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Abstract 

Using exact results from the theory of completely integrable systems of the Painlev6/Toda 
type, we examine the consequences for the theory of polyelectrolytes in the (nonlinear) 
Poisson-Boltzmann approximation. 

Dedicated to Benjamin Widom on the occasion of  his seventieth birthday 

1. Introduction 

A polyelectrolyte is a macromolecule with a large number of ionizable groups, 
which in a solvent becomes highly charged [1,2]. This highly charged structure is 
referred to as the polyion. If the polyion has charge Q = Ze ,  then in solution, there are 
Z counterions. (We take the polyion to have negative charge and thus, the counterions 
have positive charge.) Typically, the solvent also contains a salt and so the total 
number of counterions is Z plus the number of positive ions from the salt. The 
negative salt ions are called coions. Typically, the excess salt is a 1-1 salt, e.g. NaC1, 
though other salts are considered. (MgC12 is an example of a 2-1 salt.) 

One class of polyelectrolytes that is widely studied are those consisting of slender, 
rod-like particles. For  example, the tobacco mosaic virus, a polyelectrolyte, has 
a diameter of about 18 nm with a length of 300 nm. For  such systems, the idealized 
model is an infinite cylinder of radius a of uniform linear charge density with 
counterions and coions treated as point particles. This neglects several important 
effects such as the interaction between polyions, the flexibility degrees of freedom of 
the polyion, finite size effects, to name but a few. Nevertheless, this model has been 
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extensively studied (for reviews see [-3,4]). In this idealized model there are two 

additional length scales: the electrostatic length scale (Bjerrum length) (8 = eZ/*:kB T (~: 
is the solvent permittivity) and the inverse Debye-Htickel screening parameter 
/C 2 = 8~/ 'B1 , where I = ½52 njq 2 is the ionic strength, with n~ the molar concentration 
of ion j of (integer-valued) charge qj with the convention that q~ < 0 for counterions 
and q i > 0 for coions. From these two lengths we form the dimensionless Manninq  

parameter  [5,6] ~ = /~ /b ,  where b is the average spacing between charges on the 
polyion and the dimensionless distance parameter r = KR~ where R is the cylindrical 
distance variable. 

A mean field theory approach to this model results in the Poisson Boltzmann (PBI 
equation, i.e. the electrostatic potential tp is assumed to satisfy the Poisson equation of 
electrostatics with the density of various ions being given in terms of Boltzmann factors 
[3, 4, 7 9]. Introducing the reduced potential y = e ~ / k R T ,  the PB equation becomes 

Ay = -- 4~/B ~, q jn je  -qj~' . 
i 

In terms of r, and for cylindrical geometry the PB equation is, explicitly for the cases of 
1 1 and 2-1 "excess of salt" [7], 

d2y 1 dy J 'sinhy, 1 1 salt 
d~ .Z+-  = ' (1.1) r dr ~-~(e 2-~' - e - " ) ,  2-1 salt. 

One boundary condition for (1.1) is obtained by applying Gauss's Law at the 
surface of the polyion 

dy 
lira r - 2~. (1.2) 
r 4,, dr 

(We use the same symbol a for both the polyion radius and the dimensionless polyion 
radius). The second boundary condition depends upon whether the system is closed or 
open. For  a closed system, one requires that the electric field vanish at some finite 
distance, whereas, for an open system with a finite concentration of added salt one 

requires that 

y(r) ~ 0  as r ~ zc. (1.3) 

We will consider only the case of an open system. A further simplification, and one we 
will also assume, is to take the polyion radius a ~ 0, which means we model the 
polyion as a line charge. The mathematical problems that we address in this paper are 
now well formulated: to solve (1.1) subject to the boundary conditions (1.2) and (1.3). 

