equation one finds that more is true in case/and g satisfy the Dirac
equation, namely,

m(f g)dμ(z) =
h

1 -

92

VΫ
R2

idz .= - 2 d . idz (3.7)

Now we wish to calculate the L2 inner product of/and g by first integrating
(3.7) over the complement of the union of the disks of radius ε about α7- for

= 1, . . ., n inside a disk of radius p. Then we use Stokes' theorem to reduce the
integrals on the right to the sum of integrals over the circles, C7 (ε), of radius ε about
the points Uj with the standard counter-clockwise orientation (this will account for
some minus signs showing up below) and an integral over the circle of radius p. It
follows from Proposition 2.0 that the boundary integral over the circle Cp is 0 in the
limit p -• oo. Finally we recover the L2 inner product from the remaining circuit
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integrals in the limit ε -> 0. The result is

ε->cx) j = l Cj(ε) -j M

l

ε - + 0 i = l C , ( ε ) ! l z l

Now introduce the local variables uj = T[ — aj']z in the Cj(ε) integrals. The change
of variables gives

and

ιdz = i
aJύJ

Substituting these results in the appropriate contour integrals above and taking
limits ε -»0 of some of the multiplicative factors that appear inside the integrands
one finds.

m n

-z ί f gdμ{z)=-lim X j f1g2(uj)idΰj
L D« ε-^0 . / = 1 C,(ε)

n
= l i m Σ ί fiQiWidUj,

ε-^0 j = l Cj(ε)

where the notat ion/^(M) is meant to remind the reader that it is the product JjQk

that is a function on ΌR(a). Geodesic polar coordinates (r7 , θj) about a} (determined
by the branch cut ίj) give

We can use this asymptotic formula in the contour integrals to get

m n rR 2 π _
- I f.gdμ(z)=-]im Σ Ύ ί Λ ^ ^ ) ^ ^ ^

Z D R ε->0 7 = 1 Z 0

n rR 2π

ε ^ O 7 = 1 ^ 0

Finally if we use the asymptotics of the local wave functions, given by (3.1) and (3.2),
in these last two formulas and the identity,

= cosπ/ ,
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then one obtains the two local expansion results for the L2 inner product given in
(3.6) above. To see this it is also useful to note that the multiplicative factor
f(Γ[αJ, z\ which appears in the wave functions, wt(z, a}) and wf(z, aj) tends to 1 as
z->α, . QED

Definition. Let I denote the nxn diagonal matrix withjj entry lj with lj chosen so that
0<lj<l. Define i^(a, I) to be the space of multivalued solutions, w, to the Dirac
equation (m — Dk)w = 0 which are branched at {aua2, ..,<?«} with monodromy e2πιlj

in a counter-clockwise circuit of aj and which are globally in L2 (DR,dμ).

Remark. We parametrize the monodromy in this definition by /,- chosen between
0 and 1 rather than λj chosen between — \ and \ since the local expansions of
functions in W{a, I) will be slightly simpler to characterize in terms of the
parameters lj.

Theorem 3.0 shows that the elements, w, in W(a, I) are completely determined
by the coefficients Cj{w) for j=l,2, . . .,n or by the coefficients cf(w) for
7 = 1,2, . . ., n. Thus the dimension of Ψ*(a, I) is less than or equal to n. Following
SMJ [15] we will now give a functional analytic proof that the dimension of #"(α, I)
is exactly n by constructing a canonical basis. The functional analytic part of the
proof requires that we first consider an associated problem for the Helmholtz
operator m2 + K κ K*, where κ = k—\. Recall from (2.2) that

κ t 0

0 m

As a start towards constructing solutions to the Dirac equation with prescribed
branching at {aua2, . . ,απ} we will first consider the problem of finding multi-
valued solutions, v, to the Helmholtz equation

(m2 + KκK*)υ = 0. (3.8)

We will construct solutions of the desired type by fixing the leading singularity of
v at one branch point. Then we will get a solution to the Dirac equation of the
appropriate type by considering

(3.9)

The reader might observe in what follows that using (3.8) instead of

and (3.9) instead of

w —

is dictated by the desire to produce canonical solutions satisfying Cj(Wi) = δij rather
than the dual canonical basis cJ(W i) = δij.

To formulate local expansions for the Helmholtz equation in a convenient form
we wish to introduce here the analogue of the wave functions wt(z, aj) and wf(z, aj)
for Vj(l, K, s) introduced in (2.16) above. Recall from Sect. 2 that (3.8) is equivalent to,

s s - - -
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with κ = k — 2 and s given by (2.19). Now we write

υltK(z) = υι(z,l,κ,s), (3.10)

and

with 5 given by (2.19). Then vhK + i and vftK + 1 are both multivalued solutions to (3.8)
above with monodromy e2πύ and e~2πύ respectively, in a counter-clockwise circuit
of 0. We translate vhk and vftk so that they are "centered at aeΌR" in the following
manner,

υUκ{z,a) :=v{T{_a\zfυUn-a]z), (3.12)

and
d]z) . (3.13)

Precisely as in Sect. 2 a branch cut ( at a is used to fix a unique branch for the
functions vuk(z, a) and vftk(z, a). The local singularity in both vltk(z) and vftk(z) goes
like r', where r is the hyperbolic distance between 0 and z. To make use of the
formula (3.9) to get an L2 solution to the Dirac equation we will require that the
solutions we consider for (3.8) have both υ and K* v in L2. It is now a simple matter
to check (using the formulas for the action of X* on vt and vf given in the preceding
section) that if v is a multivalued solution to (3.8) with monodromy multiplier e2πιlj

in a counter-clockwise circuit of α, and if v and K* v are in L2 then provided /,- is
chosen so that 0 < /,- < 1 the function v will have restricted local expansions

00 00

v(z)= £ otί(v)vn+lj,κ + 1(z, aj)+ X j8i(ιθ!>?-ιJfκ + i(z, aj) (3.14)
n = - 1 n = l

for z near α,. In each case the sum is now over integer values of n rather than half
integers. Our strategy in finding such solutions will be to seek a canonical basis
{Vt} with

*j-άVi) = δij. (3.15)

Existence for a canonical L2 basis. Let φ/z) be a C§ function which is identically
1 in a neighborhood of the point z = aj and which vanishes in the complement of an
open ball about z = aj. This open ball should be small enough so that ψj vanishes in
a neighborhood of each of the points αf with /Φy. Observe next that if V} is
a solution to (3.8) with local expansions of type (3.14) and which further satisfies
(3.15) then,

lj-ltK + 1{z9 ajj)

W - l i J C + 1(z, aj):=fj (3.16)

where fj is a smooth multivalued function which vanishes in a neighborhood of the
point aj (and in a neighborhood of all the other branch points as well). For
simplicity we will refer to branched functions that have smooth extensions (from
some Co(/)) to functions on ΌR{a) as smooth multivalued functions. We will con-
struct Vj by finding a suitably regular solution to (3.16) - one whose local expansion
coefficients oίι-t vanish for z = l,2, . . .,n and which is in the Sobolev space H1.

Motivated by (3.16) we are interested in the existence question for solutions to

(m2 + KκK*)uj=fj (3.17)
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for Uj in a completion of

with specified branching at α, for i = 1,2, . . ., n. Here Cg^D^α)) denotes the space
of C 0 0 functions on ΌR(ά) whose supports project onto compact subsets oΐΏR(a). In
particular such functions vanish in a neighborhood of the points a 3 and in
a neighborhood of the boundary of ΌR. Let C%t denote the subset of Co(ΌR(a))
consisting of those functions/which transform under the deck transformation Rj

by,

jz) = e2*il>f(z).

where 0 ^ / < 1 for j = 1,2, . . ., n and we write

Now let HΛf i denote the Hubert space completion of C%t with respect to the norm
derived from the inner product,

(z)K*G(z) + m2F(z)G(z)}dμ(z) .

Note that the integrand descends to a function on ΌR because the monodromy
multipliers of F and G cancel. Now consider the element fjeCaj defined above in
(3.16). For veC™ι consider the linear functional,

v^lU2)v(z)dμ(z) = <fJ9vy. (3.18)
D R

Since (ft, ft)^m2<ft, ft>, for all heC™h it is clear that the linear functional (3.18) is
continuous on the Hubert space Hai. Thus by the Riesz representation theorem
there exists an element UjEHaJ so that

Since the formal adjoint of X* is Kκ one sees from this last equation that uj is
a distribution solution to (3.17). We wish to be a little more explicit about the local
regularity of this solution near the branch point points a-} for7 = 1, . . .,/t and for
this purpose it is useful to consider in more detail functions FsHaJ. Such a function
F, is the limit a sequence of functions FmeC£ι in the Hal norm. Recall that
functions in CfΛ have "compact supports" so that integration by parts in the
formula for the Hai norm of Fm is justified and one finds that (Fm, Fm) is,

f Fm(z) Kκ K*Fm(z) dμ(z) + m2 J Fm(z) Fm(z) dμ(z) . (3.19)

Now a simple computation shows that

K* K K κ*-s{κ+ί)

Substituting K*+ x Xκ + ί ^— f° r KK K% i n (3.19) and integrating by parts one
R

finds that the L2 (dμ) norm of Kκ +! F m can be expressed in terms of the L2(dμ) norm
K*Fm and the L2(dμ) norm of JPm. The analogous result for the difference Fm — Fm>
shows that Kκ + x F m is a Cauchy sequence in L2(dμ). Thus we find that Kκ + x F is in
L2(dμ).
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Next observe that if F, K* F, and Kκ + ίF are in L2{dμ) it follows that F is locally
in the Sobolev space H1 (at least away from the branch points). Returning now to
the distribution solution UjeHaj of (3.17) above one can now conclude from the
standard regularity results for solutions to elliptic equations that since Uj is locally
in the Sobolev space H1 it must actually be C°° away from the branch points at for
i = l , 2 , . . . , Λ .

Using the fact that uj9 K*Uj and Kκ + ίUj must all be locally in L2 it is not
difficult to see that the local expansions for u} must have the form

00 00

Uj(z)= Σ <*ttUj)Vn + u(z> « i )+ Σ βn(Uj)Vi-lXS> ai)
n=0 n=ί

for z near to at. The reader should note that it is precisely the additional condition
that Kκ + 1Uj must be in L2 that forces ocί-1(uj) = O for all z. Thus if we define,

Vt(ί ) = Uj(z) + ψj(z) Vl}- ! , κ + ! (f, Uj) ,

then it is clear that V} is a solution to (3.8) which is appropriately branched at
a1,a2, . . ,α m and it is in L2(ΌR, dμ) together with K%Vj by construction, since
K*vlrl is locally less singular than t^_i. Finally

since Uj does not contribute to the local expansion coefficients αι_ i (Vj). To exhibit
the dependence of Vj on the various parameters we will write

Vj=Vj(l9κ)9

where / = (/1?/2, .,/«).
We now exhibit the canonical L2 basis of Dirac wave functions. Define,

(3.20)

where 0 < lj < 1 for each 7 = 1,2, . . ., n. Then Wj(l, k) is an L2 wave function for the
Dirac equation with monodromy Q2πιlj about the point a 3 and with

cj(wj(hk)) = δij. (3.21)

The response functions. The canonical wave functions are very useful but they are not
the wave functions that are fundamental in our treatment of τ—functions. We turn
now to the consideration of the Dirac wave functions W/z, λ, k) and Wf(z, λ9 k) that
will be central for us. Because of the role they play in the formula (4.50) for the
derivative of the Green function we will refer to these wave functions as the response
functions. We start with a characterization of the desired response function Wj and
then we use the L2 wave functions to prove the existence of Wj and WJ.

