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Abstract. It is proved that the limiting distribution of the length of the
longest weakly increasing subsequence in an inhomogeneous random word
is related to the distribution function for the eigenvalues of a certain direct
sum of Gaussian unitary ensembles subject to an overall constraint that
the eigenvalues lie in a hyperplane.

1. Introduction

A class of problems — important for their applications to computer science
and computational biology as well as for their inherent mathematical interest—
is the statistical analysis of a string of random symbols. The symbols, called
letters, are assumed to belong to an alphabet A of fixed size k. The set of all
such strings (or words) of length N , W(A, N), forms the sample space in the
statistical analysis of these strings. A natural measure on W is to assign each
letter equal probability, namely 1/k, and to define the probability measure on
words by the product measure. Thus each letter in a word occurs independently
and with equal probability. We call such random word models homogeneous.

Of course, for some applications, each letter in the alphabet does not occur
with the same frequency and it is therefore natural to assign to each letter i a
probability pi. If we again use the product measure for the words (letters in a
word occur independently), then the resulting random word models are called
inhomogeneous.

Fixing an ordering of the alphabet A, a weakly increasing subsequence of a
word

w = α1α2 . . . αN ∈ W

is a subsequence αi1αi2 . . . αim such that i1 < i2 < · · · < im and αi1 ≤ αi2 ≤
· · · ≤ αim . The positive integer m is called the length of this weakly increasing
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subsequence. For each word w ∈ W we define lN (w) to equal the length of the
longest weakly increasing subsequence in w. We now define the fundamental
object of this paper:

FN (n) := Prob (lN (w) ≤ n)

where Prob is the inhomogeneous measure on random words. Of course, Prob
depends upon N and the probabilities pi.

Our results are of two types. To state our first results, we order the pi so that

p1 ≥ p2 ≥ · · · ≥ pk

and decompose out alphabet A into subsets A1, A2, . . . such that pi = pj if
and only if i and j belong to the same Aα. Setting kα = |Aα|, we show that
the limiting distribution function as N → ∞ for the appropriately centered
and normalized random variable lN is related to the distribution function for the
eigenvalues ξi in the direct sum of mutually independent kα×kα Gaussian unitary
ensembles (GUE), conditional on the eigenvalues ξi satisfying

∑√
pi ξi = 0. (See

[13], for example, for the notion of a GUE and other concepts in random matrix
theory.) In the case when one letter occurs with greater probability than the
others, this result implies that the limiting distribution of (lN − Np1)/

√
N is

Gaussian with variance equal to p1(1−p1). In the case when all the probabilities
pi are distinct, we compute the next correction in the asymptotic expansion of
the mean of lN and find that

E(lN ) = Np1 +
∑

j>1

pj

p1 − pj
+ O(N−1/2), N →∞.

This last formula agrees quite well with finite N simulations. We expect this
asymptotic formula remains valid when one letter occurs with greater probability
than the others.

These results generalize work on the homogeneous model by Johansson [11]
and by Tracy and Widom [19]. Since all the probabilities pi are equal in the
homogeneous model, the underlying random matrix model is k × k traceless
GUE. That is, the direct sum reduces to just one term. In [19] the integrable
system underlying the finite N homogeneous model was shown to be related to
Painlevé V. In the isomonodromy formulation of Painlevé V [9], the associated
2 × 2 matrix linear ODE has two simple poles in the finite complex plane and
one Poincaré index 1 irregular singular point at infinity. In Part II we will show
that the finite N inhomogeneous model is represented by the isomonodromy
deformations of the 2×2 matrix linear ODE which has m+1 simple poles in the
finite complex plane and, again, one Poincaré index 1 irregular singular point at
infinity. The number m is the total number of the subsets Aα, and the poles are
located at zero point and at the points −piα (iα = max Aα). The integers kα

appear as the formal monodromy exponents at the respective points −piα . We
will also analyse the monodromy meaning of the asymptotic results obtained in
this part.
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The results presented here are part of the recent flurry of activity center-
ing around connections between combinatorial probability of the Robinson–
Schensted–Knuth type on the one hand and random matrices and integrable
systems on the other. From the point of view of probability theory, the quite sur-
prising feature of these developments is that the methods came from Toeplitz de-
terminants, integrable differential equations of the Painlevé type and the closely
related Riemann–Hilbert techniques. The first to discover this connection at the
level of distribution functions was Baik, Deift and Johansson [1] who showed that
the limiting distribution of the length of the longest increasing subsequence in a
random permutation is equal to the limiting distribution function of the appro-
priately centered and normalized largest eigenvalue in the GUE [17]. This result
has been followed by a number of developments relating random permutations,
random words and more generally random Young tableaux to the distribution
functions of random matrix theory [2; 3; 4; 6; 8; 10; 12; 14; 18].