2. Exact solutions for a 1-1 and 2-1 salt 

First, note that the solutions to the linearized versions of (1.1), satisfying (1.2) and 
(1.3) are in both cases the familiar Debye-Hiickel solution 

yDn(r) = 2~K0(r), (2.1) 
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where Ko is the modif ied Bessel function. The  exact solut ion for the 1-1 salt is 

[10-12]  

Yll(r) = 21ogde t ( I  + 2K)  - 2 1 o g d e t ( l  - 2 K )  

~2j+ 1 
= 4 _ _  Tr(K2S+ 1) {2.2) 

s=o 2 j +  1 

where K is the integral  ope ra to r  on R + with kernel 

e x p ( - r / 2 ( x  + I /x))  

x + y  

and 

1 ~ 
2 = - s i n  f o r ¢ ~ < l  

zr -2- 

Note  that  T r (K)  = Ko(r) and that  T r ( K  j) = O(e-Sr) as r --+ c~. For  r --+ 0 it has been 
proved  that  [10, 13] 

Yll(r) ---- -- 2 ~ l o g r  + 6~1og2 + 2 log  

where F is the g a m m a  function. 

r((1 + 0/2) 
F((1 - ¢)/2) 

+ o ( 1 )  f o r e < l ,  (2.3) 

The exact solut ion for the 2-1  salt is [12] 

yz l ( r )  = log det( I  - 2K3) - log det( I  - 2 K 2 )  

= _ (Tr(K~) - T r (K~) ) ,  
j=0  J 

where Kj  (j  = 2, 3) are integral opera to r s  on R + with kernel 

~oJ-2(1 - o ~ ) e x p [ - ( r / 2 x / ~ ) ( ( 1  - ~o)x + (1 - ~ o - 1 ) x - 1 ) ] ( - ~ o x  + y ) - i  

+ coz 's-z)(1 - o 2 ) e x p [ - ( r / 2 x ~ ) ( ( 1  - o 2 ) x  + (1 - co 2)x-1) ]  

x ( -~02x  + y ) -  1 . 

Here  ~0 = e 2~i/3 and 

2 -7=2s in  ( 4 +  1/4) - 1, 2 ~ - 2 x f 5  n ,  f o r ~ < 2 .  

Again note that  

Tr(K2)  - Tr(K3)  = 6Ko(r) .  

(2.4) 

An e lementary  calculat ion produces  a s impler  representa t ion than the definition for 
the trace of the square of  the operators :  

Tr(K~)  - Tr (K~)  = 9 f 

0 

f e x p ( - r / 2 ( x l  + 1/xl  + x2 + l /x2)) 
x 2 -Jr- x1x  2 Jr- x 2 

d x l  d x  2 • (2.6) 

(2.5) 
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The computations (2.5) and (2.6) lead one to suspect that for all positive integers n, the 
quantities Tr(K~) - Tr(K~), as functions of r, are monotonically decreasing. Indeed, 
one can derive an alternative matrix kernel representation of the operators Kj such 
that the monotonic decay is manifestly clear. 

For r -~ 0, it has been proved that [13, 14] 

yzt(r) = - 2 ~ l o g r  + (21og2 + 31og3)~ + log 

+o(1) f o r d < l / 2 .  

ri(1 + ~)/3)F((2 + 2~)/31 

F((2 - ~ ) / 3 ) F ( ( 1  - 2~i/31 

12.7) 

Higher-order terms in both (2.3) and (2.7) can be computed from use of the differential 
equations and all additional constants appearing can be expressed in terms of the 
quantities above. 

3. Asymptotics at the critical value of ~-counterion condensation 

The Oosawa-Manning arguments [1, 5,6] for counterion condensation are well 
known and need not be repeated here. These arguments, when applied to a 1 1 salt 
and 2 1 salt, predict critical values of ~ at 1 and ½, respectively. Recall that in the 
theory of counterion condensation, the meaning of ~ > ~+ is that the average charge 
spacing b on the polyion is increased by counterion condensation (onto or around the 
polyion) until ~ = ~,. is achieved. Thus, one must distinguish between the stoichiomet- 
ric value of ~ computed using only the charge groups on the polyion and the lower 
value of ~ achieved through counterion condensation. 

