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Here dx denotes Lebesgue measure on a set which necessarily contains the
eigenvalues (R if the matrices are Hermitian, T if the matrices are unitary,
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1. INTRODUCTION

In the most common models of random matrices the eigenvalue distribu-
tion is given by a probability density PN(X1, . . . , XN). If F is a symmetric
function of N variables and the eigenvalues are A1,..., XN then the expected
value of F(A1, . . . , AN) is given by the formula
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The usual formulas for the correlation functions in orthogonal and symplectic
matrix models express them as quaternion determinants. From this representa-
tion one can deduce formulas for spacing probabilities in terms of Fredholm
determinants of matrix-valued kernels. The derivations of the various formulas
are somewhat involved. In this article we present a direct approach which leads
immediately to scalar kernels for the unitary ensembles and matrix kernels for
the orthogonal and symplectic ensembles, and the representations of the correla-
tion functions, cluster functions, and spacing distributions in terms of them.
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C if the matrices have general complex entries). The function PN(x1 , . . . , XN)
gives the probability density that the eigenvalues lie in infinitesimal
neighborhoods of x1,..., XN. The n-point correlation function Rn(x1 , . . . ,xn)
is defined by
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It is, loosely speaking, the probability density that n of the eigenvalues,
irrespective of order, lie in infinitesimal neighborhoods of x1,..., xn. (It is
not a probability density in the strict sense since its total integral equals
N ! / ( N - n ) ! rather than 1.)

Sometimes easier to compute are the n-point cluster functions
Tn(X1 , . . . , xn). These are defined in terms of the Rm(x1,..., xm) with m<n.
Reciprocally, the Rn(x1 , . . . ,xn) may be recovered from the Tm(x1 , . . . ,xm)
with m<n. These will be discussed in Section 2.

Fundamental to the study of spacings between consecutive eigenvalues
is the quantity E(0;J) (the E here does not represent expected value),
which is the probability that the set J contain no eigenvalues. More gener-
ally E(n1 , . . . ,nm;J1 , . . . ,Jm) denotes the probability that each Ji contains
precisely ni eigenvalues. A related quantity is PJ(x1 , . . . , xn), the probability
density that the eigenvalues contained in J lie in infinitesimal intervals
about x1,..., xn. These are useful for the study of spacings between several
eigenvalues.

All the functions Rn and Tn, as well as the just-mentioned prob-
abilities, are obviously expressible in terms of the density function PN. But
since we generally think of N as large (indeed we are often interested in
"scaling limits" as N -> i) it is desirable to find alternative expressions for
these quantities which do not increase in complexity with large N, expres-
sions in which N appears simply as a parameter.

These have been found for some particularly important matrix ensem-
bles. They are ensembles of Hermitian matrices where PN has the form

where B equals 1, 2, or 4, w(x) is a weight function and CN is the normaliza-
tion constant required to make the total integral of PN equal to one; and
ensembles of unitary matrices where PN has the form



and the integrals are taken over any interval of length 2n. The latter are
Dyson's circular ensembles. (Of course one could also introduce a weight
function here.) The terminology here can be confusing. The B= 1, 2 and 4
ensembles are called orthogonal, unitary and symplectic ensembles, respec-
tively, because the underlying measures are invariant under actions of these
groups. In the Hermitian case the B = 1 ensembles consist of real symmetric
matrices and the B = 4 ensembles consist of self-dual Hermitian matrices.
For a discussion of these matters and the analogues for the circular ensem-
bles see ref. 8.

Here is a rough outline of how the desired expressions were obtained
when B = 2, which are the simplest cases. For Hermitian ensembles
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On the right side we see the square of a Vandermonde determinant (for the
circular ensemble it is a product of Vandermonde determinants), which is
equal to the determinant of the Vandermonde matrix times its transpose.
Performing row and column operations and writing out the product, one
obtains a representation

with certain kernels KN(x, y) which are expressed in terms of the polyno-
mials orthonormal with respect to the weight function w(x). These kernels
are shown to satisfy a basic family of integral identities which are used to
deduce that

By manipulating the N-fold integral that gives E(0; J) and using these
expressions for the Rn one deduces that E(0; J) equals the Fredholm deter-
minant of the kernel KN(x, y) acting on J. One obtains expressions for the
more general quantities E(n 1 , . . . ,nm;J 1 , . . . ,Jm) in terms of the same kernel.
Observe that N appears only as a parameter in the kernel KN(x, y).