After the completion of this paper, Stanley [16] showed that the measure
(2–1) also underlies the analysis of certain (generalized) riffle shuffles of Bayer
and Diaconis [5]. Stanley relates this measure to quasisymmetric functions and
does not require that p have finite support. (Many of our results generalize to
the case when p does not have finite support, but we do not consider this here.)

2. Random Words

2.1. Probability Measure on Words and Partitions. The Robinson–
Schensted–Knuth (RSK) algorithm is a bijection between two-line arrays wA

(or generalized permutation matrices) and ordered pairs (P, Q) of semistandard
Young tableaux (SSYT). For a detailed account, see [15, Chapter 7], for example;
we will use without further reference various results from symmetric function
theory, which can be found in the same reference.

When the two-line arrays have the special form

wA =
(

1 2 · · · N

α1 α2 · · · αN

)
,

with αi ∈ A = {1, 2, . . . , k}, we identify each wA with a word w = α1α2 · · ·αN

of length N composed of letters from the alphabet A; furthermore, in this case
the insertion tableaux P have shape λ ` N , l(λ) ≤ k, with entries coming from
A and the recording tableaux Q are standard Young tableau (SYT) of the same
shape λ. As usual, fλ denotes the number of SYT of shape λ and dλ(k) the
number of SSYT of shape λ whose entries come from A.

We define a probability measure, Prob, on W(A, N), the set of all words w of
length N formed from the alphabet A, by the two requirements:

1. For each word w consisting of a single letter i ∈ A, Prob(w = i) = pi,
0 < pi < 1, with

∑
pi = 1.
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2. For each w = α1α2 . . . αN ∈ W and any ij ∈ A, j = 1, 2, . . . , N ,

Prob (α1α2 . . . αN = i1i2 . . . iN ) =
N∏

j=1

Prob (αj = ij) (independence).

Of course, Prob depends both on N and the probabilities {pi}.
Under the RSK correspondence, the probability measure Prob induces a prob-

ability measure on partitions λ ` N , which we will again denote by Prob. This
induced measure is expressed in terms of fλ and the Schur function. To see this
we first recall that a tableau T has type α = (α1, α2, . . .), denoted α = type(T ),
if T has αi = αi(T ) parts equal to i. We write

xT = x
α1(T )
1 x

α2(T )
2 . . .

The combinatorial definition of the Schur function of shape λ in the variables
x = (x1, x2, . . .) is the formal power series

sλ(x) =
∑

T

xT

summed over all SSYT of shape λ. The p = {p1, . . . , pk} specialization of sλ(x)
is sλ(p) = sλ(p1, p2, . . . , pk, 0, 0, . . .).

For each word w ↔ (P, Q), the N entries of P consist of the N letters of w

since P is formed by successive row bumping the letters from w. Because of the
independence assumption,

pP = p
α1(P )
1 p

α2(P )
2 . . . p

αk(P )
k

gives the weight assigned to word w. From the combinatorial definition of the
Schur function, we observe that its p specialization is summing the weights of
words w that under RSK have shape λ ` N . The recording tableau Q keeps
track of the order of the letters in the word. The weights of any words with
the same number of letters of each type are equal (independence), so we need
merely count the number of such Q, i.e. fλ, and multiply this by the weight of
any given such word to arrive at the induced measure on partitions,

Prob ({λ}) = sλ(p) fλ, (2–1)

which satisfies the normalization
∑

λ`N Prob(λ) = 1. For the homogeneous case
pi = 1/k, the measure reduces to

Prob(λ) = sλ(1/k, 1/k, . . . , 1/k) fλ =
dλ(k) fλ

kN
, λ ` N.

The Poissonization of this homogeneous measure is called the Charlier ensemble
in [11].
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If lN (w) equals the length of the longest weakly increasing subsequence in the
word w ∈ W(A, N), then by the RSK correspondence w ↔ (P, Q), the number
of boxes in the first row of P , λ1, equals lN (w). Hence,

Prob (lN (w) ≤ n) =
∑
λ`N

λ1≤n

sλ(p) fλ. (2–2)

2.2. Toeplitz Determinant Representation. Gessel’s theorem [7] — more
precisely, its dual version (see [19, § II], whose notation we follow)— is the formal
power series identity

∑
λ`N

λ1≤n

sλ(x)sλ(y) = det (Tn(ϕ))

where Tn(ϕ) is the n × n Toeplitz matrix whose i, j entry is ϕi−j , where ϕi is
the ith Fourier coefficient of

ϕ(z) =
∞∏

n=1

(1 + ynz−1)
∞∏

n=1

(1 + xnz), z = eiθ.