Mathematically, the critical value of ~ is seen through the qualitative change in the 
small r asymptotics (2.3) and (2.7). For the 1--1 salt case we have as r --* 0 [10. 13] 

r r 5  
e x p ( - y t ~ ( r ) / 2 ) = - ~ f 2 1 - ~ 5 ( 8 f 2 ~ - 8 0 2 + 4 ~ 2 t - 1 ) + O ( r g f 2 ~ ) ,  (3.1) 

where 

Ot = Or(r) = log(r/8) + 7 

and ?, is the Euler constant. Thus, the potential y l l ( r )  develops an additional log log r 
singularity at the critical Manning parameter. Similarly for the 2-1 case as r ~ 0 
[13, 14], 

r r 4 
exp(--yzl(r)) - £/~ ~22 + ~((~2 _ 2•2 + 2) + O(rV(~23), (3.21 

where 

~log3 .  (~2 = Q 2 ( r )  = log(r/8) + 7 + ~log2 + 

For ~ > ~c, the above solutions are no longer physically valid. For example, the 
Boltzmann factor exp( -y l l ( r ) )  will become negative for small enough r. 
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4. Exact  electrostatic free energy for 1-1 and 2 -1  salt cases 

At constant temperature and pressure, the free energy is the work done in placing 
charges on the polyion. This is the familiar "charging process" and one imagines an 
increment of charge dq placed at the surface of the polyion so that the infinitesimal 
work done is 7~(a)dq, where the electrostatic potential is evaluated at R = a [15, 16]. 
Thus, 

Q 

w ~l= f ~(a)dq 
0 

is the free energy associated with a single line charge. Our solutions Y l1 and Y21 are of 
the form 

y(r) = - 2~logr + Yo(~) + o(1) as r --*0 

and are for the limiting case of a --* 0. We take, therefore, for the value of the 
e ~(a)/kB T the quantity - 2 {  log(xa) + Yo (4). Re-writing the above expression for w el 
in terms of dimensionless quantities and multiplying the result by Np, the total 
number of polyions in solution of volume V, we obtain for the free energy, W el, of the 
entire solution [5, 6] 

¢ t \ 
w e ,  

VkBT np (log(~ca) ~ 
0 

:= - npf(~), 

where np = Np/V is the polyion concentration. Using the expressions (2.3) and (2.7) we 
calculate f(~) in these two cases 

2 i r (1/2  - ~'/2) 
f~l(~) = (log(Ka) - 31og2)~ + ~ log r(1/2 + ~'/2) 

0 

d~' 

= (log(~ca) - l o g 2  + y)~ - ~ ~//~2n)(1/2) ~2n+ t 
n =  1 22'~ = 1-~-+- 2)! 

= (log(xa) + 1 - 3 log 2) + 2 log 
F((1 - ¢)/2) 

r((1 + ~)/2) 

2 r((1 - 4)/2)r((1 + 4)/2) 
+ ~ log r2(1/2 ) 

4 G((I -- ~) /2)G((1  + 4) ) /2 )  
+ ~ log G2(1/2 ) , (4.1) 
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f2 ~ (¢) = (log(•a) - log 2 - 3 log 3) 

1 i F(2/3 - ~'/3)F(I/3 - 2~'/3) 
+ ~ J log F(1/3 + ~'/3)F(2/3 + 2~'/3) d~' 

o 

= (log(Ka) - log2 + "/)¢ + --1 t,/,lll(i) - ,I,(1)t2-~7:2 
1 8 ~ W  3 '/" ~ 3 t / ~  

(2}(2 ~3 - ~z(~2)(~) + ~ ~)) .  + O({ 4) (4.21 

In the above, ~,(x) = F'(x)/F(x) and O~"~(x) is the nth derivative of ~. The function 
G(s) is the Barnes G-function [17] which is an entire function of s and is defined by 

G(s+l)=(27r)S/2exp(-s/2-(1 +7)sZ/2)k~_~ I + exp . 

