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Abstract: The smallt asymptotics of a class of solutions to th® 2ylindrical Toda
equations is computed. The solutiong(t), have the representation

qx(t) =log det( — A Ky) — log det(l — A K_1),

where K, are integral operators. This class includes thperiodic cylindrical Toda
equations. Forn = 2 our results reduce to the previously computed asymptotics of
the 2D radial sinh-Gordon equation and far= 3 (and with an additional symmetry
constraint) they reduce to earlier results for the radial Bullough-Dodd equation. Both of
these special cases are examples of Painliéand have arisen in various applications.
The asymptotics of(t) are derived by computing the smakhsymptotics

det( — AKy) ~ by (%)

where explicit formulas are given for the quantitigsandb;. The method consists of
showing that the resolvent operator/gf, has an approximation in terms of resolvents
of certain Wiener-Hopf operators, for which there are explicit integral formulas.

1. Introduction

We consider here solutions of the cylindrical Toda equations
qlt) + tilq,’c(t) = 4 (=1l _ pten(®)=ar(t)y kez, (1.1)

satisfying the periodicity conditiong;+, = ¢x. The integem is arbitrary but fixed. It
follows from results in [9] that solutions valid for all> 0 are given by

qr(t) =log det( — AKy) —log det(l — A Kj_1), (1.2)
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whereK}, is the integral operator oR* with kernel

eft[(lfw)u+(lfw*1)u’1]

k 1.3
zw:w Cw —outo 5 ( )

w running over thex™" roots of unity other than 1.
In the caser = 2 we havey,+1 = —g and (1.1) becomes, withequal to eithery,

q"'(t) +t ¢ (t) = 8 sinh (1),

which can be reduced to a particular case of the Paénliévequation. The connection

with Fredholm determinants was discovered by McCoy, Tracy and Wu [6], and in the
same paper the asymptoticstas 0 of these solutiong(t) were determined. (Note that

all asymptotics ag — oo are trivial.) The asymptotics as— 0 of det ( — \2K?2) =

det (7 — X\ Kp) det ([ + )\ Ko) were determined in [7]. (See also [2], where the asymptotics
were found for a family of kernels including this one as a special case.) The asymptotics
of det (I — X\ Kp) itself were stated without proof in [10].

A class of periodic cylindrical Toda equations arises in thermodynamic Bethe Ansatz
considerations [3]. There the additional constragint_; = —q;. is imposed. The solu-
tions (1.2) satisfy this constraint as long as the coefficieptsatisfyc,, = —w3c 1.

(This follows from the fact that def (— K}) = det( — K_j_») in this case, which is
proved by applying the change of variable— u~.) The case: = 3 of this gives the
cylindrical Bullough-Dodd equatiory(= g3 now)

"))+t (1) = 410 — 710,

which can be reduced to another special case of Pa&rlevAsymptotics of a class of
solutions toP;;; including this one were announced in [5].

This paper is devoted to the determination of the asymptotics of the quantities
det(! — X\ K}) in the general case, under the condition stated below. (In the fi-
nal sections we shall compare our results in the cases 2 and 3 with those
cited above.) We writeK' for Ky and consider at first only the asymptotics of
det (/— X\ K). Thisis noloss of generality siné€; is obtained fron upon replacing the
coefficientse,, by w” c,,. The problem reduces to the asymptoticg[@? R(u, u; A) du
ast — 0, whereR(u, v; )\) is the resolvent kernel ok, the kernel ofK (I — A\ K)~1.

Using operator techniques, we show tiit:, u; \) is well-approximated on [bo] by

the corresponding function when the exponentials in (1.3) are replaceddy«)*

and on [Q1] by the corresponding function when the exponentials are replaced by
e~ t—w Hu (Actually the kernels have to be modified first by multiplying by factors
(u/v)? with 3 depending or\.) We shall show that after these replacements we obtain
operators which can be transformed into Wiener-Hopf operators, whose resolvent ker-
nels have explicit integral representations. By these means the problem becomes that of
determining the asymptotics of certain integrals. This is achieved by contour-shifting,
and we find in the end that as— 0,

t a
det(l — AK) ~ b (f) (1.4)
n
with a andb constants given explicitly in terms of certain zeros of the function

h(s) =sinws — A\ Z o (—w)* L.
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These are the values abf those zeros which equal 1 - , n when) = 0.

To state the result precisely, we denotedyy = o (\) (k € Z) the zeros of this
function indexed so that;(0) = k. The zeros depend analytically aras long as they
are unequal, and when= 0 they are the integers. We derive the asymptotics (1.4) under
the assumption that there is a path in the complex panenning from 0 to\ such that
everywhere on the path

§RO¢0<§R(11, 3%0[0<1, §RO¢1>0, (1.5)

and no zero lies in the strif ap < Rs < R a1. With this assumption the constarts
andb are given by the formulas

_ 120‘2— (n+1)é2n+l)’

_Ijjjen GE + 11
B Ilaﬂ’cxggfl-+l)7

wherea anda’ run over the sefa; (V), - - -, ., (A) } andG denotes the Barnés-function

[1].
From these formulas we obtain the asymptotics of the solutions (1.2). The require-
ment now is that everywhere on a path from Qiteve have for allk,

b

Ko, < %ak+l, k—1<Roa, <k+1
If this holds then :
ar(t) = Alog () +log B +o(L),
n
where fork = 1, - - -, n the constantsl and B are given by

oo aq) o D(ES0)

A=2(y — k), B= H (= H =T

(*557)
1<j<k n k<j<n

and for other values df are given by periodicity.

As for the correct range of validity of the formulas, we conjecture that it is enough
thatR ap < Rag+ for all k for some path from 0 td\, and that the extra condition
k—1< Ra, < k+1isautomatically satisfied then. In the cases which we consider in
detail this is so and we obtain the correct range of validity. Another way of stating the
condition is as follows. Defin@ to be the complement of

{A: Ray = Rayg+ for somek}. (1.6)

Then the region of validity should be the connected componentadntainingh = 0.
The region for which we prove the result is the largest connected subset of this set in
which the extra condition holds.

Remark.It is shown in [9] that the more general class of kernels

eft[(lfw)u+(lfw’l)u’l]
e dp(w),
Q —wutv
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gives a solution to the the cylindrical Toda equations by the same formulaspldare
be any finite complex measure supported on a compact s{hset

{weC: Rw< 1 Rw <1}

This assures that the operator is trace class. In @aisethe set ofn™ roots of unity

other than 1 the condition is satisfied and the solution will clearly:dpeeriodic. We

shall actually do everything in the more general case and we find asymptotic formulas
of the form (1.4) for the corresponding determinants, with the constaaitglb being

given by integral formulas involving the functidi{s) now defined by

h(s) :=sinms — Am /Q(—a))sfl dp(w). .7

In the periodic case(s) is itself periodic and the integrals are expressible in terms of its
zeros in a strip of widte. This is why the result there is so explicit. The requirements
on theqy, stated above now refer to this function, and we assume throughout that they
are satisfied.