If we define the (exponential) generating function

GI(n; {pi}, t) =
∞∑

N=0

Prob (lN (w) ≤ n)
tN

N !
,

then an immediate consequence of Gessel’s identity with p specialization of the
x variables and exponential specialization of the y variables and the RSK corre-
spondence is

GI(n; {pi}, t) = det (Tn(fI)) (2–3)

where

fI(z) = et/z
k∏

j=1

(1 + pjz). (2–4)

3. Limiting Distribution

We start with the probability distribution (2–1) on the set of partitions λ =
{λ1, λ2, . . . , λk} ` N . For fλ we use the formula

fλ =
N !∆(h)

h1! h2! . . . hk!

where
hi = λj + k − i

and
∆(h) = ∆(h1, h2, . . . , hk) =

∏

1≤i<j≤k

(hi − hj). (3–1)
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Equivalently,

fλ =
∆(h)∏k−1

i=1

∏k−1
j=i (λi + k − j)

(
N

λ1 λ2 · · · λk

)
.

The (classical) definition of the Schur function is

sλ(p) =
det

(
p

hj

i

)

∆(p)
=

1
∆(p)

∑

σ∈Sk

(−1)σp
hσ(1)
1 p

hσ(2)
2 . . . p

hσ(k)

k . (3–2)

This holds when all the pi are distinct but in general the two determinants require
modification, which we now describe. We order the pi so that

p1 ≥ p2 ≥ · · · ≥ pk (3–3)

and decompose our alphabet A = {1, 2, . . . , k} into subsets A1, A2, . . . such that
pi = pj if and only if i and j belong to the same Aα. Set iα = maxAα. Think of
the pi as indeterminates and for all indices i differentiate the determinant iα− i

times with respect to pi if i ∈ Aα. Then replace the pi by their given values.
(That this is correct follows from l’Hôpital’s rule.) If we set kα = |Aα| and write
pα for piα then we see that ∆(p) becomes

∆′(p) =
∏
α

(1! 2! · · · (kα − 1)!)
∏

α<β

(pα − pβ)kα kβ (3–4)

and (after performing row operations) that the ith row of det
(
p

hj

i

)
becomes(

hiα−i
j p

hj−iα+i
i

)
. Equivalently, the partial product

∏
i∈Aα

p
hσ(i)
i from the sum-

mand in (3–2) gets multiplied by

∏

i∈Aα

(
hiα−i

σ(i) p−iα+i
i

)
=

( ∏

i∈Aα

hiα−i
σ(i)

)
p−kα(kα−1)/2

α . (3–5)

In the case of distinct pi we write our formula as

Prob(λ) = sλ(p1, . . . , pk) fλ

=
∆(h)
∆(p)

1∏k−1
i=1

∏k−1
j=i (λi + k − j)

×
∑

σ∈Sk

(−1)σp
k−σ(1)
1 . . . p

k−σ(k)
k p

λσ(1)
1 . . . p

λσ(k)

k

(
N

λ1 λ2 · · · λk

)
.

Let Mq(λ) denote the multinomial distribution associated with a sequence q =
{q1, . . . , qk},

Mq(λ) = qλ1
1 · · · qλk

k

(
N

λ1 λ2 · · · λk

)
.
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If pσ denotes the sequence {pσ−1(1), . . . , pσ−1(k)}, we may write

Prob(λ) =
∆(h)
∆(p)

1∏k−1
i=1

∏k−1
j=i (λi + k − j)

∑

σ∈Sk

(−1)σp
k−σ(1)
1 · · · pk−σ(k)

k Mpσ (λ).

(3–6)

This is the formula for distinct pi. In the general case we must replace ∆(p) by
∆′(p) and each partial product

∏
i∈Aα

p
k−σ(i)
i appearing in the sum on the right

must be multiplied by the factor (3–5).
The multinomial distribution Mq(λ) has the property that the total measure of

any region where |λi−Nqi| > εN for some i and some ε > 0 tends exponentially
to zero as N → ∞. All the other terms appearing in (3–6) or its modification
are uniformly bounded by a power of N . Since λi+1 ≤ λi for all i it follows that
the contribution of the terms involving Mq(λ) in (3–6) will tend exponentially to
zero unless qi+1 ≤ qi for all i. Since qi = pσ−1(i) this shows that the contribution
to (3–6) of the summand corresponding to σ is exponentially small unless σ

leaves each of the sets Aα invariant. It follows that if we denote the set of such
permutations by S′k then we may restrict the sum in (3–6) to the σ ∈ S′k without
affecting the limit. Observe that when σ ∈ S′k all the Mpσ (λ) appearing in (3–6)
equal Mp(λ).