For B equal to 1 or 4 the situation is less simple. From the point of
view of the above outline, the problem is to concoct a kernel satisfying
(1.1) and the family of integral identities which led to formula (1.2). This
problem was solved by Dyson(3) in the case of the circular ensembles and
required the introduction of a new concept—the quaternion determinant.
A quaternion-valued kernel was produced for which (1.1) and (1.2) held if
all determinants were interpreted as quaternion determinants. Subsequently
it was shown by Mehta(7) how to obtain analogous quaternion determinant



representations for the Gaussian ensembles, the ensembles of Hermitian
matrices with weight function w(x) — e-x2, using skew-orthogonal polyno-
mials. This was generalized to general weights by Mehta and Mahoux.(6)

(See also refs. 8, 4, 10.) After these quaternion determinant representations
for the Rn it is possible (by an argument to be found in A.7 of ref. 8,
although not explicitly stated there) to deduce representations for E(0; J)2

as Fredholm determinants of 2x2 matrix kernels.(11) These matrix kernels
are the matrix representations of the quaternion kernels.

If all one is interested in is the spacing distributions then this is certainly
a very round-about way of obtaining Fredholm determinant representations.
The purpose of this article is to present a direct approach, one which leads
immediately to the scalar kernels when B = 2 and the matrix kernels when
B = 1 and 4, and the representations of the correlation functions, cluster
functions and spacing distributions in terms of them. It uses neither quater-
nion determinants nor a family of integral identities for the kernels. (That
the correlation functions are equal to quaternion determinants for the B = 1
and 4 ensembles becomes a consequence of the representations.)

What we do use are the following three identities which represent cer-
tain N-fold integrals with determinant entries in terms of N x N or 2N x 2N
determinants with integral entries:

Here "Pf" denotes Pfaffian (its square is the determinant) and (1.4) holds
for even N and must be modified for odd N. These hold for general
measure spaces; in (1.4) the space must be ordered. Identities (1.4) and
(1.5) are due to de Bruijn,(2) who traces (1.3) as far back as 1883.(1)
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In the application of (1.3) to the B = 2 case we are led to a matrix
whose j, k entry equals 6J, k plus the integral of a product of a function of
j and a function of k. In our application of (1.4) and (1.5) to B= 1 and 4
the integrand is a sum of two such products. This, in a nutshell, is why
2x2 matrix kernels arise. What we do in each case is use one of the iden-
tities to express

as a determinant or Pfaffian whose entries are given by one-dimensional
integrals. Manipulating the integrals leads to a scalar or matrix kernel
KN(x, y) such that the above N-fold integral (B = 2) or its square (B = 1 or 4)
is equal to det(I + KNf). Here KN denotes the operator with kernel KN(x, y)
and f denotes multiplication by that function. Taking f= — Xj gives imme-
diately the representation of E(0; J) or its square as det(I — K N X j ) - We also
obtain representations for the more general quantities E(n1,,..., nm;
J1 , . . . ,Jm) . Taking f to be a linear combination of delta functions leads to
representations of the correlation and cluster functions in terms of the
matrices ( K ( x i , Xj)}. These are 2x2 block matrices if B= 1 or 4.

All the derivations follow the same pattern. First we write the
integrand in (1.6) in terms of a determinant or product of determinants.
These representation are exactly as can be found in ref. 3 or ref. 8, for
example. Then we apply whichever of (1.3)-(1.5) is appropriate, and obtain
a determinant whose entries are integrals. Finally, after writing the
integrand as a matrix product if necessary, we use a general identity to
express the last determinant as an operator determinant.

The article is organized as follows. In Section 2 we define the cluster
functions and discuss their relationship with the correlation functions. In
Sections 3 and 4 we show how the operator determinant representations of
the integrals (1.6) lead to formulas for the correlation and cluster functions
as well as the spacing probabilities. In the following sections we derive
these determinant representations for the B = 2 ensembles, the B = 4 and 1
circular ensembles, and then the B = 4 and 1 Hermitian ensembles. We do
things in this order since the circular ensembles are simpler than the
Hermitian (because the exponential are eigenfunctions of the differentia-
tion operator) and B = 4 is simpler than B = 1 (because there is a single
integral in (1.5) and a double integral in (1.4)). In the final section we
derive the matrix kernels for the ft = 4 and 1 Gaussian ensembles, which
was the starting point of ref. 11.