2. The Approximating Operators

Recall thatK is the operator ori,(R*) with kernel

—t[(l—w)ut(l—w Hu"Y

K(u,v) = /Q ¢ Y dp(w).

We denote byR(u, v; \) the resolvent kernel ok, the kernel ofRy, == K (I — A K)~L.
It is well-known that

—ilog det([—)\K):/ R(u,u; A) du,
dA 0

the trace of the operatdt,. Hence

A o0
log det ( — A K) = 7/0 /0 R(u, w; 1) du dp. 2.1)

In this section we are going to find a good approximation to the integral
f0°° R(u, u; \) du when )\ satisfies the condition stated in the Introduction. (Afterwards
we shall replace by 1 and integrate with respect toover the path from 0 ta through-
out which (1.5) holds.) We begin with an observation. If we multiply the kefdgl, v)
above by {,/v)? for any 3 then the resulting kernel still represents a bounded operator
on L,(R*) because of the decay of the exponential factor at Gcarahd, although the
resolvent kernel changes, its value on the diaganal v does not. We are going to
find approximations to the resolvent kernels for these modified operators, and precisely
which § we take depends ok

Here is how we choose it. It follows from our main assumption that for eablere
there exists, € (0, 1) such that the functioh(s) given by (1.7) has no zeros on the line
R s = sy. (In fact the assumption guarantees thatan be chosen to vary continuously
with \.) With this s, we set3 = 1 — s,. Notice that|3| < 3, a fact we shall need in
order to apply our approximation argument.
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We write the kernel as

u\ B eft[(lfw)u+(17w_l)u_1]
Kitwo) = (2) [ d) 22)
-

and denote the operator itself ;. We do not display the dependence@rwhich is
fixed for now, but use the subscripto help the reader distinguish those operators that
depend ort from those that don’t. Both kinds will arise; the former have the subscript
t and the latter will not.

The exponential in (2.2) is the producttd—«)u ==« "u"" Fory > 1 the second
factor is uniformly close to 1 whetis small while foru < 1 the first factor is uniformly
close to 1. This suggests that the operaféfs with kernels

—t(l—w Hu~?t

mww:6fégmwﬁmw K= (2) [ ano)

—wu +v —wu +v

should in some sense approxim&fgonwu > 1, u < 1, respectively, and therefore the
resolvent kernels of these operators should approximate the resolvent kefiebof
these intervals. We shall show that this is so, and th@fi(u, v; A) denote the resolvent
kernels of K%, also onR*, then

1 1
/ R(u,u; \) du = / R, (u,u; \) du + o(1),
0 0
(2.3)

/00 R(u,u; A)du = /OO R (u,u; ) du + o(1)
1 1

ast — 0. We denote by’* multiplication by the characteristic function of, (&) and by

P~ multiplication by the characteristic function of,(0). We shall use the notatiaa(\)

to denote any family of operators whose trace norms are atthidstnes a function of

t which iso(1) ast — 0. (The subscript 1 refers to the trace norm. We shall also use the
obvious notatiorv; (1) later on.) The main approximation statement will be

PE(I - ANK) 1 PT =P (I - AKE) 1 PE +01()). (2.4)
Relations (2.3) with\ = 1 follow from this since it may be rewritten
PE[(I - ANK) =11 PT = PE[(I - NK)™L — 1] PE +01()),
and if we take the trace of both sides and divide\bye obtain (2.3).

Here is an outline of the proof of (2.4). We use the matrix representations of our
operators corresponding to the decompositiohg4R™) as the direct sum of the spaces
L,(0,1) andL»(1, o0). Thus (the equal sigh meaning “has matrix representation”)

I - AP K,P~ —\P™K,P*
I-)\K, =
~A\P*K,P~ I—\P'K,P*

Because the nondiagonal corners of the matrix have the mutually orthogonal projections
P* occurring as they do we will be able, with errer()\), to replace the operatdt;,
appearing there by the operafgg obtained from it by setting= 0. ThusK, has kernel
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Ko(u,v) = (Z)ﬁ/g = dp(w). (2.5)

—wu +v

(Note the lack of consistency with the notatiii in the introduction; this should cause
no confusion.) If the diagonal entrids— \ P* K, P* are invertible, we can write the
resulting matrix as the product of

I - AP K,P~™ 0
0 I - \P*K,P*
on the left and
I A = AP K,P~)" P~ KyP*
~\({I = AP*K;PY 1P*KoP~ I

on the right. Next, because of our assumption we shall be able to show that the operators
I — A\ P*K,P* are uniformly invertible for smalt (i.e., the operator norms of their
inverses are bounded) and that their inverses converge strongly folP* Ko P*) 1 as

t — 0. (Recallthat4, is said to converge strongly thast — 0if A,f — Af forall fin

the underlying space.) This is actually the crux of the proof. After that it follows, because
P*KyPT are trace class, that with errof()\) we can replacel(— A\ P* K, P*)~1 by

(I — X P£KoP*)~1in the nondiagonal entries. Thus, if we define

I ~\({I = AP~ KoP~) P~ KyP*
M = ,
—~A(I = AP*K}P")"P*KoP~ I
we will have shown
I - \P K,P~ 0
I - MK, = M +o01(N).
0 I - )\P'K,P*

From this, using the uniform invertibility of the- A P* K; P* again and the invertibility
of the constant matrix (which we have to prove) we deduce

(I - AP K,P)?! 0
(I-MK)t=m"1 +01(\).
0 (I - A\P*K,P*)~t

Now (here is the trick), applying an analogous procedure to the operator famlyi;
gives
(I -AP KoP)?! 0
(I-\K))yt=m"1 +01(\).
0 (I —\P'K,P"H™1

It is clear that the lower-right entries of the two matrix products are the same, and this
is exactly the statement

P*(I-MK) 'P'=P"(I - \K])"1 P +01()),
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which is half of (2.4). The other half is obtained similarly.

Carrying out the details of the proof of this will require, first, some general facts
about families of operators on a Hilbert space.

Fact 1 If A, converges strongly to an invertible operatbast — 0 and if theA, are
uniformly invertible then4; * also converges strongly t&—1.