Write

λi = Npi +
√

Npi ξi.

In terms of the ξi the multinomial distribution Mp(λ) converges to

(2π)−(k−1)/2 e−
∑

ξ2
i /2 δ(

∑√
qi ξi). (3–7)

(See Section 3.1.) Here δ(
∑√

qi ξi) denotes Lebesgue measure on the hyperplane∑√
qi ξi = 0.

We now consider the contribution of the other terms in (3–6) as modified.
Again, they are uniformly bounded by a power of N and the total measure of
any region where |λi−Npi| > εN for some i and some ε > 0 tends exponentially
to zero as N →∞. Thus in determining the asymptotics of the other terms we
may assume that λi ∼ Npi for all i.

The constant ∆′(p) is given by (3–4). As for ∆(h), observe that the factor

hi − hj = λi − λj − i + j

in the product in (3–1) is asymptotically equal to N (pi − pj) when i and j do
not belong to the same Aα and to

√
N pα (ξi − ξj) if i, j ∈ Aα. It follows that

∆(h) ∼ Nk (k−1)/2−∑
α kα (kα−1)/4

∏
pkα(kα−1)/4

α

∏

α<β

(pα − pβ)kα kβ

∏
α

∆α(ξ),

where ∆α(ξ) is the Vandermonde determinant of those ξi with i ∈ Aα.
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The next factor in (3–6), the reciprocal of the double product, is asymptoti-
cally

N−k (k−1)/2
k−1∏

i=1

pi−k
i .

As for the sum in (3–6) as modified, observe that since each σ now belongs
to S′k each product appearing there is equal to

∏
pk−i

i . Each such product is to
be multiplied by

∏
α

(( ∏

i∈Aα

hiα−i
σ(i)

)
p−kα(kα−1)/2

α

)
.

(See (3–5).) Hence the sum itself is equal to
∏

i

pk−i
i

∏
α

p−kα(kα−1)/2
α

∑

σ∈S′k

(−1)σ
∏
α

∏

i∈Aα

hiα−i
σ(i) .

Since each σ ∈ S′k is uniquely expressible as a product of σα ∈ S(Aα) (where
S(Aα) is the group of permutations of Aα) we have

∑

σ∈S′k

(−1)σ
∏
α

∏

i∈Aα

hiα−i
σ(i) =

∏
α

∑

σα∈S(Aα)

(−1)σα

∏

i∈Aα

hiα−i
σα(i) =

∏
α

∆α(h)

∼ N
∑

kα(kα−1)/4
∏
α

(
pkα(kα−1)/4

α ∆α(ξ)
)
.

Putting all this together shows that the limiting distribution is

(2π)−(k−1)/2
∏
α

(
1! 2! · · · (kα − 1)!

)−1 ∏
α

∆α(ξ)2 e−
∑

ξ2
i /2 δ

(∑√
pi ξi

)
. (3–8)

This has a random matrix interpretation. It is the distribution function for
the eigenvalues in the direct sum of mutually independent kα × kα Gaussian
unitary ensembles, conditional on the eigenvalues ξi satisfying

∑√
pi ξi = 0.

It remains to determine the support of the limiting distribution. In terms of
the ξi the inequalities λi+1 ≤ λi are equivalent to

ξi+1 ≤ N(pi − pi+1)√
Npi

+
√

pi

pi+1
ξi.

In the limit N → ∞ this becomes no restriction if pi+1 < pi but becomes
ξi+1 ≤ ξi if pi+1 = pi. Otherwise said, the support of the limiting distribution is
restricted to those {ξi} for which ξi+1 ≤ ξi whenever i and i + 1 belong to the
same Aα. (In the random matrix interpretation it means that the eigenvalues
within each GUE are ordered.) We denote this set of ξi by Ξ.