The G-function satisfies the functional equation G(s + 1) = F(s)G(s) and has the 
special value G(1)=  1. It arises in the present context through the integral 

i z l o g f ( x  + 1)dx = ~ l o g 2 r c  -~z ( z  + 1) + zlogf(z + 1) - l o g G ( z  + 1). 

o 

(Clearly one can also express f21 in terms of the G-function.) 
In the small ~ expansion for both ft~ and fzl ,  the linear term is the contribution 

from the Debye-Hiickel  theory. Observe that since the volume dependence resides 
solely in the log ~ca term, such derived quantities as the osmotic pressure (which is 

Free energies 
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Fig.  1. The free energies f , ,  and f2x as functions of the Manning parameter ~ <~ ~ with ~,-a = 1. At the 
critical value, f ,  ,(1) = l o g K a  + 0 .674563 a n d  ./21(1."2) = l l o g  ~ca + 0.393915.  
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expressible in terms of a first derivative of We~ with respect to V) will be identical 
to that derived from the Debye-Hiickel theory. The mean activity coefficients 
7_+, expressible in terms of the function f, will have different numerical values from 
the Debye-Hiickel theory, however, their dependence on np will be identical. 
Though this has been understood and used by previous workers, we stress these 
facts since it emphasizes the wider validity of the linear theory than one might a 
priori expect. 

Both f l  i and f21 are singular at the critical Manning parameter and have leading 
singularities of the form (~c - 4)10g(4,. - 3)- The graphs off11 and f21 are shown in 
Fig. 1, where for convenience we have set Ka = 1. 

5. Partial equilibrium structure factors 

Within the Poisson-Boltzmann approximation, the density distributions of 
counterions (+ )  and coions ( - )  are given by 

n + (r) = n + exp( -T- q jy ( r ) ) ,  

where n+ are the concentrations at infinity. Light scatters from the local con- 
centration fluctuations of the counterions and coions and the observed scatter- 
ing intensity in the static approximation is expressible in terms of the partial struc- 
ture factors which are, in the cylindrical PB approximation, the (two-dimensional) 
Fourier transform of ( n + ( r ) / n + - 1 )  [18-20]. Thus we examine, for the 1-1 
salt, 

i 
, 

S ±(q, 4) = ~ ( e  ±y - 1) = 2n Jo(qr)(e +-y~') - 1 ) rdr ,  

0 

(5.1) 

where q is the dimensionless wave number and Jo is the Bessel function of zeroth 
order. For  the 2 1 we replace e y ~ e 2~' in the above expression. 

A t q = 0 ,  

<(4n4(1 + 4/2), 1-1 salt, (5.2) 
S + (0 , 4 ) =  ~8n4(1 + 4/2), 2-1 salt, 

{ - 4 n 4 ( 1 - 4 / 2 ) ,  1-1 salt, 
S-(0 ,4)  = -4n4(1  4), 2-1 salt. (5.3) 

The differences S + (0, 4) - S_ (0, 4) follow directly from the differential equations (1.1) 
and the boundary condition (1.2). The individual terms require additional identities 
(for 1 1 case see Eq. (6) in [11]). In the Debye-Hiickel approximation (2.1), S _+(0, ~) is 
_+44 for the 1-1 salt and similarly for the 2 1 salt. For  the 1 1 salt, 

S _ ( q , ( )  = S+(q,  - 4 ) .  
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To  unders tand further how these results differ from the Debye-Hi icke l  approxima-  
tion, we expand the exponentials  in (5.1) and use the expansions (2.2) and (2.4) to 
deduce the expansions 

:r, 
S +(q,~) = ~ )JS+,j(q) .  (5.4) 

j=l 

For  the 1 1 salt we find, for example, 

87~ 
S+.l(q)_ = - + f f ( 4 T r ( K ) ) =  -+1 + q2,  

S +, 2(q) = -+,~-(8Tr(K) 2) = 8zt 
log(q/2 + x/(q/2)  2 + 1) 

(q/2)x/{q/2)  e + 1 

S, .3(q)  = -+ .~(~(Tr(K 3) + 8Tr(K)3)) ,  

i = - + 3  
0 

i' i (X1 -1- X2 4- X3)(1/Xl + l/X2 + l/x3} 

0 0 
(X1 4- X2)(X2 4- X3)(X 3 q- X1} 

(xl + 1/xl + x 2 4- 1/x2 + x3 + l/x3) 
[4q 2 + (xl + l/x1 + x2 + l /x2 + x3 + l /x3)]  3/z dxl  d x 2 d x 3 .  