This follows from the assumptions and the identity® — A= = A7%(A — A)A~L.
The next fact says that strong convergence can sometimes be converted into trace norm
convergence.

Fact2 If A, — A strongly andB; — B intrace norm them; B; — ADB in trace norm.

This is a variant of Proposition 2.1 of [8]. There the families of operators depended on a
parameten € Z* rather thart € R*, a matter of no importance since we may consider
general sequences — 0. Also, instead of a sequence of operators converging in trace
norm to B there was the single trace class operdorThe apparently more general
result follows trivially from this special case.

Fact 3 Supposed; andA are asin Fact 1 and th&} are trace class operators converging
in trace norm ta3. Assume also that + B is invertible. Then thel, + B, are uniformly
invertible for sufficiently smalt, and if B; = 01(1) then @, + B;) = = A; 1 + 01(1).

Proof. Write A, + B, = A, (I + A;'B,). By Fact 14,1 — A~! strongly, and so
by Fact 2 (withA, repaced byA; ') we deducel + A;*B, = I + A~1B + 01(1) =
(I +01(1))(I + A~1B), since clearly [ + 01(1))~* = I + 01(1). Both statements now
follow. O

In our derivation of (2.4) we have to know that tlhe- PiKtiPi are uniformly
invertible for small.. We shall deduce this from known facts about uniform invertibility
of truncated Wiener-Hopf operators, which we now describe. The proofs can be found
in [4].

The Wiener-Hopf operatdil’ associated with a functioh € L1(R) is the operator
on Lp(R*) with kernelk(z — y). Introduce the Fourier transform &f

k(€)= /_ " ) de.

This is a continuous function dR tending to 0 ag — =+oo. A necessary and sufficient
condition that/ — W be invertible is that - k(&) # O for all ¢, and

arg (1 H©)|~_=o0.

The truncated Wiener-Hopf operators are the operakid’ P,,, where P, denotes
multiplication by the characteristic function of,(@®). Clearly these operators converge
strongly toWW asa — oo. The important fact is that iV is invertible, in other words

if the conditions ork stated above hold, then the operatbrs P, W P, are uniformly
invertible for sufficiently largev. We mention also that the operator with kerhét — y)

on the whole lineR is invertible if and only if the first condtion alone is satisfied, that
1— k() #0forall€.
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From this we can deduce information about kerrigls v) which are homogeneous
of degree-1 since the variable change= e* transforms this kernel into a convolution
kernel. More precisely, denote iy the unitary operator froni,(1, oo) to L2(0, o)
given byU f(z) = e*/2f(e*). Then if T denotes the operator dip(1, oo) with kernel
k(u,v), the operatot/ TU ~* is the operator ot,(0, oo) with kernel

/2 oy/2 k(e®,eY) = elv—2)/2 k(1,eY~"),

where we used the homogeneityidf:, v). Notice also that if?;” denotes multiplication

by the characteristic function of (1) thenU P} U~ is the projection operatdfg ;-1

of the last paragraph. After making an obvious change of variable in computing the
Fourier transform ot —%/2 k(1, e—*) we deduce

Fact 4. Assume thatf,” v=%/2|k(1,v)| dv < oo, denote by’ the operator with kernel
k(u, v) on Ly(1, o) with kernelk(u, v), and byM (s) the Mellin transform

M(s) := / v k(1 v) d.
0
Then a necessary and sufficient condition that 7" be invertible is that

1- M(s) #0forRs =1, agl- M(s))|’ =0 (2.6)
If this holds then the operatofs- P;T P} are uniformly invertible for sufficiently small
t.

Remark.If we use the variable change= e¢~* instead ofu = e* then our operatal’

acts onL,(0, 1) and we find (again using homogeneity) that the condition for invertibility
of I — T is exactly the same as before, and thaPjf denotes multiplication by the
characteristic function oft(1) then this condition implies the uniform invertibility of

I — P TP, for sufficiently smallt. Also (transferring to this context the last sentence
of the discussion of Wiener-Hopf operators), the same condition implies the invertibility
of the operatod — T on L»(0, c0).

We apply this to the kernel K, which is homogeneous of degred. The relevant
Mellin transform is found to be

T
sinws

M(s) = A / (—w)* L dp(w),

so that 1— M(s) = h(s — 3), whereh is given by (1.7). If we recall that = 3 — s,

we see that the conditions (2.6) are met, the first immediately from the definitign of

and the second because the index (the variation of the argument, which is necessarily
an integer) is a continuous function &f locally constant and clearly equal to 0 when

X = 0. So we know that the operatafs- A Ky andI — X\ P+ KyP* are invertible and
the operator familie$ — A P~ Ko P are uniformly invertible for smal.

We introduce one last piece of notation. We denotédsythe operators o,(R*)
with kernels

-1

K*(u,v) = (%)B/ ﬂdp(w), K™ (u,v) = (:j)ﬁ/ﬂwdp(w).

o —wutv —wutv
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Notice that rescalind<* (u, v) under the variable change— t*'u gives K" (u, v).

Next we derive various trace class properties of our operators which will be needed.
For these we shall use an estimate for the trace norm of an operafoi(Rih) with

kernel of the form

/ qi(w, u) qz(@ v) dp(w), 2.7)
Q —wutv

which is a special case of the sublemma in the appendix of [9]. We denaté&pgny

positive function orR*, by @ its Laplace transform, and by the Laplace transform of

#(s)~L. Then there is a constant depending on only o such that the trace norm of

the operator with kernel given above is at most?! times the square root of

/ N / s ) ? D(mu) dp(w) dus - / h / ol ) Wmu) dp(w) du.  (2.8)
0 Q 0 Q

From this will follow our first lemma. In the proof we denote hY the characteristic
function of (1, co) and byx ~ the characteristic function of (@), soP is multiplication
by x*.
Lemma 1. The operators (independent ©)f
P*KoP~, P'K*, P~(K* — Ky)

are trace class. The operators (dependingtpn

P*(K; — Ko)P~, P™(K] — Ko), P"(K,— K})
areoi(1)ast — 0. The statements also hold if all superscriptnd— are interchanged.

Proof. All the operators have kernel of the form (2.7). We list the operators below,
together with the corresponding functiopgw, «) andga(w, w).

Operator q(w, u) g2 (w, v)
P*KoP~ X(17oo)(u) uP X(071)(u) u P
P*K* X(1,00) (1) e~ =) 48 u™P

P=(K* - Ko) Xpu)(u) (e~ —1)4f uP

PH(K, = Ko)P™ X(z,00)(u) (e~ =) vl D™l 1)y X 1y(u) u™"
P~(K;f — Ko)  X@u(u) (=) — 1) u’

PH(K;— K})  X@,o0)(u) e t@=e)u (e_t(l_“’fl)“f1 —1Duf uP.