The response function Wj whose existence we wish to establish is characterized
by the following three conditions:

(1) Wj(z, λ9 k) is a multivalued solution to the Dirac equation which is in L2 (dμ) in
the complement of some compact neighborhood of {al9 . . .,#„}.
(2) Wj(z9 λ, k) has monodromy multiplier e2πiλj in a counter-clockwise circuit of α,
(with λj now chosen so that 0<\λj\<^).
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(3) Wj(z, λ, k) has local expansions at each of the points a3 of the following type,

X K^fc)wM + λι + b^,fc)w^J , (3.22)

where neZ+^ and we abbreviate wn + λifk(z, α, ) by wn + λi and w*_Aίsfc(z, at) by w*_λι.
The first thing to observe about (3.22) is that it characterizes Wj(z, λ, k). Any two
functions with local expansions of type (3.22) diίfer by a wave function whose local
expansion has only terms involving wn + λi and w*_λι for n ^ ^ . A little computation
using Theorem 3.0 shows that any such wave function, w, has L2 norm 0 since
either q(w) = 0 or cf(vv) = 0 for each ί = l , 2 , . . .,n.

Remark. Because Wj(z, λ9 k) depends on many parameters we will often omit those
which are of less interest in the current claculations and rely on the characteristic
names for the variables to save the reader from confusion. Thus in what follows we
will write Wj(λ9 k) for the functions Wj(z, λ, k).

To prove the existence of W}(λ, k) we will consider two cases. Let P denote the
subset of {1,2, . . .,n} which consists of those j for which 0<λj<% and let F denote
the complementary subset of {1,2, ...,«} consisting of those j for which
-Ί<λj<0. IfyeP then it is not hard to see that if Wj(λ9k) satisfies (3.22) a n d j e P
then

ci(Wj(λ,k)) = δij for ίJeP (3.23)

and
c?(Wj(λ,k)) = 0 for ίeP'. (3.24)

But Theorem 3.0 shows that if weif(fl,l) and C/(w) = 0 for ίeP and cf(w) = 0 for
ίeP' then w = 0. Since the dimension of iV(a9 X) is n it follows that {ct-}iePu{cf }/eP' is
a collection of independent linear functionals on if(a, I). It follows that there exists
an element Wj(λ,k) of i^(aj) which satisfie the conditions (3.23) and (3.24).
Without difficulty one can see that this implies Wj(λ, k) has local expansions of type
(3.22) and finishes the existence proof when eP.

When j eP ' the leading singularity in (3.22) at α,- is no longer locally in L2. To
prove the existence of Wj(λ9 k) in this case it is probably simplest to return to the
construction of the function V}. Instead of forcing the singularity of Vj to agree with

Vij-i,κ+ι{z>aj) n e a r z==aj o n e c a n construct an analogous function Vj whose
singularity at z = a5 is matched with vλj-ίtK+ί(z9aj), where λj = lj—l. From Vj we
construct

as before. Again using the independence of the collection of Cj for ieP and the
collection of cf for ieP' we see that there exists an element Gjei^(a, I) so that

ci(Gj) = ci(Wj) for ίeP

and

cf(Gj) = cf(Wj) for i e P .

If we now define

Wj(λ,k) = Wj-Gj for κ = k-±,
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then it is easy to check that W}(λ, k) has local expansions of type (3.22). This finishes
our existence proof for the response functions satisfying (3.22).

The response functions Wf(z,λ9k) are characterized by conditions precisely
analogous to 1-3 above. In particular Wf is a multivalued solution to the Dirac
equation with monodromy multiplier e2πiλj in a counter-clockwise circuit about a5.
Instead of (3.22), however, the local expansion for Wf is,

Σ 4 4 * _ A ί } . (3.25)

The proof of the existence of the response functions Wf is precisely analogous to
the existence proof for W) and we leave this to the reader. The definition of Wf we
have given here differs by the change λ -> — λ compared to the analogous response
function in [12]. In the present context the response functions Wj and Wf are both
solutions to the same Dirac equation with the same monodromy.

Remark. We would like to point out one possible source of confusion for readers of
this paper and the original papers of SMJ. In [12] there are two different bases for
the same space W{a, I) referred to as the canonical basis w7- and the dual canonical
basis wf. The response functions Wf above should not be confused with a dual
basis of any sort. As the reader can easily see, the span of the response functions
Wj and Wf for j = 1,2, . . .,n is 2n dimensional as the local expansions (3.22) and
(3.25) show that these functions are linearly independent.

4. The Green Function Ga'λ for the Hyperbolic Dirac Operator

The goal of this section is to construct a Green function for the Dirac operator in
the presence of branch type singularities at the points α,- for j = 1,2, . . ., n. Before
we attempt this there are a number of preliminary considerations.

Green functions in the absence of branch points. We begin by identifying the Green
functions for the Helmholtz and Dirac operators in the absence of any singularities.
To start we require Green's identity. First observe that the formula which identifies
K* with the formal adjoint of Kκ may be written,

(Kκf(z)g(z)-f(z)K*g(z))dμ(z) = dφ(f g), (4.1)

where the one-form φ is,

(4.2)

and d denotes the exterior derivative. Taking complex conjugates of (4.1) one finds

{K*fg-fKκg)dμ=-dφ(f,g) . (4.3)

From (4.1) and (4.3) one may deduce

(KJKκg-fK*Kκg)dμ = dφ(f,Kκg) (4.4)

and

(K*KJg-ΈjKκg) dμ = -dφ(Kκf,g) . (4.5)
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Adding (4.4) and (4.5) we find the infinitesimal version of Green's theorem

(Aκfg-fAκg)dμ = d(φ(Kκf,g)-φ(f,Kκg)), (4.6)

where we recall (2.3). Finally if we write,

/ 2\ 2 Φφc+1)
Ms) = s\s-jj = m2 + R2 ,

then we can rewrite (4.6) as

((Aκ-λ(s))fg-f(Aκ-λ(s))g)dμ = d(φ(Kκf9g)-φ(f,Kκg)) . (4.7)

We are interested in the Green function for λ(s) — Δκ and so we will look for radially
symmetric solutions to

(λ(s)-Aκ)g = 0

which have the appropriate singularity at z = 0 and which are in L2(dμ) in a neigh-
borhood of \z\ = R. Recall now from (2.7)-(2.15) that a solution to the Helmholtz
equation can be written in the form,

where FKtS(t) satisfies the hypergeometric equation (2.14) with,

Rs , Rs
a~—- — κ, b=— + κ, c = l ,

and where 5 is again given by (2.19).
The case c=l is special for the hypergeometric equation. One solution,

F(a,b;l;t) is regular at ί = 0, while the second independent solution has a log-
arthmic singularity at ί = 0. A local analysis near t=\ shows that when
Rs = a -f b > 1 only one solution, F κ s (ί), determines a solution, gκ,s(z), via (4.8) which
is square integrable near \z\ = R (square integrable with respect to dμ that is). Of
course this solution is only determined up to a constant multiple by this require-
ment. We fix the normalization of FKfS(t) by requiring that

0κ,s(z)~-2?-log |z| + O(|z| log |z|) (4.9)
4π

for z near 0. For this to work we must know that the solution FKtS(t) which
produces the solution gKtS(z) which is square integrable near \z\ = R is not also the
solution of the hypergeometric equation which is analytic at t = 0. We will sketch
how one can see this. Suppose that υ is the radial solution of

(K*KK

which tends to 0 as \z\ -> R, then for κ = k— \ ,

w = \
mv
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is a solution to the Dirac equation which is square integrable at oo. If v is also well
behaved near \z\ = 0, then w will be square integrable in a disk,

of radius p > 0 about 0. A calculation similar to the calculation that produced (2.42)
and (2.43) shows that the L2 norm of w on Dp is expressible in a form precisely
analogous to (2.43). The estimates (2.38) and (2.41) for w show that this expression
for the L2 norm tends to 0 as p -^ oo. This contradiction shows that the solutions
well behaved at oo and at 0 cannot match up.

We next consider the sense in which #κ ? s is a Green function for λ(s) — Aκ. Let
/denote a smooth function of compact support in ΌR. Integrate both sides of (4.7)
with / = / and g = gκ,s over the complement of a disk of radius ε about z = 0. Use
Stokes' theorem to reduce the result to a boundary integral over Cε, the circle of
radius ε about 0, and then use the asymptotics (4.9) to evaluate the boundary
integrals in the limit ε —• 0. We find

j (λ{s)-Δκ)f{z)gKt8(z)dμ(z)=f(0) . (4.11)

This shows that gκ,s{z) is the solution appropriate to determine the Green function
for λ(s) — Aκ. To obtain this Green function we must translate gKfS in the appro-
priate fashion. Introduce the variable w,

7T 1 R z R a

w := T\_ — a]z = -άz + R2'

and define

. , R2 + άw
v(w) := 2 _ .

Let v(w)κ denote the fractional power of v(w) normalized so that v(0)κ = 1. Then the
transformation property of Δκ which is the analogue of the transformation prop-
erty (1.18) of the Dirac operator is

•:=Δκ(w). (4.12)

This should be understood in the following fashion. The operator Δ^ is the
expression for Δκ that one obtains by the change of variables z = z(w). The
operators Kκ(w) and K*(w) are the analogues of Kκ and K* in the w coordinates,

R

and
12\ 1

so that Δκ(w) is the same operator in the w-coordinates that Δκ is in the z coordin-
ates. Now we introduce

R2-yz\κ

r—M gκ.(Tl-y]z). (4.13)
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To see that this is the appropriate Green function suppose that / is a smooth
function of compact support in ΌR as above and consider the integral

J (λ(s)-Aκ)f(z)gκ,s(y,z)dμ(z)

= j (λ(s)-AW)f(Tlylw)υ(wrgκ,s(w)dμ(w)

= f (λ(s)-Aκ(w))υ(w)~κf(Tly^w)gκ,s(w)dμ(w)

(4.14)

where we made the substitution z <- w to obtain the transformed integral in the second
line then used (4.13), (4.12) and finally (4.11) to obtain the third and fourth lines.