We emphasize that there are almost no new results in this article—
perhaps the determinant formula (4.2) for the spacing probabilities and the
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be a formal power series in a single variable z without constant term, and
set B = f ( A ) . For each S we have

where the sum is taken over all m ^ 1 and, for each m, all partitions of S
into nonempty subsets S1,..., Sm. If f1= 0 then f(z) has a formal inverse
g(z). Since A = g(B) it follows from the above that for each S
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more general form for the matrix kernels obtained in Sections 8 and 9. It
is the methods used to derive them which are new and, we believe, show
how they form a coherent whole.

2. CORRELATION AND CLUSTER FUNCTIONS

The n-point cluster functions Tn(x1,..., xn) are defined as follows. For
each non-empty subset S of {1,..., N] write

Then

where the sum runs over all m ^ 1 and, for each m, over all partitions of
{1,...,n} into nonempty subsets S1,...,Sm. If we know the Tn then the Rn

may be recovered by use of the reciprocal formula

This is most easily seen by looking at the relation between generating func-
tions for these quantities.

Let A be a formal power series in variables z1,..., ZN without constant
term. For each nonempty subset S of {1,..., N} let As denote the coefficient
of Tlies zi in A. Let



We apply these fact to f(z) = -log( 1 + z), g(z) = e-z — 1, taking any
formal power series A such that As = Rn(x i , . . , , x i n ) when S = {i1 , . . . , in}.
Since fm = ( — 1 )m/m in this case, we see by definition (2.1) that with the
same S we have Bs = (- 1)n Tn(xi1,..., x in). Since gm = (- 1 )m/m! (2.4) gives
the reciprocal formula (2.2).

Observe that Rn(y1,..., yn) equals the coefficient of z 1 - - - z n in the
expansion about z1 = • • • = zn = 0 of

3. FORMULAS FOR THE CORRELATION AND CLUSTER
FUNCTIONS

Suppose we have proved that for each B = 2 ensemble there is a kernel
KN(x, y) such that for general /
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Here (1 +£n=1 zr6(x — yr))dx denotes Lebesgue measure plus masses zr

at the points yr. Thus we may take A(z1,..., zn) to be this integral minus 1.
Since B = — log( 1 + A) we see, after recalling the relationship Ts =
(-1) |S|BS, that Tn(y1,..., yn) equals (-1)n + 1 times the coefficient of
z1 • • • zn in the expansion about z1 = • • • = zn = 0 of

As before KN denotes the operator on L2 with kernel KN(x, y) and f as an
operator denotes multiplication by that function.

Take f(x) = £n
r=1 zr $(x — yr) first. Then the operator I + KNf becomes

the matrix

This may be seen by passing to a limit or observing (as we shall) that
this is what happens during the derivation. It is easy to see that the coef-
ficient of z 1 - - - z n in the expansion of the determinant of (3.2) equals
d e t ( K N ( y r , ys)), and so by (2.5) we obtain formula (1.2) for the correlation
functions.



816 Tracy and Widom

For the cluster functions we use (2.6) and the general expansion

to deduce

the sum taken over all permutations a of {1,..., n}.
Turning now to the B = 1 and 4 ensembles, suppose we can show that

for each of them there is a matrix kernel KN(x, y) such that

Then taking f(x) = Zf=1 z,S(x-yr) we see by (2.5) that Rn(y1 . . . , yn)
equals the coefficient of zl • • • zn in the expansion of

This coefficient is not nearly as simple as in the B = 2 case. However (2.6)
shows that Tn(y1,..., yn) equals (— 1)n+1 times the coefficient of z1 • • • zn in
the expansion of

Thus we obtain

which is hardly more complicated than for B = 2. To obtain formulas for the
correlation functions we use (2.2) together with our expressions for the Tn.
Of course the same formulas must result if we take the appropriate coef-
ficients in (3.4).