For each of these operators we take two numpegse (—1, 1) and defines(s) = s?
for s < 1 andg(s) = s? for s > 1. We easily see that

O foru>1 OwP=Y) foru>1
O(s) = W(s) =
O(u=9%) foru < 1, O(u?Y) foru < 1.

For each operator one can fipdandg such that both integrals in (2.8) are finite, and
any integral depending anis o(1) ast — 0. In fact, as the reader can check, we may
take for all the operators any € (23,25 + 2), for the first and fourth operators any
p > 20 and for the other four any € (23 — 2, 2(3). This takes care of the six displayed
operators. For the other six we use the fact that the substitutioasu ™%, w — w™?!
yield operators of the same form withreplaced with—3 and with the superscripts
interchanged.
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As a preliminary to the next lemma we show that certain modified Laplace tranforms
are bounded operators @dn(R").

Lemma 2. The integral operator on»(R*) with kernel(uv)~? e~ is bounded if
B< 3.

Proof. The mappingf(v) — v~1f(v™1) is unitary, so we may replace the kernel by
uPvB—te~u/v_Under the unitary mappinf(u) — e*/2 f(e*) this becomes the kernel
ez=Ae—ve=¢""" on (o0, o). Thus the operator becomes convolution by fhe
functionk(z) = e(z=#7¢—¢" and so is bounded. O

Lemma 3. The operatord — A\ K* are invertible.

Proof. We considelk*, which we can write a®~ Ko+ P~ (K* — Ko)+ P*K*. By the
first part of Lemma 1 the second and third summands are trace class, therefore certainly
compact. Our assumption implies tHat A\ P~ K is invertible. Hencd — A K™ is the
sum of an invertible operator and a compact operator, and so it follows from general
theory that it will be invertible if O is not an eigenvalue. In other words it suffices to
prove that\ K* f = f for f € Lo(R*) implies f = 0.

For anyw € C\R* and anyf € L,(R*) we have forz > 0,

0 o] B e —(1-w)u
/ O T du/ <7> —— f(w)dv
Jo 0 v —wutv

_ [e%S) dy [e%S) o8
_/0 —x+1—w(y+l)/o e v~ P f(v) dv.

This can be seen f&t w < 0 by using the integral reresentation

1 o
- - / e vlmwury) dy
wu tv 0

in the integral on the left above and interchanging the order of integration. The identity
follows for allw € € since both sides are analytic functionswoin this domain. Now
suppose thah K*f = f. Then if we integrate both sides of the identity with respect
to dp(w) and multiply by, the left side becomes the Laplace transform.of f(u),
which we denote by(x), and the the right side becomes

dp(w)
/\/ /x+1 w(y+1)g(y)dy.

Using the facty=?¢(y) € L, which we know by the previous lemma, we see that the
integral is a bounded function af If we recall the definition (2.5) then we see that the
identity becomes

g(x):A/ooo(“’

O gr—1)=A /1 Koly.2) gy — Dy~ P dy (@ > 1).

Now we know thatz = ¢(z) is in L»(0, c0) and thatg(z) is bounded. It follows that
x7% g(x — 1) belongs toL,(1, o). The right side above is the operator with kernel

1\8
1) Koy +La+Dg@)dy (x> 0)

or
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Ko(y, ) acting on this function. Thus (if # 0) the operaton P*K/P" has 1 as an
eigenvalue, wheré denotes transpose, §o— A P*K{P" is not invertible. But this
impliesI — X\ P*KoP* is not invertible, whereas we know that it is. This contradiction
establishes the lemma.

Lemma 4. The operators] — A PEK:*P* are uniformly invertible for sufficiently
small¢.

Proof. We consided — A\ P* K P* and for this itis enough to show that the- A\P* K/
are uniformly invertible. The kernel d?* K is X(1,0)(u) K7 (u, v) and the substitution
u — t~1u allows us to consider instead the operator with kekgel.)(u) K *(u, v). We
write this (not displaying the variablesandv) as

X(,1) Ko + X(,00) K* + X2 (K" — Ko) + X(0,1) (Ko — K7).

Recalling the definitions of our various projection operators we see that the first kernel
corresponds to the operatfy Ko, and we know that thé — A P,” K are uniformly
invertible for sufficiently smalk. The second and third summands correspond to the
operatorsP* K* andP*(K™* — Kj), which we know by Lemma 1 to be trace class. The
last summand corresponds to the oper&ofKy — K*), which we know by Lemma 1

to be trace class, left-multiplied by multiplication iy 1), which converges strongly to

0. An application of Fact 2 shows that this last operatex (&). The strong limit of the

sum of the four operators is, of courdeé; and we know by Lemma 2 thdt— \ K™ is
invertible. Hence we can apply Fact 3 to deduce the result.

We can now fill in the details of the proof of (2.4) outlined earlier. Thus we begin
with the representation

I - AP K.P~ AP KP*
I-\K,; =
~\P*K,P~ - \P*'K,P*
Applying Lemma 1 to the nondiagonal entries we deduce

I— AP K; P~ —\AP KyP*
IT-)\K, = +01(N).
~AP*KoP~ I—\P'K;P*

Lemma 3 tells us in particular that the diagonal entries of this matrix are invertible for
smallt so we may factor out

I-A\P KP~ 0
0 I - \P'K,P*
on the left, leaving
I ~A\(I - AP K;P™)"'P~KoP*
~A([ = A\P*K} PY) 1P*KoP~ I

on the right. Next we combine the uniform invertibility of tihe- A PﬂEK,?EPi proved
in Lemma 3 with Fact 1 to deduce that the inverses of these operators converge strongly
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to(l — A PiKgEPi)*l. SinceP* Ky P¥ are trace class, by Lemma 1, we deduce by
Fact 2 that the matrix above f&f + 01(\), whereM is the matrix obtained by replacing
K by Ko. Thus

[ - AP K,P- 0
I-\K, = M +o1(N).

0 I-\P'K,P*

Now we have to know that1 is invertible, and we see this as follows. If, instead of
the operatod — A K; which depends on, we had started with the operatbr- \Kj
then we would have obtained the exact representation

I - AP KoP~ 0
I—\Ko= M.

0 I - \P*KyP?*

Since bothl — A K and the matrix on the left are invertible, by our assumption, we
deduce thai\ is invertible.