Next we construct the Green function for the Dirac operator, m — Dk, using the
Green function gκ,s(y, z). Recall now (2.2) and (2.6) from which it follows that

1 . (4.15)

Now let/(z) denote a smooth function of compact support on ΌR with values in C2.
Then from (4.15) and (4.14) we have

j (m + Dk)(m-Dk)f(z).ϊ9k+i^y'ZΪ\dμ(z)=f1(y) . (4.16)

If we exclude an ε disk about z = y in (4.16) and use Stokes' theorem to "integrate by
parts" once in (4.16) then we find

J (m-Dk)f(z) G1(y,z)dμ(z)=f1(y), (4.17)

where

[ Λ + * ( j ' z ) ] [ Λ + * ( j ' z ) ] (4.18)
The boundary of the ε disk about z = y makes a contribution to the Stokes' theorem
calculation that vanishes in the limit ε -> 0 due to the weak logarithmic singularity
in gk+±,s(y>z) at z = y. In a precisely similar fashion one finds that for

one has

J (m-Dk)f(z) G2(y,z)dμ(z) =f2 (y) . (4.20)

The Green function for the Helmholtz operator in the presence of branch
points. Before tackling the existence question for a Green function associated with
the branched version of m — D we will first consider the analogous problem for the
"Helmholtz" operator
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with

2 4ιc(fc + l )
rn2+

We wish to consider the action of Δκ on functions on the unit disk with specified
branching at a finite collection of points {aua2, . . .,an} in the disk ΌR. It will be
useful for us to recall the conventions of Sect. 3. Thus we identify points aj = (<xj9 βj)
in the disk with their standard representation as complex numbers aj = oίj + iβj.
Write ΌR(a) for ΌR\{al9a2, ...,«„} and ΌR(a) for the simply connected covering
space of the punctured disk ΏR(a). Let CJD^α)) denote the smooth functions on
ΌR(a) whose supports project onto compact subsets of ΌR(ά). Fix a base point a0 in
ΏR different from any of the points au a2, . . ., an and let [α,] denote the homotopy
class of the simple a0 based loop, α7 , about a3- in ΌR(a) which circles a-3 in
a counterclockwise fashion and does not wind around any of the other points α,
with i +j. Points in ΌR(a) over α 0 correspond to homotopy classes of a0 based loops
in ΌR(a) and as above we fix our model of ΌR(a) to be the collection of homotopy
classes of paths in ΌR(a) which start at a0. The canonical projection,

pr: ΌR(a) -> ΌR{a),

maps each class [7] of paths that start at a0 into the endpoint 7(1). This model of
ΌR(a) comes with a distinguished base point. Let ά0 denote the point in ΌR(a)
which corresponds to the constant path [0, l ] 9 ί - > α o Let R3 denote the deck
transformation on ΌR(a) which maps ά0 to the point in ΌR(a) which corresponds to
the homotopy class [α,]. Although it is not completely precise it will be convenient
to adopt the following notation to avoid clumsy expressions. We will write z for
a typical point in ΌR(a) and

pr(z) = z

for the projection on D κ ,
We wish to consider the action of Δκ on a subset of C^φR(a)) with specified

branching at α,- for7 = 1,2, . . ., n. Let C£Ί denote the subset of Co^D^α)) consisting
of those functions / which transform under Rj by

where 0 ^ lj < 1 for j =1,2, . . ., n. Note that since C ^ is a module for the multiplica-
tive action of smooth functions on ΌR and since the differential operators dz and dz

lift in an obvious way to differential operators on C£j there is no difficulty in
defining the action of Δκ on C£/. We will now construct a Green function for
λ(s) — Δκ acting on C£V This is not completely accurate since we will implicitly limit
the strength of the singularities at the points a}- in a completion of C™Λ but it will
prove simpler to construct the Green function than it will to give a complete
discussion of the domain of the corresponding operator. By analogy with (4.14)
above we seek a function gaJ(y,z) so that for any / e Q we have

j (λ(s)-Δκ)f{z) ga\% z)dμ(z) =/( y) . (4.21)

Of course, for the this integral to make sense it is necessary for the integrand,

f>R(a)3z - (λ(s)-Δκ)f{z)g" '(y,z),
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to descend to a function on ΌR. This will happen if gaΛ{ j7, z) transforms as follows,

ga'ι(y9RjZ) = e-2*il>ga-\a,z), (4.22)

under the deck transformations Rj. Equation (4.21) suggests that ga'ι(y,z) should
transform in the first variable

ga-ι{Rjy,z) = e2*a'ga-ι{y9z). (4.23)

We will now give a functional analytic proof for the existence of a suitable
version of ga'ι(y,z). To begin we will first concentrate on the behavior of gaJ(y,z) as
a function of the second variable z. To obtain a Green function ga>ι(y, z) for λ(s) — Δκ

satisfying (4.21) above we seek a function

ΐ>R{a)3z^ga\%z)

which is a solution to the Helmholtz equation,

(λ(s)-Aκ)ga-ι(.9z) = 0,

defined for zeΌR(a) with zeΌR(a)\{y} (recall that pr(f) = z and pr(j?) = y), with
monodromy multiplier e~2πίlj in a counterclockwise circuit of the branch point a^.
Also, to obtain a Green function we want ga*ι{y,z) to differ from gκ,s(y,z) by
a smooth function when y is close to z. Note that, because of the transformation
properties we want for ga'ι(y,z) it will have singularities on the set

& := {pr~ \x) x pr" \x): xeDκ(α)}

as well as on the diagonal of ΌR(a) x ΌR(a).

To make this precise we let φ(z) denote a Cfi function of R2 with

φ(z)=l for | z | ^ l

and

φ(z) = 0 f o r | z | ^ 2 ,

and define

Then for y fixed and different from αj for j= 1,. . . , w and ε small enough the
support of z -> φε{z — y) will not contain any of the branch points {a1,a2,. , an).
In such circumstances it is easy to see that the function,

z-+φε{z-y)gKtS(y,z) ,

has support in an elementary neighborhood of the point z = y. An elementary
neighborhood, U, of a point yeΌR(a) is one for which the inverse image of U under
the projection,

splits into components Va with the property that

is a diffeomorphism. The sets of Va are indexed by homotopy classes, α, of paths
that join the base point a0 to y. Using this property we will now indicate how to



Tau Functions for Dirac Operator on the Poincare Disk 137

obtain a lift of the function,

Ux U3(x, y) -> φe(y-χ)gκ,s(χ, y),

to a function defined on

with prescribed multipliers. Let a0 denote the base point in ΌR(a) as above. Let
α0 denote a path joining a0 to y representing fixed homotopy class [α 0 ] . Once [α 0 ]
is fixed we can index the components of p r " 1 ^ ) by homotopy classes of loops
based at y. Furthermore the choice of α0 allows us to identify the homotopy group
of loops based at aoeΌR(a) with the homotopy group of loops based at yeDR(a).
Thus if we let π denote the representation of the fundamental group of (DΛ(α), a0)
which results from assigning the number e~2πilj to the generator which starts at
a0 and makes a simple counterclockwise circuit OΪUJ not winding around any of the
other points ak for k =#/, then this naturally gives a representation of the funda-
mental group of (Dκ(α), y) as well; namely,

π[y] :=π[αo V o ] for

Now we define a lift of

which is defined on UxU\{(x, x): xeΌR(a)} by

1']gε

κ,s(x,y) for xeV [ y i f β o ] and

The function gί,s(x,y) is defined on pr~ 1(ί/) x p r " 1 ( / 7 ) \ ^ , and [y f c]eπ1(DΛ(α), y)
for k=l,2. It is not hard to see that this extension is independent of the choice of
[oc0], for if oc'o is another path from a0 to y one has

and
π|>o 1αί>]π[α()~

1αo] = l .

It is now natural to extend gζtS(y9 z) to all of ΏR(a) x ΌR(a)\@ by setting it equal to
0 on the complement of p r " 1 ( ί / ) x p r ~ 1 ( t / ) \ ^ . Now fix yeΌR(a). We will con-
struct gaJ(y, z) whenever z, the projection of z, is close to y, the projection of y.
More precisely, we require that

(λ(s)-Δκ){<f-ι{y9z)-gUy>2)} ( 4 2 4 )

be free of singularities as a function of zeDR(a). When z is not in the fiber over
y = pr(y) we want (λ(s) — Δκ)ga'ι(y, z) = 0. Thus with the formal cancellation of the
delta functions in (4.24) the only remaining contribution comes when the differen-
tial operator part of Δκ hits the function φε(z — y) in g^s(%z) (note that the
multiplicative part of Δκ which does not contain any derivatives is absorbed in the
delta function that arises when Δk hits gκ,s(y9 z)). Now choose ε small enough so
that 2ε will produce an elementary neighborhood U above. Then φ2ε(z — y) is
identically 1 on the support of φε(z — y). Using this one can easily see that there is
an explicit second order differential operator, p(dz, dz\ whose lowest order terms
are first order in dz and dz and for which we want

(y^) (4-25)



138 J. Palmer, M. Beatty, C.A. Tracy

Since p(δz, dz) kills φε(z — y) near z = y it follows that the right-hand side of (4.25) is
a smooth function of z in C™Λ. We will now show that for any feC£ι whose support
projects onto an elementary neighborhood it is possible to find a multivalued
function F9 transforming as / does under deck transformations, so that

(λ(s)-Aκ)F=f. (4.26)

Once we have this existence result we can then recover gaJ(y, z) from the solution
to (4.25) above any adding in gε

κ,s{% z).
Now we will recall the Hubert space technique of Sect. 3 for finding a solution

to (4.26). Let Hal denote the Hubert space completion of ϋ£t with respect to the
norm derived from the inner product

(F, G)= J {KkF(z)KkG(z) + m2F(z)G(z)} dμ(z) .

Note that the integrand descends to a function on ΌR because the monodromy
multipliers of F and G cancel. Now suppose t h a t / e C ^ and the support of/ projects
onto an elementary neighborhood. For veC™t consider the linear functional

υ^STWυ(z)dμ(z) :=<f,v> . (4.27)

Since (h, h)^m2 <Jι, h), for all heC™h it is clear that the linear functional (4.27) is
continuous on the Hubert space HaΛ. Thus by the Riesz representation theorem
there exists an element FeHaJ so that

Since the formal adjoint of Kk is Kξ one sees from this last equation that F is
a distribution solution to (4.26). Recall from the discussion in Sect. 3 that F will be
locally in the Sobolev space H1 (at least away from the branch points) and so by
standard regularity results for elliptic equations, one can conclude that F must
actually be C0 0 away from the branch points α7- for 7 = 1, 2,. . . , n.