It turns out that the 2x2 block matrices (KN(yr, ys)) are always self-
dual. This means that the matrices on the diagonal are transposes of each
other and the matrices off the diagonal are antisymmetric. Because of this
the expression for the correlation function given by (2.2) shows that (1.2)
holds when the determinant is interpreted as a quaternion determinant. For
a discussion of this point see ref. 8, Section 6.2.
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4. FORMULAS FOR THE SPACING PROBABILITIES

We obtain the formulas first assuming that B = 2 and (3.1) holds. To
evaluate E(0; J) we must integrate PN(xl,..., XN) over the region where all
the xi lie in the complement of J. Thus we simply take f= —xJ and obtain

More generally, to evaluate E(n1,..., nm;J1,..., Jm) we integrate PN(xl,..., XN)
over the region where ni of the Xj lie in Jt and all the other Xj lie outside
the union of the Ji. We see that E(nl,..., nm; J1,..., Jm) equals the coefficient
of (L1 + 1 ) n 1 • • • (Xm + 1 )nm in the expansion about L1 = • • • = Lm = — 1 of

Therefore we take f(x) = Z m
i = 1 L i X j i ( x ) in (3.1) and deduce that

To see the connection with spacings between eigenvalues, consider the
quantity

where Ax and Ay are positive. The difference on the left equals the prob-
ability that there is no eigenvalue in (x + Ax, y) but there is an eigenvalue
in the larger interval (x, y), which is the same as saying that there is no
eigenvalue in (x + Ax, y) but there is an eigenvalue in (x, x + Ax). Similarly
the difference on the right equals the probability that there is no eigenvalue
in (x + Ax,y + Ay) but there is an eigenvalue in (x, x + Ax). Therefore the
difference equals the probability that there is no eigenvalue in (x + Ax, y)
but there is an eigenvalue in both (x, x + Ax) and (y, y + Ax). Hence if we
divide this difference by Ax Ay and take the limit as Ax, Ay -> 0 we obtain
the joint probability density for consecutive eigenvalues to lie in infinitesi-
mal intervals about x and y. On the other hand this same limit equals



We factor the operator in this expression as

where Rj is the resolvent kernel of KNXj, the kernel of (I— KNXj) -1 KNXj.
Determinants multiply, and the determinant of the first factor equals
E(0; J), as we know. Thus

Therefore this is the formula for the joint probability density, and explains
why the spacing distributions are intimately connected with Fredholm
determinants.

To obtain the conditional probability density that, given an eigenvalue
at x, the next eigenvalue lies in an infinitesimal neighborhood of y, we must
divide the above by the probability density that there is an eigenvalue in
an infinitesimal neighborhood of x. This is the 1 -point correlation function
R 1 ( X , x) which, we know, equals KN(x, x). Therefore this conditional prob-
ability density equals
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We now compute PJ(x1,..., xn), the joint probability density that the
eigenvalues contained in an interval J lie in infinitesimal intervals about
x1,..., xn. We observe first that the probability that a small interval contains
more than one eigenvalue goes to zero as the square of the length of the
interval. So we shall apply (4.1) to small intervals about the x, (taking
these ni = 1) and the intervals constituting the rest of J (taking these
ni = 0), divide by the product of the lengths of the small intervals and let
their lengths tend to 0. We denote the small intervals by J1,..., Jn and the
rest of J by J'. Denote by Ej1...Jn the probability that each Ji contains one
eigenvalue and J' none. By (4.1) we have
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Now we can proceed as for the correlation and cluster functions. If

then Ejit tJJE(0; J) equals the coefficient of zl • • • zn in the expansion of A
about z1 = • • • = zn = 0 and A = eB — 1. The coefficients of A are determined
from the coefficients of B by formula (2.4), which gives in this case

where the sum is taken over all partitions {S1,..., Sm} of S into nonempty
subsets. To evaluate

we use the general facts for an operator function K(z) that

We apply this consecutively to the derivatives with respect to the z, and
find that if S= {i1,,..., ik} then

where a runs over all permutations of {1,..., k}.
Eventually we have to divide the various products BS1 • • • BSm by the

product of the lengths of all the Ji and take the limit as these lengths tend
to 0. We may consider separately each Bs and its corresponding intervals
since the Si are disjoint. So we compute

If Ji1,..., Jik are small intervals about xi1,..., xik then dividing by the product
of their lengths and letting the lengths tend to 0 gives in the limit
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Now we would have obtained exactly the same results if, instead of
starting with the determinant of the operator I+Rj^ztXj., differentiating
with respect to the z,., setting all z, = 0, dividing and taking a limit, we had
simply started with the determinant of the matrix

and differentiated with respect to the z, and set all z, = 0. It follows that the
the ratio PJ(x1,..., xn)/E(0; J) equals

Therefore we have obtained the formula

Note the similarity to formula (1.2) for the correlation functions: to obtain
the formula for the ratio PJ(x1 ,..., xn)/E(0;J) we replace the kernel
KN(x, y) by the kernel Rj(x, y).