From (5.2), it follows that  S+.3(0) = ___4rt3/3. In general, S +~2p+ 1 and S ~,2p+2 will 
involve the T r (K  2/+ 1) ({ = 1 . . . . .  p) and they will have, in the complex q-plane, branch 
point  singularities at q = +i(2p + 1), + i(2p + 2), respectively. Since 2 = 0(~), ~ --+ O. 

we see, for ~ ,~ 1, that the Debye-Ht icke l  approximat ion  of taking the first term in the 
sum (5.4) is valid for bounded  q. Similar expansions can be derived for the 2 1 salt, 
where we note that  S +. l(q) will again be the Debye-Hi icke l  term (see (2.5)) but now 
S +. 2(q) will contain irreducible "two-part icle" effects (see (2.6)). 
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Fig. 2. The normalized moments ~l + as functions of the Manning parameter ~. 
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For any scattering intensity I(q), one experimentally accessible quantity is the 
normalized second moment/~ in the small q expansion 

i(q)]-x = 1 +/2q 2 + O(q4). 
l(O)J 

For the partial structure factors S + one similarly defines # +(4) and in Fig. 2 we graph 
/~ +(4). We have defined the inverse correlation length by the distance to the nearest 
pole in S(q). (The choice of the dimensionless wave number q = kflc fixes the location 
to _+i.) For the Debye-Hfickel approximation /~+ - 1, in contrast with the PB 
equation, where/~+ (/~_) decreases (increases) with increasing 4. The partial structure 
functions themselves are shown in Figs. 3 and 4 for various values of 4. Note that with 
increasing ~ there is a significant increase in S+(q, ~)/S+(O, ~) for large q, whereas 
S_ (q, ~)/S_ (0, ~) shows only a slow decrease for increasing ~. 
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. . . .  , . . . . .  , . . . . . . .  , . .. . . . . . . . . . . .  

" i .... 3 .... 3 .... 4 s s 7 

q 

Fig. 3. The structure factors S±(q,~)/S±(O,~) as functions of q for the 1-1 salt. Also plotted is the 
Debye-Hfickel approximation. 
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0.4 

0.2 
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q 
Fig. 4. The structure factors S±(q,~)/S+(O,d) as functions of q for the 2-1 salt. Also plotted is the 
Debye Htickel approximation. 

T o  determine the large q asymptot ics  of S +(q, ~), we use the fact that  if 

f ( r ) . . . r  z a s r ~ 0 ,  

then 

,~( f ) (q)  ,,~ C(2)q - 2 - ~  as q -+ oo 

with C().) = - 22+Zsin(n2/2)F(1 + )./2) 2. F r o m  (2.3) and the above fact, we deduce 

for the 1 1 salt that  a s q ~ o o ,  for fixed ~ < l, 

C+ 
S+(q,~) q2 +2¢, (5.5) 
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where C+ = e x p ( + y 0 ( ( ) ) C ( ~ 2 ( ) .  At the critical value ~ = 1, the short distance 

asymptotics  of  e y" are no longer of the above form (see (3.1)). For  this case we find as 
q --* ztD 

_ o ( , )  S+(q, 1)/S+(O, 1) 4 1 81og2 1 
3 logq  3 log 2 q + ~ ' 

21ogq 2 ( 2 1 o g 2 -  1) 
S_(q, 1)/S_(0, 1) - q4 -~ q4 + lower-order  terms.  

Similar large q expansions hold for the 2-1 salt. 

In critical light or neut ron  scattering from simple fluid or  magnetic  systems, the 

large q behaviour  of  S(q) defines the critical exponent  i] [21,22].  For  mean field 

theories of  critical scattering, q = 0. We remark that  even though the PB equat ion is 

a mean field theory, we have a nonzero  "q" (q = +24,  d < 1, for the 1-I  salt) which is 

a reflection of  the fact that  the short  distance potential  is the bare Cou lomb  potential. 

As the critical value of the Mann ing  parameter  is approached,  the Poisson Bol- 

tzmann theory predicts an enhanced scattering at large wave numbers  from the 

concentra t ion fluctuations of  the counterions,  while at the same time predicting little 

change in the scattering from the concentra t ion fluctuations of the coions. As is the 

case in critical scattering [23, 24], the measurement  of these effects may well prove 

difficult. 
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