We now use this result to solve the equation

(λ(s)-Aκ)F = {p(dz, dz)φε(z-y)}gt(y, 2) - (4.28)

Let ga'ι(y, z) denote the sum of the solution F(y, z) to (4.28) and gε

κ,s{% z) Then the
reader can check that gaΛ satisfies the following three conditions:

G l : The map z-+ga*ι(y, z) is a C°°(DΛ(α)) solution of the Helmholtz equation,

(λ(s)-Δκ)ga>ι(y,z) = 0,

for zή=y andz=\=cij for; = 1, 2,. . . 9n which transforms under the deck transforma-
tions Rj as follows,

G2: If U is an elementary neighborhood of the point y, then in the complement
D i ?(α)\pr~ 1(ί/) the functions,

z-*Kkg
aJ(y,z),
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have absolute squares that are integrable with respect to the natural hyperbolic
measure, dμ(z), on ΌR.

G3: For some elementary neighborhood, U, of the point y the difference

is smooth as a function of
Next we want to recall the consequences of G2 for the local expansions of

z -• gaJ(y, z) about the points a-3 for j = 1, 2,. . . , w. Because gaJ(y, z) is a multi-
valued solution to the Helmholtz equation with monodromy e~2πιlj about the
point cij it follows that gaJ(y, z) has a local expansion,

ga>ι(y,z)= Σ {^(9)^-1^^) +βi(y)^n+ιMz^aj)} >
neZ

valid for z near α,. Recall now that lj is chosen so that 0 ̂  lj < 1 and that the leading
singularity in vttK(z9 a) and υ*κ(z, a) goes like r* in both cases, where r is the distance
from z to a. It is now a straightforward exercise to verify that the condition G2
implies the following restriction on the local expansion for gaJ(y, z),

00 00

g" ι(y, z}= X {ui(y)vn-lrK(Z, a,) + £ βl(y)υ*+lj,κ{z, α, )} , (4.29)
n=1 H = 0

for z near α,-. We will see that this restriction on the local expansions of gaJ(y, z)
together with G l and G3 and the fact that z -+ga'ι(y, z) is square integrable on
ΌR suffice to characterize gaJ(y,z). We also wish to characterize gaJ(y,z) as
a function of the first variable y. Since Δκ is Hermitian symmetric one might expect
that

ga>\y,z) = ga>ι(z,y). (4.30)

Observe that the right-hand side of (4.30) transforms under j ; -+Rjj? by the multi-
plier e2πιlj which is appropriate for gaJ(y,z). Also since gκ,s(y, z) = gKtS(z, y) it
follows that the right-hand side of (4.30) differs from the Green function gκ,s(y, z)
along the diagonal by a smooth function - this is additional evidence that the
right-hand side of (4.30) should agree with gaJ(x, z). We will now confirm (4.30) by
a Stokes' theorem calculation along the lines of the standard argument for such
symmetry. Now choose x and j ; two distinct points in ΏR(a) and let

and

Substitute these last two functions in (4.7) and integrate the resulting equality over
the complement of the union of the balls of radius ε about each of the point cij and
the balls of radius ε about both x and y. The left-hand side gives 0 since

(λ(s)~Aκ)f=(λ(s)-Aκ)g = O

on this set and Stokes' theorem reduces the integral on the right to an integral over
the circles of radius ε about the points α,- for j= 1,. . . , n and x and y. Using the
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results for the local expansion of gaΛ(z, x) given in (4.28) above one finds that each
of the integrals,

J φ(fKκg)-φ(Kκfg),
dBMj)

vanishes in the limit ε -» 0. Finally, using the fact that gaJ(x, y) differs from the
Green function for λ(s) — Δκ by a smooth function near the diagonal one finds that
the contribution to the integral of

φ(fKκg)-φ(Kκfg)

over the circles of radius ε about x and y is just

-fU)=gaJ(y, χ)-gaJ(χ,y)

in the limit ε -> 0. This last quantity must vanish and this establishes the Hermitian
symmetry of the Green function we are considering.

The Green function for the Dirac operator in the presence of branch points. Next
we turn to the construction of a Green function for the Dirac operator acting
on C% by using formulas (4.18) and (4.19) with gε

KiS replaced by ga-1. This will
not give us the Green function we want because the local expansions will not
have the "minimal singularity" type that we desire. However, by subtracting
suitable wave functions from the results we are able to pass to the desired Green
function in much the same fashion that we constructed the wave functions W}
from the canonical L2 wave functions Wj. In analogy with (4.18) and (4.19) we now
define <§aΛ by

(4.31)

(4.32)

L0fc-j

where we have explicitly noted the dependence of g£ι

s on (K, S) to avoid confusion.
We now record the local expansion results for (4.31) and (4.32) which are obtained
from (4.29). There are two different cases to consider depending on whether
0<lj<j or i^Ξ//<l. In case 0</ J < ^ we write λj = lj and the local expansions for
<§aΛ about z = aj are

y, z)=

where all the sums are over elements of Z + j and we have written Wιik(z, a; m) and
w*Uk(z, a; m) for (2.22) and (2.23) in order to recognize explicitly the dependence on
the parameters k and m (it is — m which occurs in (4.33)).
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In case \ ^ lj < 1 we write λj = lj — 1 and the local expansion results about z = a}

are

&?l(y,z) = Σ &JnΛWn-λj,k&ab-m)+ Σ βJnΛWn + λj,k(^a^-m) >

^i\y^ = Σ < 2 w M _ A 7 , f e ( z , α j ; - m ) + Σ ^',2W*+λj,k(z, ^ - m ) . (4.34)

In (4.33) and (4.34) we have supressed the dependence on parameters y, /c, m, and
λj for the coefficients ocJ

nJ and βlti to avoid further complicating expressions that are
already notationally overburdened.

To obtain the Green function we desire our object will be to eliminate those
terms in the local expansions (4.33) and (4.34) with n<\. We can do this by
subtracting suitable multiples of the wave functions Wj( — m) and Wf (— m) without
introducing additional singularities on the "diagonal" y = z. As is the case in (4.33)
and (4.34) it is now convenient to explicitly identify the m-dependence of the wave
functions Wj and Wf since the Green functions ^ay\% z) are solutions to the
equation (m + Dk)\l/ = 0 in the z variable instead of the original Dirac equation
(m — Dk)\l/ = 0. As always our notation for the response functions will suppress
dependence on parameters that do not play a role in the current calculations and
will rely on characteristic names for the parameters to make our intentions clear to
the reader. Thus Wj(z, —m) is our short-hand notation for Wj(z, k, λ, — m). Define

Ga

2>
λ(y,z) = nl(y,?)- Σ ocj_h2Wj(z,-rn) . (4.37)

j:λ,<0

As the reader can easily verify the subtractions in (4.37), remove all terms in the
local expansions on the right-hand side with n<\ and we find

Gΐ\% ϊ)= Σ {eUfiWn-xtf, ay, -m)+fn

j

ti(y)w*+λj(z, ay -m)} , (4.38)

where we have once again omitted the k dependence of w/?fc and w*fc for brevity.
We turn next to a characterization of Gf'A(y, z) along the lines of the character-

ization Gl, G2, and G3 of ga-ι(y, z).

Proposition 4.0. The components Gf'λ(y, z) of the Green function constructed above
for (m — Dk) acting on C™t are uniquely characterized by the following three proper-
ties:

(1) For i= 1, 2 the vector valued functions £-• Gftλ(y, z) are solutions to the equa-
tion,

when z is not equal to aj for 7 = 1,. . . ,n and not equal to y. Under the deck
transformation Rj, Gf'λ(y, z) transforms as follows,

(2) About each of the points aj for j= 1, 2,. . . , n the functions Gf'λ(y, z) have
restricted local expansions given by (4.38) above. In the complement of a compact
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neighborhood of the set {y, α l 5 α 2 , . . . , an} the function z —• Gfiλ{y9 z) has a norm
which is square integrable.
(3) For some elementary neighborhood U9 of y the difference,

is smooth as a function of zepr~1 (U) and Gf(y, z) is defined by,

Proof These three properties of Gpλ(y, z) are simple translations of the properties
Gl, G2, and G3 for the Green function gaΛ{y,z). The fact that these three
conditions characterize Gtλ(y, z) can be understood as follows. Suppose that
Gi'λ(y, z) and Hf'λ(y, z) both satisfy all the conditions in Proposition 4.0 and
consider the difference

Δ(y9z) = Gf'λ(y9z)-H!'λ(y9z).

Then (3) of Proposition 4.0 implies that A (y, z) is free of singularities near z = y and
(1) and (2) imply that z -• A(y9 z) is a solution to (m + Dk)A(y, z) = 0 with mono-
dromy multipliers e~2πιλj about α,- and which is globally in L2 (dμ). However, the
restricted local expansion (4.38) implies that for each7 = 1, 2,. . . , n either Cj(Δ) = 0
or c*(A) = 0 and this together with Theorem 3.0 implies that A =0. QED.

The derivative of the Green function Gf'λ. Next we will identify the low order
expansion coefficients eίj(y) and fl t(y) in (4.38) as the components of wave
functions for the Dirac equation. Suppose that f{z) is a solution to the Dirac
equation (m — D f c )/=0 which transforms under the deck transformations Rj as
follows,

and which has restricted local expansions,

/(£)= Σ {αiwn-xfcαj mHbiw +^Zαj m)}. (4.39)

To lighten the notation for the next calculation we write

g(z) = Gf>λ(y,z).

Now let Dz{y) denote the disk of radius ε about y, and let Cε(y) denote the circle of
radius ε about y. Then for z in the complement of the union,

l ) ) (4.40)

we have
Dkf(z) =

Dkg(z)= -mg(z). (4.41)
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If we now make use of (4.41) in (3.5) we find that

in the complement of the set (4.40). If we now integrate this last equality in the
complement of the set (4.40) and use Stokes' theorem to rewrite the result as
a circuit integral on the boundary, then we find

i i

Of course, this makes sense s i n c e / ^ is a well defined function on DΛ(α)\{j;}. We
now wish to evaluate both sides of (4.42) in the limit ε -» 0. As in Theorem 3.0 it is
useful at this point to introduce the local coordinate uj = T[ — aj']z in the Cε(dj)
integral and the local coordinate w = Γ[ — y]z in the Cε(y) integral. Then in
geodesic polar coordinates (r7 , θj) and (r, θ) we have

and the asymptotics are given for small r, and small r. Making use of this
asymptotic parametrization in (4.42) and replacing some factors arising from the
change of variables by their limits as ε -> 0, one finds

lim Σ ε R f {fi92(uj)e'^+f2gi(uj)e^}dθj

= -hm Σ ^ f {fig2(u)e-w+f2gi(u)eiθ} dθ . (4.43)

ε->oi = 1 °

We have taken the liberty of scaling the result by a factor of 2. Next we use (4.38),
the asymptotics of the wave functions wt and w* given in (3.1) and (3.2), and the
local asymptotics of the Green function for z near j ; to evaluate both sides of (4.43)
in the limit ε -» 0. We find

Σ
where we used

We now use (4.44) to evaluate the low order expansion coefficients e{ .(j7) and
fJ,i(y) in terms of the wave functions Wj and W*. First choose
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then

and (4.44) specializes to

m2R-
fli(y)=-Ύ-Wv(y,m)i, (4.45)

where Wv(- )f is the i th component of Wv( •). Next choose

then

and (4.44) specializes to

m2R-
l ^ y , m ) t . (4-46)

