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Systems of Partial Diffe{ential Equations
for a Class of Operator Determinants

C. A. Tracy, H. Widom

L. Introduction
We consider one-dimensional integral operators with kernel of the form

K@9) = 772 3 capeola)al)
a,8=1

acting on functions on the union of intervals
m
J = | loak-1, a2].
k=1

If the ¢, belong to C! and the matrix (cq ) is antisymmetric then the kernel is
symmetric and belongs to C!, and the corresponding operator K is trace class.
Modestly generalizing the principal result of [4], where n was equal to 2, we show
here that if the functions ¢, satisfy a differential identity of a certain form then
there is a system of partial differential equations, with the a; as independent
variables, associated with the determinant det (I — K'). More exactly, the solution
of these equations determine the logarithmic derivatives of the determinant with
respect to the ag.

Write C for the matrix (ca,)j 5=1, Write o(z) for the vector function
(pa(z))?_, and denote the inner product in R™ by (-, ). Then the kernel may

be written (C (@), 0(u))
R (1)

If R(z,y) is the resolvent kernel for K, the kernel of the operator K (I — K)~?,
then it is an easy fact (see below) that

% logdet (I — K) = (—=1)**! R(a,ax). (2)

We define the function Q(z) = (Qa(z))?—; (which depends also on ai, ... ,a2m)
by

Q=I-K)"p

(we restrict ourselves to (ax) such that I — K is invertible) and set

qr = Q(ag).
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These vector functions of ai,...,a2, will be the quantities of principal interest
and will be among the dependent variables in our system of equations. We shall
see that for any kernel of the form (1) we have the representation

0
Rlax,ar) = (C 5.5, q), 3)

so the g determine R(ag,ax), and that

90 _, 1\« {Ca5 )
Bak—( 1) a; —ag

a, (G #k), (4)

which is the first part of our system of equations. To complete it we need formulas
for the derivatives 8qx/dar, and this requires introduction of more dependent
variables and the differential identity for p(z) alluded to above.

Given n-vecsors v = (v4) and w = {(w,) we denote by v® w the n X n matrix
with a,8 entry v, wg. The extra dependent variables are the matrices

U, .= / 7' Q(z) ® (z) de.
J N
We also define Q; := (I — K)~! M* p, where M denotes multiplication by z, and
qik ‘= Qi{ak). |
These last are not new since, as we shall show,

Git1,k = ak @ik + Ui C g, (5)

(* denotes transpose) and this determines the g; x in terms of the U; and go x = gx-
The differentiation formula

oU;

=t (=1)* )
o = (D 0 @ g ©®)

will be the second part of our system of equations.

To obtain formulas for dgi/da in terms of the g, and U; we use the basic
assumption on ¢{z). This assumption is that there exist a scalar polynomial m(z)
and a matrix A(z) with polynomial entries connected with the matrix C by

A}t C+CA(z)=0 (7

such that
m(z) ¢ (z) = A(z) o(z). (8)
Of course this is the same as taking m(z) = 1 and A(z) a rational matrix function,

but our final equations are expressed most simply in terms of the coefficients of
the polynomials m(z) and A(z). If

m(z) = Zml !, Alz) = Z At 9)

1>0 1>0
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then these equations are

0o .
m(ar) o = Alar) g+ > [U;C (A= (G + 1) mus1) — A1U; Clai
aak itj=l—1
i>1
. Cq;,
3 (1) m(a) C LD o (10)
i7h a7 = ak

Thus, our unknown functions are the g and the U;, and the complete system of
equations consists of (4}, (6) and (10). We see from the last that we need include
as unknowns only the L’; with ¢ < max (deg A — 1,deg m — 2). In particular, if A
is constant and m is linear there need be no U; at all.

I1. Derivation of the System of Equations

We may assume until the derivation of (10) that the ¢, are C! functions defined
on all of R and have corapact support. We denote by X the characteristic function
of J and denote now by K the operator on La(R) having kernel K(z,y) X(y). The
determinant det (I — K) is the same with this definition of K. Moreover since
K(z,y) is a C! function with compact support K is even a trace class operator on
the Sobolev space H;(R). The mapping (a1, ... ,a2m) +— K from R?™ to the space
of trace class operators on H; (R) is strongly differentiable and it is immediate that

0K .

— =(-1*K 6(y —

5o = (-1 K(z,ax) 6y — ), ()
where “=" means “has kernel” and § is the Dirac distribution. It follows from this
that 5 9K

— I-K)=-tr(I-K)'— = (-1)k'R
dax IOg det ( ) T ( ) aak ( ) (ak’ak)’

which is (2). (Note that now R(z,y) is defined for all z,y € R and is discontinuous
in y. The quantity R(ag,ax) denotes the limit of R(ak,y) as y — aj from the
interior of J. Similarly for other like quantities.)