Next we go through a similar process starting with the opetatoh K rather than
I — M\ K. Using the fact thaP~ K = P~ K + 01(1), which we know by Lemma 1, we
obtain in this case

I - AP~ KoP~ 0
I-\K} = M +o01(N).
0 I - \P'K,P*

From these matrix representations and the factsthand/ — A P~ Ko P~ areinvertible
and/ — PﬂEKfEPjE uniformly invertible we deduce, using Fact 3 with(1) replaced
by 01(}),

(I -\P K, P7)1! 0
(I-AK)t=m"1 +01(M),
0 (I—-\P*K, Pt
(I = AP KoP~)™! 0
(I-AK})yt=m1 +o01(N).
0 (I - \P*K,P*)~1

Comparing lower-right entries of the matrices gives
P*(I-K) P =P"(I - K)"P*+01()),
which is half of (2.4). The other half is obtained similarly.
Remark.To apply (2.3) to (2.1) we need something extra, e.g., that (2.3) holds uniformly

for these). With a little care our argument gives this also, but we spare the reader the
details.
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3. The Resolvents oK+

We are going to find integral representations for the integrals on the right side of (2.3),
and we considelf;” R (u, u; \) du first. The substitution, — u/t shows that this
equalsftC>o R*(u,u; \) du, whereR*(u, v; \) is the resolvent kernel of the operafigi.

For this we require only th&2 be a compact subset of

{weC: Rw<l w¢gR}, (3.1)

since the term 2 w~! does not appear in the exponent in the kern& 6 The derivation

will involve an initial step which is valid only whef® is contained in the left half-plane

so we assume this to begin with. We shall also assumeitigaso small thati(s) # 0

forRs = % so that with the notation of the last section we may take= %, 6 =0.

Eventually these two assumptions will be removed by an analytic continuation argument.
Because? = 0 the kernel ofK™* is

—t(l w)u
K*(u,v) = / (w). (3.2
—wutv
If we set
A(u, ) ::/ e~ U= gwur g5(),  B(x,u) = e VT,
Q
then

K*(u,v) = /OOO A(u, ) Bz, v) dz.

Lemma 2 of the preceding section tells us tBét, x) is the kernel of a bounded operator
from Lp(R*) to Ly(R™) and, with our assumption d®, that the same is true of(x, u).
The above shows thd™ = AB, and the operataB A has kernel

o0 B dp(w) _ dp(w)
/0 B(m,u)A(u,y)du—/Qx_wy_'_l_w—/Q(I_'_l)_w(y_'_l).

We use the general faetB(I — AAB)~! = A(I — A\BA)~1B to deduce thaR*(u, u)
is given by an inner product,

R*(u, u) = ((1 “ABA)B(-,u), Au, -)). (3.3)

We begin by computing
f:=( - ABA)IB(-,u).

Thus we want to solve

= dp(w) —
1@ [ [ g /A= @2 0)

or
fo—1)- / /‘M” Cldy=e Y (> ),

The substitutionr — e* brings this to the form of a Wiener-Hopf equation, so we can
use the factorization method to find the solution.

We begin by decreeing that the last identity holds foralt 0, in other words we
definef on (-1, 0) by the identity. Then we define
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1

F_(s):= /100 257 f(x — 1) da, Fi(s) :=/ 27t f(x — 1) de.

0

These belong to the Hardy spadés(R s < %), Hy(Rs > %), respectively. We take
Mellin transforms of both sides of the equation, and find that¥er= 1,

AT
sin s

F_(s)+ Fi(s) — /Q(fw)sfl dp(w) F_(s) = e“u"*T(s).

(The exponential in the integral is made definite by takKiagy(—w)| < 7.) We write
this as

H(s)F_(s) + Fi(s) = e“u™°T'(s), (3.4)
where hs) \ i
H(s) = Sin‘; -=1- Sin:s /Q (—w)* L dp(w). (3.5)

This function is bounded and analytic in each vertical strip of the compjg#ane, away
from the zeros of sinrs, H(s) — 1 — 0 exponentially as§s — +oco and

l+ico
arg H(s) j =0.

5 —100
Thus there is be a representation

H_(s)

H(s) = ()

whereH_(s)*! are bounded and analytic s < 3 + & for somes > 0 andH.(s)**
are bounded and analytic s > % — . We multiply (3.4) byH.(s) and use the
decompositionF’ = F_ + F, of an arbitrary function inL,(® s = %) into boundary
functions of functions i, (R s < %) andH,(R s > %) to write the result as

H_(s) F_(s) — e" (ufs I'(s) H+(s)) = _H.(s) Fi(s) + " (u*S I'(s) H+(s)> .
The two sides are boundary functions of functiongfg(R s < 3) and Ho(Rs > 1),
respectively, so they both vanish. This gives the representation

eu

&= 56

(u*s I'(s) H+(s)> (3.6)

Now (see (3.3)) we have to multipl§(z) by A(u, x) and integrate with respect o0
over (Q c0). This is

/de(w) '/OOO f(x) e~ (A—wu gwuz g = —u /de(w) /000 F@— 1) X0y (@) €47 da.

The Mellin transform off (z — 1) x(1,00)(z) equalsF_(s) and the Mellin transform of
e?"* equals Cwu)~* I'(s), so Parseval's formula for Mellin transforms shows that the
above equals

e //Q(—wu)sfl dp(w) (1 — s) F_(s)%,
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the outer integration taken ovérs = % (All vertical integrals are taken in the direction
from —ioo toi0o.) Next we recall (3.6) and use the integral representation of the operator
G — G_ to write the above as

. F(1—s) ds [u ¥ T(s)H(s') ds'
//Q(_WU) ldp(w) H_(s) %/T%’

the inner integral taken ovét s’ = % + 4. Alternatively, this may be written

a1 F(l—s) ds [u s IT(s +s)H(s' +s) ds'
| [cortam S | : =,

where now the inner integral is taken oves’ = §. The integrands of these integrals
vanish exponentially at infinity, and occurs to the power s’ — 1, which has real part
—6 — 1. Thus we may integrate with respectitdrom ¢ to oo under the integral signs
and deduce that

/ Rf(u,u; \) du

t

_ . F(L—s) ds [t T(s +s)Hi(s +3s) ds'
=] [ a0 | % 2ni

It follows from (3.5), and the gamma function representation of the last factor there, that

/ (—w)* dpw) (L —s) =A@ — H(s)) T(s) .
Q

Thus we have shown (reverting to the resolvBpj that

A / R (u,u; \) du
1

L+ico S+ioco ,—g’ / ’ ’
_ (2 1 1 _1 ds t=° T'(s' + s)Hi(s' + ) ds
= [ weteme ety | ) &

5 —100 d—ioco
This was proved if\ is sufficiently small and if2 lies in the left half-plane. Let us
remove the latter condition first. For anydefine the measursg, by p,(E) = p(E — ).
This has suppor®2 + 7. For all in a neighborhood i€ of [—1, 0] the setQ + 7 is
contained in the region (3.1). Fpmear—1 the set will also lie in the left half-plane. X
is small enough the condition on the zeros will be satisfied for the megsyfesall 7
in a neighborhood off1, 0]. For such\ we know that the above formula holds fpim
a neighborhood of-1. But both sides are analytic functionspin our neighborhood.
Thus the formula must hold foy = 0 also, which is what we wanted to show.