Now we are ready for the principal result of this section. We write Gϊjλ(y, z) for the
j t h component of the vector Gf'λ(y, z). We are interested in calculating the deriva-
tive of Gijλ(y, z) with respect to the a variables. As in Sect. 2 it is convenient to
introduce the scaled variables

Taking the derivative of G?'λ(y, z) in the parameter bv kills the singularity on the
diagonal y = z. Thus the function

will be a solution to (m + Dk)ψ = 0 with monodromy multiplier e~2ίπλj associated
with the deck transformation Rj. This function will be determined uniquely by its
local expansions at aj ϊorj=l, 2,. . . , n. Using (2.32) and (2.33) to differentiate the
local expansions (4.38) we find that

v 4 ? - m ) . (4.48)

Using (2.32) and (2.33) to differentiate the local expansions (4.38) we find that

dκG?>λ(yJ)= -(i-\K\2rlfii(y)wv*& -m). (4.49)

Finally substituting (4.45) and (4.46) in (4.48) and (4.49) we find

^-ϊ- Wv(9, m), W\*(z, -m)j. (4.50)
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5. Deformation Equations

A holonomίc system. In this section we will find deformation equations for the low
order expansion coefficients of the response functions,

i j Σ j ϊ-λj} (5.1)
«>o

and
W* = δJvw*^λj+ Σ {clwn + λj + dJ

nvwϊ-λj} . (5.2)
n>0

It might be helpful for the reader to observe a parallel between the developments
here and one way of understanding the Schlesinger equations from the theory of
monodromy preserving deformations of linear equations in the complex plane. In
the Schlesinger theory the fundamental object is a multivalued analytic function
z^Y (z, a) which takes values in the general linear group. The matrix valued
function Y (z, a) has fixed (i.e., independent of the aj) monodromy matrices M-} in
simple circuits of the branch points α, and satisfies an ordinary differential equa-
tion,

dz jtΊz-aj

in the z variables. This equation is the analogue of (5.3) below. The fixed mono-
dromy condition allows one to extend this differential equation to a differential
equation,

in the a variables. This is the analogue of (5.20) below. The compatibility conditions
for the z and a equations gives the Schlesinger equations,

daΛγ=-Σ

which is the analogue of (5.26) below. We derive the deformation equations (5.26) in
a manner precisely analogous to this. One difference is that the internal compatibil-
ity conditions for the z and a equations do not give anything new in the Schlesinger
case. In our case there is some interesting information that needs to be extracted
from the internal consistency of (5.3).

Our first tool will be the following linear relations, that arise when the infinitesi-
mal symmetries My are applied to Wv and W*:

M W b M W W Σ{WfbW*}

(5.3)
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In these relations the matrices e,f, h, α, β, y, and δ are matrices that depend on the
branch points α,- for; = 1,. . . , n but not on £ In the case of e,f, g and h we have also
partly anticipated the form that the relations will take. This will simplify some later
results and will avoid the necessity of introducing further definitions. The terms
—\ Wv and \ W* are stuck out in front of the first two equations instead of being
combined with evμ and hvμ to avoid introducing the Kronecker δvμ. The δvμ that
appears in the last equation is not the Kronecker delta - the possible confusion
with this will shortly be addressed when α, β, y, and δ are all eliminated in favor of e,
/, g and h.

These relations (5.3) will be deduced using a combination of (2.20) and (2.32) -
the result that describe the action of the infinitesimal symmetries Mj on local
expansions and the results for centering the operators Mj at different points in the
disk. As the reader can easily check using (2.20) and (2.32) the linear combinations
on the left-hand side of (5.3) are all chosen so that the leading singularities in the
local expansions cancel at level n= — f. Since Wμ and W* for μ = l , . . . , n are
a basis for the wave functions whose local expansions contain terms no lower than
n= — \ and which are in L2 near \z\ = R relations of the form (5.3) follow immedi-
ately. To find the coefficient matrices e,f, and etc. one need only compare the local
expansions on both sides of (5.3) at level n= —\. One finds,

[d l J J f f], (5.4)

where we used the notation

(ίU^ί-i.Λi-W2)-1. (5-5)

Also we have written B for the diagonal matrix with vvth entry given by bv and
(k + λ) for the diagonal matrix with entry {k + λv) on the diagonal. The analogue of
the display (5.4) for the coefficients α, β, etc. is

= ( c 1 - 5 2 c 1 B 2 ) ,

ίdι,B
2'] . (5.6)

From (5.4) and (5.6) one may deduce some simple relations among the matrix
coefficients,

<x = B-eB-Be ,

β=-f-BfB,

y=g + BgB,

δ = B + hB + Bh. (5.7)
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Next we will deduce some less obvious relations from the compatibility require-
ments of (5.3). Consider the Lie algebra relation,

{M3M2-M2M3-M2)W=0 , (5.8)

where we have written W for the column vector.

W=

We now treat (5.3) as equations for M2W and M3W in terms of M1W and W and
W * and as equations for Mx W * and M 3 W * in terms of M2 W * and W and W *. If
we now use (5.3) to eliminate the appearance of M 3 W, M2W, M 3 W *, and M x W *
in favor of MXW9 M2W*, W and W* one finds that the coefficient of M{W in the
resulting equation is,

which vanishes as a consequence of (5.7). The coefficient of M 2 W * in (5.8) is,

(B2fB2-f+BβB-β)B,

which also vanishes as a consequence of (5.7). Since W and W * are linearly
independent we can equate the remaining coefficients of W and W * to 0 in (5.8) and
one finds,

2fBδ-ocfB-βh = O. (5.9)

In a similar fashion if one starts with the Lie algebra relation,

( M 3 M 1 - M 1 M 3 + M 1 ) W * = 0 , (5.10)

and uses (5.3) to eliminate Λ^W*, M 3 W*, M2W, and M3W in favor of M 2 W*,
MχW9 and W* then one finds the coefficient of MXW is,

which vanishes as a consequence of (5.7) and the coefficient of M2W* is,

which also vanishes as a consequence of (5.7). Equating the coefficients of W and
W * to 0 in what remains of (5.10) one finds,

-2BgB-B2gBot = O ,
2 B = 0. (5.11)

Both (5.9) and (5.11) simplify if one uses (5.7) to eliminate α, β, y, and δ from these
equations. Substituting (5.7) in (5.9) one finds

0 (5.12)

and
X-BXB = 0,
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where
X = ef-fh .

However, X — BXB = 0, implies X = 0 so the second consequence of (5.9) can be
written

ef-fh = 0. (5.13)

Observe also that (5.12) implies that the matrix e2—fg is diagonal. In a precisely
analogous way one can substitute (5.7) in (5.11) to get

[Λ2-flf,S] = O (5.14)

and
X-BXB=0,

where
X = ge-hg ,

and as before this implies
ge-hg = 0, (5.15)

and (5.14) implies that the matrix h2 — gf is diagonal. The equations we have found
in this fashion do not determine the diagonal parts of e2 —fg and h2—gf. However,
we can determine these by looking at the coefficients of w±+χ} in the local
expansions of the first and third equations in (5.3). One finds for the first equation,

bj-bv j bvbf-bj

= Σ (eμv-iδvμ)aJ

iμ+ Σ UKCiμ '
μ=ί μ=l

If we set v =j this simplifies to,

jμaίμ+ f fjμbμciμ , (5.16)
μ=l μ=l

where we have taken the liberty of collecting some of the terms involving αί ; on the
left-hand side. If we look at the coefficient of w±_ + λj in the third equation of (5.3)
then set v = j and collect some of the terms involving αί on one side then we find,

Σ μ £ )/J μc{μ . (5.17)
μ=ί μ=l

If one now multiplies (5.16) by 2bj and adds the results to (5.17) then one finds (after
a little simplification),

Since we already know that e2 —fg is diagonal it follows that

(5.18)
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In a precisely analogous fashion one can use the second and fourth equations in
(5.3) to show that

J ^ λ (5.19)

The holonomic Extension. Next we consider extending the differential equations
(5.3) to the a variables. To do this it is convenient to use (2.32), and (2.33) to
compute the local expansions for the exterior derivatives dbWv and dbW*. One
finds for the local expansion of dbWv about the point a^

λ. ldaJ

h + aJ

ivk+(λj9 bj)-aίv dbj-δjxm2{λj-\)dbj~]

λjLdbiv + bivk-(λj,bj)-bJ

hdbΛ + - ,

where we have introduced the abbreviation

k±(λj, bj)=(k+λj±^(bjdbj-bjdbj).

For the local expansion of dbW* about the point a} one finds,

_Λ ; ld(dJ

h) + divk.(λj, bj)-div dEj-δ^

Using these results one can easily check that the terms at level n= — \ cancel in the
local expansions of

and
dhWΪ

Thus one has relations of the form,

W*). (5.20)
μ

By comparing terms in the local expansions of both sides of (5.20) at level n—\ one
finds that,

F=-dBb1B
2-b1dB ,
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G=-dBcxB
2-c1dB9

H=jM+ims;Bm+ίiSΛύ ( 5 2 1 )

The deformation equations. The combination of the Dirac equation, the first two
equations of (5.3) and (5.20) determine an extended holonomic system for the response
functions W and W *. We will deduce deformation equations for the coefficients ej, g,
and h by examining the compatibility conditions between (5.20) and the first two
equations in (5.3). The two compatibility conditions we will examine are

(M$db-dbM3)W=0 ,

(M3db-dbM3)W* = 0.

We use the equations in (5.3) and (5.20) to express all the terms in the preceding
equations in terms of MjW, MjW*, W and W* for j= 1, 2 and μ— 1, 2,. . . , n. In
a single term in each of the equations this also requires the use the commutation
relations for the Lie algebra of Mu M2, and M 3 and one should also make the
observation that the most singular terms containing M2 W and Aίf W * manifestly
cancel. The condition that the lowest coefficients in the local expansions of the
resulting expressions must vanish leads to the following identities:

[ E , B ] - [ d B , e ] = 0 ,

dBfB2+fd5+BFB-F = 0 ,

dBgB2 + gdB - BGB + G = 0 . (5.22)

All these identities are simple consequences of (5.21) and (5.4) but it will be useful to
record them here for future use. Once one has identified these relations all the
remaining terms involving MjW and MjW * can be written as linear combinations
of W and W * using (5.3). Since W and W * are linearly independent we can equate
the coefficients of the resulting equations to 0. We find the first form of the
deformation equations,

d(fB)= -{

d{gB) = {BG - dBgB) u + (Ge- gBE) + (HgB -hG)-G ,

dh = (BG-dBgB)β+lH,K]+(Gf5-gBF) . (5.23)

We will first eliminate the appearance of α, β, y, and δ from these equations using
(5.7) and then we use the identities (5.22) to rework the equations as explicit
equations for df and dg. We will illustrate the calculations involved for e and/ and
leave the analogous reductions for g and h to the reader.