We have

[M,K] = (C o(z),(y)) X(y),
where the brackets denote commutator, from which it follows upon left and right
multiplication by (I — K)~!, and using the symmetry of K(z,y), that

[M,(I = K)™ = {CQ(z), Q(¥)) X(¥)- (12)
(Q(z) is defined precisely as before, but now has domain R.) Hence

Riey) - (C9E.00)

p— X(y), (z#y).
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In particular we have i

Cy;, )
Rlaar) = LC908) o (13)
a; — Gk
and
R(ak,ax) = (C Q' (ak), gk )- (14)
Here the prime denotes differentiation with respect to z. Of course Q is a function
of ai,...,a2m as well as z, and (C Q(z), qx } vanishes identically when z = ay

since C is antisymmetric. It follows that the last identity is equivalent to

R(axsaz) = —%(oqm),qk) lomay - (15)

We define p(x,y) := R(z,y) + 6(z — y). This is the kernel of (I — K)~!. It
follows from (11) that

8i(1 - K)7! = (=1)* R(z,az) plax,y),
ag

and applying this to ¢ gives

oQ k
— =(=1)"R .
Ba, (=1)* R(z,ax) gk (16)
Using this to evaluate the right side of (15) gives (3).
We write @@ more explicitly as Q(z, a1, ...,a2,), displaying its dependence
on the ax. Thus q; = Q(aj,a,... ,02m). We see immediately that if j # & then

9¢; _ 9Q

Bak - %_k- T=ay s
Hence (4) follows from (13) and (16). But

¢/
52—:2 - g&% le=ar +Q'(ar) = (—=1)* R(ax,ar) g + Q' (ax), (17)

where the prime denotes differentiation with respect to z, and so we will have to
find a formula for Q'(z).

But first we derive identities (5) and (6). If we use the fact
(vv)w = (wv)u, (18)

then we see that the former follows immediately upon applying both sides of
the operator identity (12) to M®p and setting z = aj. For the latter, define
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= X(I — K)~1, where X denotes multlF)hcatlon by X(z). Then the product
formula and (16) give

gg = (“1) (8(z — ax) plz — y) + X(z) R(z,ax) plax 1))
= (=1)* (8(z — ax) p(ar — y) + X(z) R(ak,z) p(ak.y))
= (—l)k p(ak?x) p(akyy)v

where we have used the facts that R(z,y) = R(y,x) for z,y € J and that R(ak,z)
vanishes outside J. Applying ¢ to both sides, tensoring on the right with M*y and
integrating over R give (6).

Everything up to now applied to an arbitrary kernel of the form (1). Now we
are going to use (8) and think of our operator K once again as acting on J, more
precisely on Hy(J). It is an easy fact that for an operator L with kernel L(z,y)
one has

mD, L} = (m(o) 5 + mts) 57+ m'w)) Lww)

(In the above, m denotes multiplication by m(z) and D = d/dz.) We apply this
to our operator K with kernel K(z,y) X(y). From (8) we find that

()5 +ms) 5 ) (Cote) o)
— (C A(e),9(@), olu)) + (Cpla), AW) 21)) = (C (A() —~ AW) p(e), 0(0) )

where we have used (7). Hence

L ()5 +m(y)—) (Cp@),olw)
= (020220 o0),p0)) = T (CAielo) o).
z+i1—>——.ll 1

(Recall the notation (9)). We also have

(@) 2 +mw g +m @) 7

i+lj§ll—1

and

2m
(m(x)% + m(y)a%) X(y) = = (=1)! m(a;) 6(a; - v).

=1
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Putting these things together gives

|
mD,K] = Y (O(Ai— G+ Dmua)a* ola), ¢ o(u)) X(0)

itj=l—1
i>1

2m

=" (=1Y m(a;) K(z,a;) (a; — y),

Jj=1

and it follows from this in the usual way that

[mD,(I-K) = Y (C(A~ (G + Dmun)) Qile), Q;()) X(y)

itj=l—1
>1

2m
- Z (—1) m(a;) R(z,a;) p(a; —y).
i=1
Applying this to ¢, using (18) and the symmetry of K(z,y), gives the identity

m(z) Q' (z) — (I —K)'my' = > U;C(A - (G + D)mup1)) Qi(x)

i+{§ll—l
2m ]
= > (<1) m(a;) R(=,a;) g;. (19)

j=1

Now by (8), (I — K)™Im¢' = (I — K)~* Ay, and so we compute commutators
with (multiplication by) A:

)= 22228 0o, o)) x) = T (O (e ¥ ole)) X0
i+lj;ll—1
whence

AT -K) = S A4(CQi),Q1) X®),

¢+i1_—>_.=11—1
and this gives
(I-K)'my' = A@) Q) — > AU;CQix). (20)

itj=l—1
i>1
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Combining (19) and (20) we obtain i

m@)Q'(z) = A@)Q@) + Y [U;ClA~ (G + Dmuy1) — 4 U; C| Qilz)

itji=l—1
I>1

2m
~ Y (=1Y m(a;) R(z,a5) g;.
ij=1

Equation (10) follows from this, (17) and (13).

II1. Remarks

Formula (14) for general kernel of the form (1) is by no means new with us. See,
for example, Sec. II of [1]. In this reference, which treats certain kernels which
have some features in common with ours, the matrix we would call Uy also plays
an important role.

In [4], where n = 2, our matrix C was ( ? _01 ), our vector ¢(z) was

denoted by (p(z),(z)), our matrix A by ( —AC __BA ) and our matrix U; by

( :’ 3 ) The derivation of the equations given here may seem at first sight
(3 k3

simpler than the derivation in [4]. In fact the derivations are essentially the same,

but because of its generality we were naturally led to use matrix notation here,

and this led to an apparent simplification (and a real compactness of notation).
The simplest case is that of the “sine kernel”

/\sin(x-—y),
T-y

when ¢(z) = VA e®® and 9(z) = v/Ae~*®. The equations in this case were first de-
rived in [2], where they were obtained as the deformation equations for an isomon-
odromy problem. It was also shown there that if J is a single interval the deter-
minant can be expressed in terms of a Painlevé transcendent. In [4] several other
kernels were studied in detail, some of which also led to Painlevé functions. Re-
cently Palmer [3] showed that all the equations considered in [4] were deformation
equations for isomonodromy problems. It may very well be that the same is true
of the more general class of equations considered here.
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