To remove the condition thatbe small we must modify the formula to read
oo
A / Ry (u,u; \) du
1
d+i00 tfsl F(S/ +S)H+(S/ +S) LS/

52 2mi’

(3.7)

=/ RCECER A O /

S\ —100 d—100
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wheresy € (0, 1) is as in the previous section, a continuously varying function of
such that 1- H(s) is nonzero on the liné& s = s,. Both sides of (3.7) are analytic
functions of) for X in a neighborhood of our path, they agree near0, so they agree
everywhere on the path.

As for R~ (u,u; \) on (Q 1) the change of variable — 1~ transforms the kernel
K~ (u,v) into

~. 7t(l w Hhu 7t(1 w)u .
K(u,v):=/ )= / S (W) dpw)

Therefore -
R (u,u; \) =u 2R (u=t w1 ),

whereR* is the resolvent kernel fak™*, and so
1 0o
/ R~ (u,u; \) du = / R*(u,u; \) du.
0 1
It is easy to see that replacidg* by K* replacesd (s) by H(1 — s) and so the integral
is equal to (3.7) withH (s) replaced byH (1 — s) ands) replaced by L s,.

Now that we have these explicit representations it is obvious what we do: in the inner
integral in (3.7) we move the line af-integration fromR s’ = § to R s’ = —4§. We can
do this if § is small enough. The residue at the double pol€ at0 contributes

/ (H() 1) o log 1+ / (H(5) — Ho) ™) o (M) Ha(5) o, (38)

(s)
the integrations taken ovét s = sy, and the error term i©(t°). We do the same
with H(s) replaced byH (1 — s) and add, and so we have obtained the asymptotics of
Ao Rlu, u; A) du.

4. Asymptotics of det — K)—The Periodic case

The formula forH(s) is now

H(s)=1-— .)\T( ch(fw)87lv
Q

sSinms

w running over thenth roots of unity other than 1. If in our sums we setv =
en(2i—n) (G=1- — 1), then|arg (~w)| = |2(2j — n)| < 7 as required. If we also
setz = e %, then the above may be written as

n—1
sints H(s) =sinmws + A\r Z w e, 227,
j=1
or
n—1
2i sints H(s)=z"" {22” -1+ Zi)mz w e, 223}.
j=1
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Recall that sinrs H(s) = h(s). The expression in brackets above is a polynomial of

degreen in z? and its zeros are the quantitiesﬁa, whereq runs through the zeros
ar = ag(A) (k= 1,---,n). With this notation the right side above is equal to

z " H(z2 e 1_[(,26_%(’K — e ) H en® (4.1)

Here and below the index runs over the sefas, - - -, «,, }. The last product, a square
root of the product of the roots of the polynomial, equalsor +:. This product equals

e’ () = in*1for X = 0 and so for al\. Recalling that = ¢ * we see that we have
obtained the representation

H(s) = (GO, Hsm (s — o).

sinms

We now evaluate the integrals in (3.8). Posufficiently small again, the,, will all
lieinthe strip% <Rs<nt % We may assume this since the usual analytic continuation
will give the general case.

To evaluate the first integral in (3.8) we consider

/(H(s) ! 1)5—

taken over the infinite rectangle which is the contour running fmrél—ioo t0n+%+ioo

and then from% +i00 to % — 100. On the one hand this equalgimes the first integral
in (3.8), and on the other hand it equals the sum of the residues at the poles between the
two lines. Thus we have shown that

/(H(s)*1 - 1)% = % > aH'(a)™h 4.2)

For the second integral in (3.8) we have to write down the explicit expression for the
factorsH.(s). These are given by

IL. r(==+1) | (1) 2" 1r — s)
0s) I, T(-52
It is readily verified thatH (s) = H_(s)/H+(s) and thatH _(s)* and H.(s)** are are

bounded and analytic iR s < % +5andRs > 3 5 — 6, respectively, for smal\. Thus,
they are the correct factors. The second integral in (3.8) may be written

(T'(s) H+(s)) ds
/(H() DR EG) T(s) Hi(s) 2mi’

S

H.(s) = H_(s)=

and by the above expression ffi.(s) this equals

F(s o 1) ds
/(H(s) 1 1)[ Zmﬂogn o
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where in the suma’’ also runs over the sétvy, - - -, v, }. The contribution of the term
logn is exactly logn times (4.2). To evaluate the rest of this integral we use the char-
acteristic property of the Barn€g-function, G(z + 1) = I'(z) G(z). Puttingz equal to

S‘Ta' + 1 and taking logarithmic derivatives gives
G/(s—no/ +2) G/(s—no/ +1) _ l—wl(s—no/ +1)
G(s—na' + 2) G(s—na’ + 1) F(S_na/ + 1) .

We integrate
G/( s—a’ + 1)

(H(s)~ ! 1)2 m

over the same infinite rectangle as before. (This is justified by the facEtt@t? —
vanishes exponentially ab in vertical strips whileG’(z)/G(z) grows likez log z.) By

the above relation the result is exactly the integral we want, and so computing residues
gives the formula

=2 41) ds _ 1= G52 +1)
/(H”1 1)2 r(=2 a/+1)2m_ﬁ§mfﬂa) -

Thus, we have shown that

A /1 R, u, N)du = a*() log (%) FBY ) + O),

where

G/ a—o
at(\) = —= Zaﬂ(a) Loyt = Z((aa+1))H’(a)_l. (4.3)

We must add to this fol R} (u,u, A) du which, as was mentioned earlier, is obtained
by replacingH (s) by H(1 — s). The zeros of this function which lie neay-1-, n for
small\ aren — o + 1. Hence (4.3) is replaced by

=T (-t DH )

G/(a —a 1) ) L 1 G/(a;lo/_'_l) o
b™ (A)——meH(a) 1_72@}1(@) L

NeY a,af

Here we have used the periodicity Gfand the factj—’sH(l —s)=—H'(1-s). Adding
and using (2.3), we see that

A /0 " R u: \) du = a()) log (%) FH(\) + O(t) (4.4)

wherea()) = a*(A) +a=(A), b(A) = b7 (\) +b~(N).