First substitute y = g + BgB into (5.23) to get

Now use (5.22) to substitute F -fdB for dBfB2 + BFB on the right-hand side of the
last equation. After some cancellation one finds
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It will prove useful to introduce,

F = -{dBfB + BF) = dBb1B + BbίdB (5.24)

and

G = dBgB-BG = dBcίB + Bc1dB . (5.25)

The equation for de becomes

Now we work on the equation for df. Again we start by replacing δ on the
right-hand side by B + hB + Bh. One finds that,

Next we use (5.22) to replace FB by fdB — F in this last equation and make some
cancellations to find,

(df)B = FhB+fdBh + EfB-eF-fBH+fhdB .

Using (5.22) we can replace the tQvmf(dBh — BH) that appears on the right of this
equation by

f(hdB-HB) = efdB-fHB ,

where we used fh = ef. One finds,

But using (5.22) we can replace/ί/jB — F in this last result by FB and then cancel the
common factor of B on the right to obtain

df=Fh + eF + Ef-fH .

Doing precisely analogous calculations for g and h one finds,

df=eF + Fh + Ef-fH ,

-] . (5.26)

Further identities. There are a number of identities among the low order expansion
coefficients of the response functions W and W* that are associated with the
transformation m < m and (k, λ) <- (— fc, —λ) which we will now record. First
observe that,

Γ - l 0 1

Q 1 wI>k( ,m) = w I > k(., - m ) ,

ίk(.,m) = wirk(.,-m). (5.27)

Because we are interested in the dependence on the parameter m we have made it
explicit in the preceding equation when we did not always do so before. From these
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relations it follows by comparing local expansions at level n=\ that,

I * (k, Km) = W * (fc, λ, - m) . (5.28)

Now comparing local expansions in (5.28) at level n=j one finds,

c v̂(fc, A, m)= — Civ (fc, A, — m),

ί/fv(fc, /I, m) = d^v (fc, /I, — m). (5.29)

Since the dependence of the low order coefficients on the parameter m is so simple
we will suppress the explicit notational dependence on m with the convention that

xfv (fc, λ) = XjV (fc, λ , m)

for x = a, b, c and d. lϊbjV(k, λ, —m) (or cfv(fc, λ, —m)) occurs we will replace it with
— bμ

v(k, λ) (or —cfv(k, λ)) without further comment.
For fc = 0 the Dirac operator is a real operator. One consequence of this is that

there is a natural conjugation that acts on the fc = 0 solutions to the Dirac equation.
This conjugation is,

It is not difficult to check that this conjugation acts on the local wave functions
(2.22) and (2.23) as follows,

0 1

(5.31)

Using (5.31) to compare local expansions level n= — \ one finds,

Jjffί(U)ff,(fc,l). (5.32)

Comparing local expansions at level n=j in (5.32) one finds,

c^v(fc, A) = ft^v(-fe, - A ) . (5.33)

Finally we will note some identities that follow from the derivative formula for the
Green function (4.50). T o make use of this formula it is convenient to modify the
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Green function with (5.32) in mind. We introduce

tβ.x 8 ΓO 11
G = ^ κ L i o J G

and (4.50) translates into

1

Wv(-k, -λ, m) <g) Wv(k, λ, -m),

\Ga'λ = * 2 W*(-k, -λ, m) ® W*(k, λ, -m). (5.34)
5 V ( 1 | L > V | )

If we now use this equation and the local expansion formulas for dhWv and dbW*
given above to compute the local expansion coefficient of

in the equation,

{dκdbμ-dbμdκ)Ga'λ=o,

one finds after some simplification

5" 1 α^-fc, -λ)-ai(k,λ)τs~1= diagonal, (5.35)

where a± is the matrix with vμ matrix element αfv and Xτ denotes the transpose of
the matrix X and s denotes the diagonal matrix with vv element sv = sin(πλv).

In a similar fashion if one calculates the local expansion coefficient of

in the identity,

(dbvdbμ-dbμdbv)όa>λ=o,

then one finds

s-^ί-fc, -λ)-ci(Kλ)τs-ί=0 . (5.36)

Now the combination of (5.35) and (5.33) produces the following relation between
the deformation variables h and e above (in which the parameters are understood
to be (fe, λ, m)),

/x = 5 ( l - | 5 | 2 ) β * 5 - 1 ( l - | J 5 | 2 ) - 1 , (5.37)

where e* is the conjugate transpose of e.

The combination of (5.36) and (5.33) produces the relation,

(5~ ι bt(k9 λ))* == s-' b±(k, λ), (5.38)

from which it follows that

(fs(l-\B\2))*=fs(l-\B\2). (5.39)

One also has

(s-1ci(/c,A))* = s-1c,(/c,A)) (5.40)
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from which it follows that

( s - 1 ( l - | B | 2 Γ 1 ^ ) * = s " 1 ( l - | « l 2 Γ 1 ^ (5.41)

We summarize these developments in the following theorem:

Theorem 5.0. The low order expansion coefficient e,f g, and h defined by (5.4) above
satisfy the non-linear deformation equations,

= hG + Ge + Hg-gE

The coefficients e, f g, and h also satisfy the relations,

ef-fh = O,

ge-hg = 0 ,

e2-fg = M2,

h2-gf=M2,

m2R2

where M2 = k2-\ —. If we further introduce,

Ϊ=fs(l-\B\2),

g = s-1(l-\B\2rίg

then we have the additional symmetry relations,

We have one final observation to make concerning these deformation equations. If
we combine the commutator equation ef—fh = 0 with the final expression for h we
find,

eϊ=fe* .

If for some reason/ turns out to be invertible (this will happen in an interesting
special case we consider later on) then we can use the non-linear relations above to
eliminate g and h from these equations in favor of e and/ In particular one finds,

h=Γίef,

Theorem 5.1. / / / is an invertible matrix and we define,

F = Fs(ί-\B\2),

G = s ~ 1 ( l - | 5 | 2 ) - 1 G , (5.42)
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then the deformation equations for e and f are

. (5.43)

The matrices e and f satisfy the conditions,

eί=ie* ,

f* = f, (5.44)

with g determined by e and f,

g = Γ i(e2-M2) = ef-ίe-M2f-1 , (5.45)

and G determined by g.

We leave it to the reader to confirm that (5.43)-(5.45) incorporate all the informa-
tion about e,f g, and h that we have found so far in the event/ is invertible.

The two point deformation theory in a special case. In this subsection we will
integrate the deformation equations in a special case of the two point problem. Our
principal result is that it is possible to integrate the deformation equations in terms
of a Painleve transcendent of type VI.

It is useful to start by determining what the deformation equations have to say
about the action of the rotational symmetry bj->eίθbj. This corresponds to the
infinitesimal symmetry,

One sees immediately that

dB (rot) = iB ,

άB(rot)= -iB .

It is then a simple matter to calculate,

E{τot)=-ie + i

F'(rot) = ifB,

G(vot)=-igB ,

H{τot)=-i

The deformation equations become

df(rot) = ί[λ,n

From these equations it follows that,

e(ei9bu . . . , ewbn) = eiλθe(bu . . . , bn)e~iλθ ,

f(eiθbu . . . , ei$bH) = eiλ$f(bl9. . . , bn)e~iX9 . (5.46)
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Next we want to consider what happens for the infinitesimal version of the SU(1,1)
one parameter group,

Γchί shίΊ

|_shί chί j

The vector field associated with the action of this one parameter group on the disk
of radius R is

v = υ1® ®υn

with

It follows that

dB(v)=Uί~B2),
K

dB(v)=~(ί-B2).
K

One computes,

1 / - 1

R \ 2

and

F( ) - l

R

K

A little computation using the relations among e,/, g, and h shows that

j (5.47)

Since the matrices

are diagonal they commute for different values of the matrices B and it follows that
the differential equations for e and/ may be explicitly integrated along the orbits of
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the one parameter group action,

[ ch t sht

shί chί

for peΌR. We wish to parametrize the two points
fashion,

157

and b2 in the following

= eiΘίh 1

where

The parameters for bx and b2 are θ, 0!, r, and r x. Note that (r, 0) are essentially the
geodesic polar coordinates for b2 relative bx. The reason for this parametrization of
bγ and b2 is as follows. First rotate both b± and b2 by —θu then take the result of

this and flow along the appropriate v—orbit by — ~ . The result is

b1 -> 0, b2 -> δ .

Finally rotate 0 and (5 simultaneously by — 0. One finds that

It follows that the symmetry flows that we have determined above suffice to
determine e{bx, b2) and/(fr1 ? b2) for all values of (bu b2) in terms of e(0, t) and
/(0, t) for ί real. Next we will use the deformation equations to write down ordinary
differential equations for e(0, t) and/(0, t). Let

Now we substitute (0, t) in the deformation equations and evaluate them along the
vector field u. One finds,

and

B =

B =

dB(u) =

dB(u) =

0 0

0 t

0 0

0 t
(5.48)

"0

0

"0

0

0"

1_

0"

1
(5.49)
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To make use of the symmetry conditions to reduce the number of variables it is
desirable to work with e and f rather than e and / Indeed at this point we will
confine our attention to the case in which λj > 0 for j = 1, 2. In this case the response
functions Wv are in L2 and the matrix —s~1bi(k,λ) is the matrix of the inner
products of these response functions and is consequently positive definite. Using
the fact that \bj\ < 1 one easily sees that this implies f is positive definite (and hence
invertible). Hence the deformation equations become

, (5.50)

with

g = e*t-1e-M2f1 . (5.51)

and G determined by g. At this point it is useful to introduce

and

where c>0, κ9 and φ are real and εε=l. This parametrization incorporates the
known diagonal for e and the fact that f is a symmetric positive definite matrix
which is related in a particular fashion to the matrix of the L2 inner product of
wave functions. The last algebraic relation ef=fe* implies,

Γκ:ch^ εshiA Ί

(εe+—εe+)shιj/ = 0,

(κ~1(l-t2)e+-κe-)chφ-λεshιl/ = O ,

where λ = λ2 — λι. Now define

ξ = εκ~1(l-t2)e++εκε- .