We mention that rather more complicated formulas for these probabil-
ity densities were obtained by Mehta and des Cloizeaux.(9) (See also ref. 8.)
These involve the eigenvalues and eigenfunctions of the operator KNXj but
they must must be equivalent to (4.2).

For the spacing probabilities when B = 1 or 4 we must make modifica-
tions as at the end of the previous section. We have in this case

and the ratio Pj(x1,..., xn)/E(0; J) is again given by the same formulas as
for the correlation functions but with KN(x, y) replaced by Rj(x, y). One
can show that the block matrices ( R j ( x i , Xj)) that arise here are also self-
dual, and this implies that the formula for PJ(x1,..., xn) is as above if the
determinant is interpreted as a quaternion determinant.

5. THE 3 = 2 MATRIX ENSEMBLES

Consider the Hermitian case first. We use (1.3) to express



applying (1.3) with (j>j(x) = il/j(x) = xj and with the measure w(x)(l +
f ( x ) ) d x shows that this equals N! times

Now we use something which is needlessly fancy but which is very use-
ful, namely the general relation det(I +AB) — det(I +BA) for arbitrary
Hilbert-Schmidt operators A and B. They may act between different spaces
as long as the products make sense. In our case we take A to be the
operator from L2 to CN with kernel A(j, x) = q>j(x) f(x) and B the
operator from CN to L2 with kernel B(x, j) = cpj(x). Then

Therefore (5.2) also equals det(I + KNf).
Hence we have shown for these ensembles that (3.1) holds up to a

constant factor depending only on N. In fact the constant factor now must
be 1, as is seen by setting f = 0, and so (3.1) is true as it stands.

It is easily seen directly that the nonzero eigenvalues of KNf are the
same as those of the matrix (j q>j(x) <pk(x) f(x) dx), for any eigenfunction

so (5.2) equals det(I + AB). Now BA is the operator on L2 with kernel
K N ( x , y ) f ( y ) where

If we denote by {cpj(x)} the sequence obtained by orthonormalizing the
sequence {xjw(x)1/2} then we see that the above is equal, except for a
different constant factor depending only on N to

as a determinant. Since
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Thus (3.1) holds for the circular ensemble with this replacement for KN.

(the extra exponential factors yield a simpler formula), so that the above
matrix equals AB while BA equals the operator with kernel KN(x, y) f ( y )
where now

(The 1/271 factor is needed to obtain Sj k when f =0.) Now we set

In the application of (1.3) we take $j(x) = e ix'/^/2n, \j>j(x) = eixi/^/2n so
that the analogue of the matrix in (5.2) becomes

with KN as before. Thus in (3.1) the operator I + KNf is replaced by the
matrix (3.2), as claimed. (The same argument will hold for the other
ensembles, and there will be no need to repeat it.)

For the circular B = 2 ensemble (5.1) is replaced by

then our matrix is AB, and

must be a linear combination of the <pj and solving for the coefficients leads
directly to the matrix. So the fact det(I + AB) = d e t ( I + BA) is very simple
here.

When the measure f ( x ) d x is discrete, in other words when f(x) =
Zr=i zr &(x — y r ) , the integral in the right side of (5.2) is replaced by
Zn_i zrq)j(yr) (pk(yr). If we set
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where in the last determinant k= 1,..., N as before but p runs through the
half integers -N+1/2, -N+3/2,..., N-1/2.

By the symmetry of the integrand in (6.1) the integral equals AM times
the integral over this region xl < • • • ^ XN. So we can use formula (1.5) to
deduce that the square of (6.1) equals a constant depending only on N
times the 2N x 2N determinant

By (6.2) this is equal to

if Xj^xk (both lying in the same interval of length 2n) we see that

then differentiating with respect to each yk and setting yk = xk.
If we replace each xk by e1xk and use the fact that

This is seen by writing the product representation of the Vandermonde
determinant

as a Pfaffian. It is a pretty fact that

6. THE B -4 CIRCULAR ENSEMBLE

We begin with the evaluation of
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If we write

then

then the above matrix is I + AB. In this case BA is the integral operator
with matrix kernel KN(x, y] f ( y ) where

(The reason for the insertions of i will become apparent.) Thus if we set

Here we see the sum of products e ipxe'qx + pe i p x (1/q) eiqx referred to
in the Introduction, and we write it as a matrix product

Both indices p and q run over the half-integers — N + 1 / 2 , . . . , N — 1 / 2 . If
we reverse the order of the rows and divide each column by its index q we
see that this determinant is equal to another constant depending only on
N times
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Note the relationship between SN(x — y) and the kernel KN(x, y) which
arises in the B = 1 ensemble: the former equals the latter with N replaced
by 2N.