Now to obtain the asymptotics of log ddt{ K) we must replace by u, multiply
the above by-du/p and integrate from O ta. (Notice the factor\ on the left side of
(4.4) and recall the minus sign in (2.1).) We obtain from (3.5) that for aaéxpof H
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we have) da/d)\ = H'(c) ™. Thus the coefficient()\) in (4.4) may be written (after
replacing) by p and thinking ofa asa(u))

1 Z 2a—n—1puda/du.
n
Multiplying by —du/u and integrating gives
1 2 w=
PG SO Z

since, as we have already segn is independent ok. Similarly b(x:) may be written

G/(Cl Oé ) ,
Z G a/+1)ud(a*a)/du,

n=0

and multiplying by—du/ i and integrating gives

—_ A U=\
~Ylog (=L + )|
n n=0

a,a’

If we recall that wher = O the zeros are,1--,n we see that the formulas for the
constants in (1.4) are the ones stated in the introduction.

To obtain the asymptotics of thg.(t) we must consider def (— X\ K}) instead
of det (I — X\ K). This amounts to replacing the coefficients by w* c.,, and this in
turn amounts to replacingf (s) by H(s + k). The zeros of this function module are
a1(\) — k, - -+, a, () — k. But these are not the zeros which are to replacexthe’ in
our formulas for andb since they do not arise from the zeros whose values,are In
when\ = 0. Rather, the replacements must be

apr1(A) =k, an(A) =k, aa(N) +n—k, - ap(A) +n—k,

which are the zeros with this property. Thus, for the asymptotigg (@f we make these
replacements in our formulas and the corresponding replacements with instead

of k, subtract, and take logarithms. The result is found, after some computation and the
use of the functional equation for tii@&function, to be the asymptotics stated in the
introduction.

5. Asymptotics of detf — K) — The Nonperiodic Case

The coefficientsi(\) = a*(\) + a=(N\), b(A\) = b*()\) +b~()) of the last section were in
general given by integral formulas. They were

atN) = / (H) ™ 1) 2 (5.1)

b*(N) — a*()) logn = /‘<H_(s)flfﬂh(sr1>F (MG ) A (52)

(s)
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with the formulas fora~(\), andb~(\) obtained by replacing{(s) by H(1 — s). The
integrations may be taken ovérs = 5 if A is small enough and, as usual, this is no loss
of generality. To findz andb we integratea(1) andb(), respectively, with respect to
—du/p over a path from 0 to.

Write

o= g [ oy,

so thatH(s) = 1 — A p(s). Making this replacement in the integrand in (5.1) and
integrating gives

I A ST S - O B
/0 (1—][1,@(3) 1) U - /O 1—/1(,0(8) d/’b_log(l /\QO(S)),

so the contribution to the coefficient of lags
ds
- [ log@@- re 5
YiNA

overfts = % ReplacingH (s) by H(1 — s) gives the same contribution since we may
make the substitution — 1 — s. Therefore

2 / log (1—)«,0(3))%‘ (5.3)

For general\ the integration is to be oit s = s,.
Now we go to (5.2), which may be written
'), 1 ds Hi(s) Hi(s)
I(s) (H(s) *1) %J'/ (H,(s) B H+(s)) 2 Y

b*(\) —a*(\) logn = /

By a computation like the earlier one we see that the first integral becomes after the

p-integration
I'(s) ds
/ I'(s) log (1 Ag(s)) 5

Then we replace by 1 — s, make the substitution — 1 — s, and add. We see that the
contribution of the first integral in (5.4) equals

I(s) I'd-s) ds
/ (@ * m) log (1 Ag(s)) 5 (5.5)
Finally, we look at the second integral in (5.4), which equals
Hi(s) ds _ Hi(s) d
H () 2mi ) H" ' /('09 H.)'(s) H(s

ReplacingH (s) by H(1 — s) replacesH.(s) by 1/H_(1 — s), so after making the
substitutions — 1 — s and adding we get

)1ds

)1ds

/(Iog H,H_)(s)H(s (5.6)

Recall that forf s = 3,
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log H(s") ds"
s'—s 2mi’

09 H(9) = % log (s) + [

where the integral is the Hilbert transform, a principal value integral fivér= % So

|Og H(s’) ds'
T

log H.(s) H_(s) = /

Since the Hilbert transform commutes with differentiation we get

1 [ H'(S) ds'
H(s") s

(log H: H_)'(s) =

and so (5.6) equals

H’(s’) 9t ds'
o) H(y T o

The u-integration gives
/A () 1 )/ 1
o 1—pp(s) 1—pp(s) p (1= pep(s)) (1 - uso(S))

1 1— Ap(s)

- !/ s/ 0 ,
P =@ 9 T

and so the contribution of the second integral in (5.4) is

l(sl) l — A SO(S) dS/
// o(s) — (s) 17 o(s) s — s ds. (5.7)

Thusb — a logn equals the sum of (5.5) and (5.7). As usual, for genktak integrals
are taken oveiRt s, s’ = s,.

Remark.The double integral (5.7) is exactly the constant in the known asymptotics for
the determinants of the truncated Wiener-Hopf operators associated (sitecifically,

cp(% + &) is the Fourier transform of the convolving kernel), and (5.3) is (minus twice)
the leading coefficient in the asymptotics. One can see by the argument of Section 2
how both these things arise and conclude also that (5.7) equald{dét The extra
ingredient here is therefore the integral (5.5).

6. The Casen = 2

In this case the only root is = —1 and we may take_; equal to 1 since it occurs only
in the product\c_;. Thus the kernel ofy is
672t(u+u’1)

u+v

and the equation (for eithey,) is
¢"(t) +t7 ¢/ (t) = 8 sinh (). (6.1)
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We have in this cask(s) = sints — 7, the zeros are given by

1 . 1
ag = —arcsint A = — log(mi + \/1——772/\2), a1 =1— ap,
™ e

and ag+2 = ay + 2. The square root is that branch which is positive o= 0 and

the logarithm that branch which is 0 there. From this it is easy to see that the set (1.6)
consists of the rays{co, —1/7] and [1/7, co) and A, the proposed region of validity

of our formulas, is the complex plane cut along these rays. If we note that the function
miA+v/1— 72X\2 mapsA onto the right half-plane, we see th#tta,, (\) — k| < 3 for all

A € A and so the “extra” condition on theis satisfied. The range of validity is therefore

all of A. Using the formulas stated in the introduction we find that det (\ Ky) ~

b (t/2)* with

Dmran pe_ GRGE) TG G(Ly?
O TTGE+a0)GE —a0) TG - a0) GG +ag)G(E - ao)

For det { + X\ Kp) we replace\ by —\, which amounts to replacingo by —aq. If
we multiply the two results together we recover the asymptotics forldetf? K3)
determined in [7] and [2].