If we suppose that shι/^Φ0 then we find that εe+ and εe_ are real and

ot/

^ (5.54)

where ~ξ = ζ. Now write
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for j= 1,2 and

159

and

The one easily calculates,

g n

g21

G(u) =
0 - g l 2

If we now substitute these into the equation for di (u) we find

df(u) = N 9

where

Nίl=-Γ1(e+f21+e+ϊ12),

Nί2=-
t + t- 1

- 1

1 - ί 2

N 2 2 = - r 1 ( e - _ f 1 2 + e _ f 2 1 ) -

1-ί

2t(k2-j)

1-ί2

&».

f 2 i ,

2ί

1 - ί
2*22

Next we convert this using (5.33) and (5.54) to find,

/•~ 1

\-V

N12=-cε
- ί 2 - ί 2
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ί(μ-l)
N21=-Cε

N22=-cκ~1Γί(ξ-λth\l/)sh\l/-cκ-12tchφ.

where/' = — and the equation άf(u) = N for c\ ε\ κf and ψ' becomes,
at

' 1 — ε'1^ shψ + chψ ψ' =c~ίεN2ί ,

The very last equation simplifies somewhat when combined with the expressions
for N22. One finds,

c 1c'chψ — κ 1/c/

1-ί2

Solving these equations for c 1c', K γ K\ ε x ε' and φ' one finds

λf

1 - ί 2

ί ' 1

1-t 2
• ch ι/f sh φ .

Next we work oujt the differential equation associated with e. Substituting the
results for F and G into the differential equation for e above, one finds,

e' =

0

0

0

It
\-t2 g22_

0 0

o
1 - ί

2*22

2ί

We also calculate

2 t

lE,e] =

(5.55)

I ί(i-ί2) )U- o I'
(5.56)
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Combining (5.55) and (5.56) we find,

, 2

it

Use

to obtain,

(1 -1 2 ch 2 ^)cg 2 2 =-εμε+shψ+ κ(ki-M2+ e-e+)chψ . (5.58)

Now substitute this last expression for g2i in the second equation in (5.57) along
with the parametrization for f22 and the expression for e _. Then multiply both
sides of the resulting equation by κ;, make use of the equation for κ~x κf given above
and the observation that

ξ2-λ2th2ψ

to obtain

_Jμch2φ_
l-t2ch2φζ' ( " 9 )

As a check on this equation we remark that the variable φ in the Poincare disk has
the same significance as the variable φ in [8,12, 15]. Introducing t = ̂  and letting
R -> 00 one finds that the limiting form of (5.59) is

dr\ dr

which is Eq. (3.3.46) in [12]. In the special case λ = 0 this equation was first found
in [8].

Next consider the substitutions

s = t2, w=-
ch2φ '

One finds,
dφ_ 1 dφ_ 1 dw

ds It dt

ξ=
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Now convert (5.59) to a differential equation in s by multiplying both sides by t 1

and substituting 5 for t2. In the resulting equation make the substitution w = l/
ch2ι^ and multiply both sides by w^/l — w. One finds,

w — s 2(1 -s)

(5.60)

It is simple to compute,

r d 1 _ 2 - 3 w dw

^ ds w/\— w 2w(w— 1) ds '

Substituting this last expression in (5.60) and simplifying the resulting equation one
finds,

. .1/1 1 1 V ... /I 1 1
w — -2 V w w — 1 w — 5 5 5—1 W—5

W

w(w-l)(w-s)/(l-4M2)5(s-l) (μ-l)

52(l-5)2 V 2(w-5)2 2w2 (5.61)

This is Painleve VI (see, e.g., [4])

, 1 / 1 1 1 1 1 1

2\w w—1 w — sjy ' ' \s s— 1 ' w — s

w(w-l){w-s)(δs(s-l) y(5-l) βs

w

with

7 = 0,

s 1-4M 2

Q —

We summarize these developments in the following theorem:
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Theorem 5.2. Suppose that λj>0for j=l, 2. Let bj=-ς and consider e(b1, b2) and
R

f(bi,b2) as functions of the scaled variables bj. Define λ = X2 — λx and
λ2. Write

and

t(n rt- , r t Γ *(*
mt)-C(t}lε(t)shψ(t) f

Then the algebraic relation ef=fe* implies,

for a real valued function ξ and ε of absolute value 1. The deformation equation for
f implies,

λt - 1

The last equation allows us to eliminate ξ in favor of φ and φ''. Once this is done and
the further substitutions,

are made, the deformation equation for e becomes the type VI Painleve equation (5.61)
above for w.

6. The Tau Function

The Grassmannianformalism. In this section we will introduce the τ-function for the
Dirac operator with branched singularities whose Green function was described in
Sect. 4. Suppose that S is an open subset of ΌR with a boundary δS that consists of
the union of smooth simple curves in ΌR (we assume that the closure of S is
contained in the open set D Λ ). Suppose that/ is a smooth function in the Sobolev
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space H1 (ΌR) which satisfies the Dirac equation

{m-Dk)f(x) = 0ϊov xeS .

Then since the integral operator associated with the Green function inverts the
Dirac operator we have

fj(x)= J (m-Dk)f Gj(x,y)dμ(y) for xeS .
ΌR\S

The integral can be confined to ΏR\S since (m — Dk)f(y) = 0 for yeS. Since the
Green function G7(x, y) is a solution to

{m + Dk)yGj{x9y) = 0

in the second variable when xφy, it follows that the expression for fj(x) can be
written

fj(x)= j {(m-Dk)f(y)'Gj(x,y)-f(y)'(m + Dk)Gj(x,y)
VR\S

which becomes, using (3.5) and Stokes' theorem, the following boundary integral
representation for/7 (x),

R2 R2

for xeS , (6.1)

in which each component of the boundary, dS9 is given the standard counterclock-
wise orientation. lΐfeH^(dS) is prescribed arbitrarily then we can also regard (7.1)
as a formula for the projection/ onto the space of boundary values on BS of H1(S)
solutions to the Dirac equation in the interior of S. The complementary subspace
for this projection is the space of boundary values of dS of solutions to the Dirac
equation in H1(ΌR\S).

Our principal tool in the discussion of the tau function for the Dirac operator is
a formula analogous to (6.1) with the Green function G replaced by Gaλ. To
explain the significance of this formula it will be useful to describe the transfer
formalism [12] and its relation to "localization" away from singularities. It is
natural when considering the Dirac operator with branch type singularities at the
points cij for j = 1, 2,. . . , n to localize the operator away from the branch cuts. One
natural way to do this in the hyperbolic disk is to transform the disk into the upper
half plane by a fractional linear transformation and then to draw horizontal strips
around horizontal branch cuts emanating from each of the points α, for
7 = 1,2,. . . , n. There are many ways to transform the disk into the upper half plane
and it is clear that, provided the branch points α,- are all distinct, one can choose
a suitable such transform so that the second coordinates of the transformed branch
points are distinct. Supposing this to be done we can then choose the strips
Sj containing Uj to be pairwise disjoint by making them sufficiently narrow. It is
certainly possible to transform the Dirac operator into upper half plane coordi-
nates and work exclusively in the upper half plane, so that the description of the
localization is geometrically simple. However, because we wish to use the many
formulas which we have written down in the disk but have not written down in the
upper half plane this is not economical. Instead we adopt the expedient of using the
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geometrically natural terminology in describing the localization via horizontal
strips in the upper half plane, but when doing calculations we transform the strips
Sj back into the disk where they become crescent shaped objects with the sharp
ends meeting at a common point on the boundary of the disk. The reader should
not find it difficult to keep in mind that any reference to horizontal branch cuts or
strips implicitly assumes that one has chosen an appropriate upper half plane
coordinate system.

Until now it has been convenient to work on the simply connected covering
ΌR(a) of ΏR(a). However, at this point it is simpler to draw horizontal branch cuts
(rays), {^ emanating to the right from each of the branch points a} and to work with
functions on ΌR(a)\{έί9 f2* > Λj that have appropriate branching behavior.
We will now describe the localization of the singular Dirac operator, Daλ, which
we wish to consider. Let S= uSj denote the union of the strips Sj. In the exterior of
the set S the operator, Da*λ, will act precisely as the ordinary Dirac operator acts.
However, in order for this operator to adequately mirror the sigular Dirac operator
whose domain contains functions that are branched at the points a} with specified
monodromy we restrict its domain. We will now define the subspaces of H^(dS)
that are important in our description of localization of the singular Dirac operator
pa,λ ψQ wjji s a y jj^j. a function F is locally in the null space of Daλ at α,- provided
that for some ε > 0 the function F has a local expansion,

F(x)= Σ {an(F)wn + λj(xίaj) + bn(F)w^λj(x,aj)} ,

valid for xeBε(βj\ the ball of radius ε about α,. In this description it is understood
that a branch cut {j has been chosen for α,- and that brances for F, wn+λj, and
w%-λj a r e fixed. Suppose now that Sj is a horizontal strip containing α,- in its
interior. We define a subspace of H^(dSj) in the following fashion,

Definition. A function/ on δSj will be in the subspace Wint(α;) provided that it is the
boundary value of a function F defined in Sj with the following properties:

(1) F is a branched solution to the Dirac equation in Sj with branch cut ίj and
monodromy e2πιλj.
(2) F is locally in the null space of Daλ at Uj.
(3) FeH^SjXB^Kjtfj^for some ε>0.

If each branch point α,- is contained in a strip Sj and the strips Sj are pairwise
disjoint then we also write,

Wίnt(a) = Wint(<*i) θ Wintfo) θ θ Wint(an) ,

to define a subspace of H*(dS). Next we define a subspace of H^(dSj) complemen-
tary to Wint(aj).

Definition. We define the subspace WexX{a3) to consist of functions f defined on dSj
which are the boundary values of functions F defined ΌR\Sj which satisy the Dirac
equation (m — Dk)F = 0 outside Sj and such that FeH1(ΏR\Sj).

Note: For both of the preceding definitions the functions of interest are in the first
Sobolev space H1 near the boundary and so the Sobolev embedding theorem
implies that the boundary values are assumed in the H^ norm on the boundary.
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Finally we let Wext denote the subspace of boundary values of dS of functions
F defined in ΌR\S which satisfy the Dirac equation (m — Dk)F = 0 in the exterior of
S and such that FeHί(ΏR\S). Note that this subspace is certainly not the direct
sum of the subspaces Wext(aj). The following formula defines a projection that is
fundamental for us,

GJ[λ(

1

*,y)fi

\y\
R2

(y) •Λ-
 G"n (x, y)J\(y)

idy (6.2)
δS

Theorem 6.0. The subspaces Wint(a) and Wext are transverse to one another in
H^(dS). The operator Pa'λ defined in (6.2) above is the projection on Wint(a) along
Wext.

The proof of this theorem is parallel to the calculation used to establish (4.7) in
reference [12] and so we will not repeat it here.

There is another projection that will be important for us. Let P, denote the
projection of H*(dSj) on Wint(aj) along Wext(aj). We define

F(a) = Pι@P2® -®Pn. (6.3)

We are now prepared to discuss the determinant bundle formalism that wil allow
us to define a τ-function for the singular Dirac operator D α λ . Fix a point α° =
(a i, a 2,. . . , a°) with a° ή= a® if j + k. Fix a collection of pairwise disjoint open strips
Sj with afeSj. Choose ε > 0 so that for each; = 1, 2,. . . , n the ball of radius ε about
af is contained in Sj. That is,

Bε(af)<=Sj.