Recall that we have been computing, not the integral (6.1), but its
square. Thus we have shown for this ensemble and with this KN that (3.3)
holds up to a constant factor depending only on N. As before, taking f= 0
shows that the constant factor equals 1.
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7. THE 3 = 1 CIRCULAR ENSEMBLE

We assume here that N is even and begin with the evaluation of

Using (6.3) we see that in the region x1 ^ ••• ^XN,

where in the last determinant k=1,...,N and p runs through the half
integers - ( N / 2 ) + (1/2) to (N/2) - (1/2), as before but with N replaced by
N/2. The i-factor in the last term equals +1. We now apply (1.4) with the
measure (1 + f ( x ) ) dx, using the fact that Yl\e'Xj — eix/<\ is a symmetric
function, and conclude that the square of (7.1) is a constant depending
only on N times

First, we replace p by —p as before. Then we set £(x) = ( l / 2 ) s g n ( x ) , and
replace sgn(y — x) by E(X — y) in the determinant. These things just change
the multiplying constant. We shall also use the notation ep(x) for the nor-
malized exponential eipx/^/2n. With these modifications the above becomes



and apply / + AB -> / + BA as before to replace this by a matrix kernel. For
simplicity of notation we shall write out the operator rather than the kernel
and use the notation a®b for the operator with kernel a(x)b(y). The
operator I + BA is equal to

Now it is an easy fact that for an operator A we have (a®b) A =
a® (A'b). Therefore the second sums in the entries of the first column of
the matrix, with their minus signs, equal the corresponding entries of the

At this point setting f = 0 shows that the multiplying constant equals 1.
We write the integrand in the p, q entry of the matrix as a matrix

product

so the determinant equals another constant depending on N times that of
the matrix with p, q entry

and using the fact that e is antisymmetric, we see that the double integral
equals

Denote by e the operator with kernel E(X — y). Observe that e is
antisymmetric and Eep = ep/ip. (The latter uses the fact that p is an integer
plus 1/2.) Writing
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8. THE B = 4 HERMITIAN ENSEMBLES

We begin now with the N-fold integral

Using (6.2) as it stands and (1.5) we see that the square of this N-fold
integral equals a constant depending only on N times

We replace the sequence {xj} by any sequence {pj(x)} of polynomials of
exact degree j. Except for another constant factor depending only on N, the
above equals

If we recall the definition of ep and the notation of the last section we see
that (3.3) holds for this ensemble when KN has kernel

The operator on the right has determinant 1 and so the determinant of the
product equals the determinant of the operator on the left, i.e., the determi-
nant of

second column right-multiplied by the operator ef. (Here f denotes multi-
plication by the function, which is symmetric, and we used the fact that e
is antisymmetric.) It follows that the matrix may be written as the product
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Thus if we set

then the above matrix is I + AB. In this case BA is the integral operator
with matrix kernel KN(x, y) f ( y ) where

The sums here are over j = 0,..., 2N — 1.
We have shown that with this KN (3.3) holds up to a constant factor

depending on N and as usual taking f = 0 shows that the constant factor
equals 1.

Next, we write the sum of products n j ( x ) i//'k(x) — r}'j(x) ^k(x) as a matrix
product

where M is the matrix of integrals J (i^,-(x) \ji'k(x) — \l/j(x) \l/k(x)) dx.
Next we factor out M, say on the left. Its determinant is just another

constant depending only on N. If M-1 = (ujk) and we set tjj(x) =
ZjW/j t 'Ak( x ) then the resulting matrix is

the extra terms arising from the diferentiations having cancelled. We write
this as

Just as when B = 2 it was convenient to introduce functions q>j which were
equal to the orthonormal polynomials times w1/2 so now we introduce
l/j = Pj-wl/2. The matrix is equal to
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9. THE B = 1 HERMITIAN ENSEMBLES

Again we assume that N is even and begin now with

This is equal to N! times the integral over the region x1 ^ ••• ^XN and
each Xj — xk\ =xk — Xj there. Using (1.4) we see therefore that the square
of the integral equals a constant depending only on N times

The explanation for the notation is that if SN is the operator with kernel
SN(x, y) then SND(x,y) is the kernel of SND (D = differentiation) and
ISN(x, y) is the kernel of ISN (I = integration, more or less). The factors 2
and 1/2 are inserted to maintain the analogy with (6.4).