For ¢o we have the asymptotictlog(t/2) + log B + o(1), where

I'(3 — ao)

A=20y B=-—2_%0
(3 +ag)

in agreement with [6]. This is the solution of (6.1) which is asymptotie-f\ Ko (4t)
ast — oo, where thisKj is the Bessel function.

For\ ¢ A the asymptotics are different. Fdr> 1/, e® has an infinite sequence
of zeros ag — 0 and for\ < —1/x, it has an infinite sequence of poles; this follows
from the fact that ag — 0 the spectrum of{; fills up the interval [Q 7]. A heuristic
derivation of the asymptotics fox on the cut is given in [6]. In the next section we
present a similar derivation for some cases of 3.

7.n = 3 and Cylindrical Bullough-Dodd
The cylindrical Bullough-Dodd equation
q"(t) + g (1) = 4e®T — 4e ™1, (7.1)
arises in the special caseof= 3, wherec,, = —w3c,-1. Theng; = 0, ¢ = —gs and
(7.1) is satisfied by = g3. If we set¢ := e27/3, thenc, may be chosen arbitrarily. If we
choose it to be& (1 — ¢) thencez = ¢?3(1 — ¢?), c-1 =0 and
h(s) = sinms + 2rv/3 A sin(r(s + 2)/3).

Again \ is the one free parameter. The zeros are given by

1 3 A
ag=> — — arcsm(— +

4" 2n 27 2\ ) @ =1 a;=2-ao
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where). = 1/(2v/37). Now A is the complement of the union of cuts
(_007 _3AC] U [)‘67 OO)

For A € A the zeros satisfy
1 5
§]%0506(753 1)7 §RO‘l::l-a §R0426(17 E)a

and so the extra condition is again automatically satisfied and our formulas hold for all
A € A. If we write

qit)= A Iog(%) —log B +0(1) (7.2)
then the connection formulas give in this case

B = 3714 r (%2) r (20“'1)

| M) T (Z8)

A= 2«

Q

where we wrotex for «g. For larget,

4(t) ~ 6K (Nét) .

Asymptotics at the critical valug.. This section and the following ones are heuristic.
Using the differential equation (7.1) one can determine the correction terms to (7.2):

B t2—2A _ 4 t2+A + B4 t4_4A
(1— A)2 B(2 + A)? 2(1— A)

4(t) = Alog(}) +log B +

(7.3)
This is valid for A\ € A. To understand the higher order terms in more detail it is
convenient to define

w(t) = exp(—q(?)) -
wherew satisfies the equation

1 1 4
w" = Z(w')? — w +aw? — (7.4)
w t w

The asymptotics we proved become the statement
w(t) = Bt* (1 +0(1)).

Using (7.4) to calculate the higher order terms in the simaXpansion forw we find

(224 4B 12132
w(t)=Bt" (1 T B AR @2+ AR o @+ AY RN
+(.7 +1)2 BJ 120HA 4 (7.5)
(2+A)%
242 -24-2) ., 4 p)
2+ A2(1— A)2(4— AYB (1— A)(4— A3 '

In contrast to (7.3) the termé™ 24 only appear forn = 1 in the above expansion.
As ) varies from 0 to\. « varies from 0 to—%, so A varies from 0 to 1 and® from
1 toco. Observe that the first two terms in (7.5) are of the same ordeasih — O (and



720 C. A. Tracy, H. Widom

A — 1) whereas the others are of lower order. This suggests that Wwhex. we have
w(t) ~ tQy ast — 0, where

1 © B2(1— A)?

2

1224 4
Qi := lim B (1 ) = 2log(1/t) — 3 log2+2log3—2y. (7.6)

We now use the differential equation (7.4) to find the higher order terms, which are
polynomial int and ;. (The only property of2; used in the formal expansion is
d;/dt = —2/t.) The expansion is

— 4 4 2 4 8 4 7 3 2 1004
w(t) = (Qu+gt <§21 t3t 9> t51g7 (8197 + 21607 + 24002 + 80)+O(t'°Q7).
(7.7)

Thus (as for they = 2 analogue [6]) if one were to alter the constant appearing in (7.6)
then the solution of (7.4) whose asymptotics is (7.7) would not match onto the solution
that approaches 1 &as— oo.

These asymptotics at = A\. were checked by numerically solving (7.4) in both
a forward and backward integration. There was agreement to nine decimal places at
t=1/4.

Asymptotics at the critical value3\.. We proceed as above and examine all terms that
would be of the same order of magnitude)as- —3)\., whena — 1 andA — —2.
These are the terms of the geometric series, those involving the pgweérs Summing

the series we see that we must compute

lim B - !
a=1(1- 2B+ /(2 + A)?)? 22 (logt —log3 +7)*
Defining

Qy =logt —log 3 +v

we thus see that at = —3),,,
1

212Q3°

To compute higher order terms it is convenient to look@) = 1/w(t). Using the
differential equation and only the propert§2,/dt = 1/t of Q2, we find

w(t) ~ (7.8)

t8 32 76 40 40 20
o(t) = 26°Q5 + 9 (892 - 392 + 393 - 393 + ?795 - 8192) +O(t*Q10).

(7.9)

Asymptotics foi > A.. Think of A as being on the lower part of the cWi.[ c0). Then

1 3.
aTTo T
where . L
W= ;arccosr(é + 2)\6), (> 0).

ThusA = 1+ 3iu. Here again the first two terms in (7.5) are of the same ordera®
whereas the others are of lower order, and we obtain
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751—2A

~BA AR +O0@th.

w(t) = Bt4

Substituting in the values of and B in terms ofy we find
_ (2t & | siniogi/z T(L/2 —ip /2T (—ip) 4
v0=(5;) s razvin2arGy | O

3u
If we had taken to be on the upper part of the cut then we would have replaced
by — . The result would have been precisely the same.

Remark.In [5] a method was described to find connection formulas for solutions of a
class of equations including (7.1). Away from the critical values the short-range asymp-
totics stated there correspond to the first two terms in (7.5). As for the asymptotics at
the critical values, our formulas agree with [Spat —3)\. but atA = A\, we differ by a
factor of 2.
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