Let H=/ί*(5S) and write

H = Winl(a°)®We!ίt (6.4)

for a distinguished splitting of the Hubert space H. Write Po for the projection
of H on Wint(a°) along Wext. We are interested in the Grassmannian, Gr 0 , of
subspaces of H which are close to Wint(a°) in the following sense. A closed subspace
W is in Gr 0 provided that the map,

P0:W^Wint(a°), (6.5)

is Fredholm with index 0, and the map,

(I-Po)' W->WQXt, (6.6)

is compact. Except that we have additionally specified the index of the first
projection this is essentially the definition of the Grassmannian that Segal
and Wilson consider in [16] and the reader can find a detailed theory of such
Grassmannians in the book [14] by Segal and Pressley. The restriction to index
0 in (6.5) means that we confine our attention to the connected component of the
Grassmannian, Gr 0 , containing Wint(a°). It is simpler to discuss the det* bundle
over the connected component of the Grassmannian and it will suffice for our
purposes. The first result we require is

Theorem 6.1. // aseBt(a*j) then Wint(a)eGr0.
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The proof of this theorem is precisely parallel to the proof of Theorem 4.1 in
[12] and so we refer the reader to this paper for details.

The localization of the singular Dirac operator we are interested in can now be
described as follows. The operator, Daλ, acts as the ordinary Dirac operator in the
exterior of the union of strips S and its domain is the subspace of H1 (ΌR\S) whose
boundary values belong to the subspace Wmt(a). We define a determinant for this
family of Dirac operators by trivializing the det* bundle over the family of
subspaces W i n t(α)eGr0. This trivialization is then compared with the canonical
section for the det* bundle and the result defines the τ-function for the Dirac
operator.

Recall that an invertible linear map F: Wint(α°) -> W is an admissible frame for
the subspace WeGr 0 provided that P0F: Wint(α°) -• Wint(a°) is a trace class per-
turbation of the identity. We will now introduce two different frames for the
subspace Wint(α). The first such frame will define the canonical section of the det*
bundle and the second will be used to provide the trivialization of det* over the
family of subspaces

a -+ W in t(α)eGr0 .

First we show that the restriction Paλ: Wint(a°)->Wint(a) inverts the projection
Po Wint(a) -> Wint(a°). From this it follows that the restriction of Paλ to Wint(a°) is
an admissible frame for Wint(a) which defines the canonical section of the det*
bundle. The argument is simple. Suppose that weWext. Then Pa'λw = wa and
writing wa = wa + we with waeWint(a) and weeWext. Then Pa'λw = wa and writing
wa = w — we we see that Po wa = w. Evidently, this is just an expression of the fact that
the complementary subspace Wext is the same for both projections Po and Paλ.

The second frame arises from considering the direct sum of "one poinf'projec-
tions:

Proposition 6.2. The restriction of F(a) to the subspace Wint(α°) is an admissible
frame for Wίnt(a).

Once again this is identical to Proposition 4.2 in [12] and we refer the reader to
that paper for more details.

We now recall that the fiber in the det* bundle over a subspace WeGr 0 can be
identified with equivalence classes of pairs (w, α) where w: Wint(α°) -• W is an
admissible frame and α is a complex number. The equivalence relation which
defines the fiber is (w l 5 α1) = (w2, α2) if and only if

α 1 = α 2 d e t ( w j 1 w 1 ) .

In this representation the canonical section of the det* bundle is given by

Gr o 9W -> (w, det(Pow))edet* ,

where w is any admissible frame for W. Sine P0P
aλ is the identity on Wint(α°) it

follows that we may regard

as a representation of the canonical section σ(Wint(α)). We use the notation P α ' A | 0 to
signify the restriction of the projection Paλ to Wint(a°). We now use F(a) to define
a trivialization of the det* bundle over the family of subspaces Wint(a). Define
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We may then define a determinant τ(a, a0) for the Dirac operator as follows,

°J^^ (6.7)
(a))

In this formula det0 refers to the determinant of an operator restricted to the
subspace Wint(α°). The second form of the determinant as a reciprocal is included
since it will be slightly simpler for us to calculate the logarithmic derivative of the
τ-function in this form. We can now state one of the principal results of this paper:

Theorem 6.3. The τ-function defined by (6.7) has logarithmic derivative given by,

<*l°gτ= Σ -Γ-TΓΪ5 Hjdbj + dijdbj} , (6.8)
j=l L~\°j\

where the coefficients aίj and dίj are the local expansion coefficients for W} and
Wf found in (3.22) and (3.25) above.

Proof. For simplicity we write P(a) = Pa'λ in the following calculation. We also
write d for the exterior derivative with respect to {alia2,. . . , an}. The rule for
differentiating determinants when applied to the final term in (6.7) above yields,

d logτ(α, α°) = - T r o ^ ί F ί ^ ^ P ^ P ^ - ^ ί α ) ) ,

where Tr0 is the trace on Wint(a°) and it is understood that both F(a) and P(a) are
regarded as maps from Wint(α°) to Wint(a) in this last formula. However, we know
that P(a°) inverts P(a) restricted to Wint(α°). Thus

when both sides are restricted to W int(a°). In a precisely similar fashion F(a°)
inverts F(a) restricted Wint(a°). Thus we find,

rflogφ, a°) = -Ίro(F(ao)d(P(a))P(a°)F(a)) .

But P(α)(J-P(α°) = 0 so that d(P(a))P(a°) = dP(a), where dP(a) is now regarded as
a map on all of H. Combining this observation with the fact that the range of F(a°)
is all of W lnt(a°) we can remove the subspace restriction on the trace to find,

dlogτfa a°) = -Ίr(F(ao)(dP(a))F(a)) = -Ύr((dP(a))F(a)F(a0)) .

Since F(a)(I-F{a°)) = 0 we find that F(a)F(a°) = F(a). Thus

rflogφ, α°)= -Ύτ((dP(a))F(a)). (6.9)

The reader might note that although τ(a, a0) depends on α° its logarithmic
derivative does not! Since it is clear that τ(a°, a°)= 1 from the definition, the fact
that the logarithmic derivative is independent of α° implies that there exists
a function τ(a) such that

The function τ(a) is the function which we would like to identify as a correlation
function in a quantum field theory. This will have to await further developments.
However, one should observe that

dlog-φ, a°) = d\ogτ(a),
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We will now use the derivative formula (4.50) and the formula (6.2) for the
projection to evaluate the trace (6.9) in terms of the low order expansion coeffi-
cients for the wave functions Wj and W*. The derivative formula (4.50) and the
projection formula (6.2) together imply,

W*(y, -m),

1 R2

•^(1-1^)1 , \yl fΛy)ldy>
R2

and

m2RW*{x,m) f Wv(y, -m).

I6ΛI)

R2

The appropriate trace is,

2
W*{y, -mhF(a)Wv(y,m)2 . ,_

1 [ J '
1 Ό2

m2R(x,m) c W*(y, -m)2F(a)Wv{y,m)ί

— ^ — τ , \ ΓΓTΪ ι d y > ( 6 1 2 )

R2

and

( 6 1 3 )

According to (3.5) both of the integrands in (6.12) and (6.13) are exact away from
the singularities at α, for j = 1, 2 , . . . , « . The contours 3S, can be closed about the
singularities α, and the same asymptotic calculation that leads to (4.4) above shows
that,

^ l (6.14)
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and

-τr(FdκP)=τ=^j2b(FW*)l, (6.15)

where we used the notation,

g(x)=Σ {a(grnwn+λv + b(gynw*-κ} >
n

for the local expansion coefficients of g about the point αv. Note that the contours
dSj with j φ v do not make a contribution in this calculation. To compute FWV and
FW* on dSv we need only subtract from Wv and W* the "one point versions" of
these two functions (just the translate of the appropriate multiple of the function

to av). Doing this we find,

a(FWv)l = alv

and
b(FWv*)i = dlv.

This finishes the proof of Theorem 6.3. QED

We will now provide the connection between the coefficients in the formula for the
logarithmic derivative of τ given in (6.8) and the deformation theory of Sect. 5. If
one collects all the terms in (5.16) that involve a{j on the left-hand side using
ejj = k + λj then one finds,

l ΣKcίμ ( 6 1 6 )

The analogous calculations for dlj yield,

dίj = bjm1(-λj-ί)+ Σ KdL-ΣβiJΆ* • ( 6 1 7 )

The right-hand sides of both (6.16) and (6.17) are completely determined by the
deformation variables e, /, g and h.

The log derivative of τ for the two point function. In the subsection we will write out
the formula for the logarithmic derivative of the tau function in terms of the
Painleve transcendent of the sixth kind that was found in the integration of
a special case of the deformation equations described at the end of Sect. 5. We
suppose therefore that λj>0 for j= 1, 2 and that bx = 0 and b2 = t. In this special
case (6.8) becomes,

From (6.16) and (6.17) one finds,

and
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Expressing the off diagonal elements of α, b, c and d in terms of the deformation
parameters one finds,

Thus,

Now we observe that

and since

g = S-\\-\B\2)

i=fs(l-\B\2),

it follows that

/22^2

Eliminating h in favor of e* one has,

Λ i 2 = -
5 2

Λ 2 i = -
Sl

so that,

where we have used the fact that ^21^12 = ̂ - e+ is r e a l Thus

^logτ(0,t)=-l-ϊ{2tm2(λ2-ti + 2Γ1(ί-t2)e-e+ + 2tf22g22} . (6.18)

Using (5.53) (5.57) and (5.58) one finds,

g22~~ ι-t2ch2φ '

, w 2 C2-λ2th2φ

ί-t2ch2ψ
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so that,

γ

As a check on (6.18) we can, as we did for (5.59), introduce t = — and then take the
/ \

limit R -> oo. One finds that the limit of rflogτ ( 0, — I as R -> oo is

V R J

This should be compared with (4.5.42) in [15] and (5.39) in [12]. The overall sign
difference with (4.5.42) is a consequence of the fact that (4.5.42) is a formula for the
log derivative of the Bosonic tau function SMJ.

Next we make the substitutions, w=l/ch2ι^ and s = t2 in the expression for
Ϊ22g22 Substitute the result in (6.18) along with (5.54) for e+ and e-. Eliminate ξ in
the result with the substitutions

-

ζ w 2 (l-w)

Noting that

we find after some calculation

μ2 λ2w λ2 4M2-μ2-λ2

4(s-l)w 4s(s-l) 4s 4(1 -s) ' l ' }

The formula on the right-hand side of this last equation bears some striking
resemblance to the formula in Okamoto [7] for a Hamiltonian associated to the
Painleve VI equation. It does not, however, appear to be a Hamiltonian for Pyι for
any simple choice of canonical coordinates.

It would be interesting to study the behavior of this tau function as t -• 0,1. The
asymptotics for t near 0 should match onto the asymptotics of the analogous tau
function in the Euclidean domain. The behavior as t -> 1 would follow if one knew
the appropriate connection formula for PVi We hope to return to this question
elsewhere.
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