One might wonder about the choice of the pj and the resulting u j k .
Since M is anti-symmetric the formulas would be simplest if it were the
direct sum of N copies of the 2x2 matrix Z = (0

-1
 1

0), whose inverse equals
its negative. The polynomials that achieve this are called skew-orthogonal.
But there is no actual necessity for using these since, as is easily seen, any
family of polynomials leads to the same matrix kernel.

then

and

Recall the definition of the tjj. If we write
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As in the last section we replace {xj} by an arbitrary sequence of polyno-
mials {pj(x)} of exact degree j. The above becomes a constant depending
only on N times

Now set IJ(X) = PJ(X)W(X) and denote by M the matrix with j,k
entry

Then the last determinant equals

All expressions in the integrand are functions of x. As earlier, the operator
with kernel e(x — y) is denoted by e.

As in the last section, we factor out M on the left, write M-1 = (njk)
and set rjj = Y ,u j k l>k - What results is the determinant of

and, as usual, at this point the multiplying constant equals 1.
The integral is equal to the j, k entry of the product AB, where

The operator I + BA equals



In other words,

Once again the matrix kernel is independent of the choice of the PJ but
the expression is simplest when the polynomials are skew-orthogonal in
this context, i.e., when M is the direct sum of N/2 copies of Z.

10. THE GAUSSIAN ENSEMBLES

The Gaussian symplectic ensemble (B = 4). The weight function w(x)
now equals e-x2. As in Section 5 we use the notation (pj for the polyno-
mials orthonormal with respect to the weight function times the square
root of the weight function. It turns out that in this case the skew-
orthogonal polynomials are simply expressed in terms of the cpj. In fact, in
the notation of Section 8, we have

and we see that the (3.3) holds for this ensemble when KN has kernel

Recalling the definition of the qj we now define

The determinant of the product equals the determinant of the first factor,
i.e., the determinant of

As in the circular ensemble, we can write this as the matrix product
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To compute the second sum we use the differentiation formula

If (ay) is the antisymmetric tridiagonal matrix with ai,i-1 = ^/i/2 then

The first is just a restatement of the differentiation formula and the second
follows from the first by applying e and interchanging i and j By the first
part of (10.2) the second sum in (10.1) equals £ a i j p j • £ci summed over all
i, i,j>0 such that i is odd and ^2N — 1. Using the antisymmetry of (a i j) and
a different description of the range of summation, we see that this equals
—^cpj' a^Ety, summed over all i, j^0 such that j is even and ^27N except
for the single term corresponding to i = 2N+ 1, j = 2N. (Recall that aij = 0
unless |i — j| — 1.) By the second part of (10.2) this equals

Integration by parts applied to the second integrand and the orthonor-
mality of the qj show that the above equals 8n,m.

We now compute the entries of the matrix (8.1). If we keep in mind
that the inverse of M in this case equals —M we see that SN(x, y) is equal
to 1/2 times

The point is that p2n as so defined is actually a polynomial of degree 2n,
as is easily seen. The skew-orthogonality is easy. If j and k are of the same
parity the corresponding matrix entry equals 0, and if they have opposite
parity we compute, (using the fact that De = Identity)
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Recall that SN(x, y) equals 1/2 times the sum (10.1). If we now denote
by SN(x, y) the sum itself, then

and consequently

(That ISN(x, y) is obtained by applying e to (10.1) as a function of x is a
consequence of the fact that only odd indices occur there.) Hence our
matrix kernel is given by

in analogy with (6.4).
The Gaussian orthogonal ensemble (B=1). In order to continue using

the same functions (pj as before we shall now take as our weight function
w(x) = e - x 2 / 2 . Thus the functions l/j of Section 9 will be of the same form,
polynomial times e -x2 /2. For the PJ to be skew-orthogonal in the present
context the antisymmetric matrix M with j, k entry

must be a direct sum of N/2 copies of Z. (Recall that N is even.) The l/j
are again very simple. They are given by

That these give polynomials of the right degree (and parity) is clear, and
we compute
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