It now follows from (2–2) and (3–8) (also recall the ordering (3–3)) that

lim
N→∞

Prob
(

lN −Np1√
Np1

≤ s

)
= (2π)−(k−1)/2

∏
α

(1! 2! · · · (kα − 1)!)−1

×
∫
· · ·

∫
ξi∈Ξ

ξ1≤s

∏
α

∆α(ξ)2 e−
∑

ξ2
i /2 δ(

∑√
pi ξi) dξ1 · · · dξk. (3–9)
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When the probabilities are not all equal this may be reduced to a k1-dimen-
sional integral as follows. Let i denote the indices in A1 and j the other indices.
We have to integrate

∏
α

∆α(ξ)2 e−
1
2

∑
ξ2

i− 1
2

∑
ξ2

j δ
(∑√

piξi +
∑√

pjξj

)

over the subset of Ξ where ξ1 ≤ s. Since ξ1 = max ξi and since the integrand
is symmetric in the ξi and the ξj within their groups we may (by changing the
normalization constant) integrate over all ξi ≤ s and all ξj . We first fix the ξi

and integrate over the ξj . These have to satisfy
∑√

pjξj = −
∑√

piξi = −√p1

∑
ξi.

If we write
ξj = ηj + x

√
pj , (3–10)

where {ηj} is orthogonal to {√pj}, then

x =
∑√

pjξj∑
pj

= −
√

p1

1− k1p1

∑
ξi.

(Recall that A1 has k1 indices.) For each α > 1 we have ∆α(ξ) = ∆α(η) since
the pj within groups are equal and

∑
ξ2
j =

∑
η2

j + x2
∑

pj =
∑

η2
j +

p1

1− k1p1

(∑
ξi

)2

.

So the distribution function is equal to a constant times
∫ s

−∞
· · ·

∫ s

−∞
∆(ξ)2 e

− 1
2 (

∑
ξ2

i +
p1

1−k1p1
(
∑

ξi)
2)

dξ1 · · · dξk1

∫ ∏
α>1

∆α(η)2 e−
1
2

∑
η2

j dη,

where the η integration is over the orthogonal complement of {√pj}. The η

integral is just another constant. Therefore the distribution function equals

1
ck1, p1

∫ s

−∞
· · ·

∫ s

−∞
∆(ξ)2 e

− 1
2 (

∑
ξ2

i +
p1

1−k1p1
(
∑

ξi)
2)

dξ1 · · · dξk1 ,

where ck1, p1 is the integral over all of Rk1 .
To evaluate this we make the substitution (3–10), but with j replaced by i

and each pj replaced by 1/
√

k. The integral becomes
∫ ∏

j

∆(η)2 e−
1
2

∑
η2

j dη

∫
e
− x2

2 ( 1
k1

+
p1

1−k1p1
)
dx,

taken over x ∈ R and η in hyperplane
∑

ηi = 0 with Lebesgue measure. The x

integral equals
√

2πk1(1− k1p1) while the first integral equals

(2π)(k1−1)/2 1! 2! · · · k1!.
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(For the last, observe that the right side of (3–9) must equal 1 when s = ∞.)
Hence

ck1, p1 = (2π)k1/2 1! 2! · · · k1!
√

k1(1− k1p1).

3.1. Distinct Probabilities: the Next Approximation. If all the pi are
different then P (λ) := Prob(λ) equals

∆(h)
∆(p)

1∏k−1
i=1

∏k−1
j=i (λi + k − j)

k∏

i=1

pk−i
i Mp(λ) (3–11)

plus an exponentially small correction. We recall that

λj = Npj +
√

Npj ξj

and compute the Fourier transform of the measure P with respect to the ξ

variables. Beginning with Mp, we have

M̂p(x) =
∫

ei
∑

xjξj dMp(λ) = e−i
∑√

Npj xj

∫
ei

∑
xjλj/

√
Npj dMp(λ)

= e−i
∑√

Npj xj

(∑
pj eixj/

√
Npj

)N

,

since Mp is the multinomial distribution. An easy computation gives

M̂p(x) =

(
1 +

i√
N

Q(x) + O
( 1

N

))
e−

1
2

∑
x2

j+ 1
2 (

∑√
p

j
xj)

2

,

where Q(x) is a homogeneous polynomial of degree three. (In particular the limit
of Mp is the inverse Fourier transform of the exponential in the above formula,
which equals (3–7).)

As for the other nonconstant factors in (3–11), we have

k−1∏

i=1

k−1∏

j=i

(λi + k − j) =
k−1∏

i=1

(
Npi +

√
Npiξi + O(1)

)k−i

= Nk(k−1)/2
k−1∏

i=1

pk−i
i

(
1 +

1√
N

k−1∑

i=1

(k − i)
ξi√
pi

+ O
( 1

N

))

and

∆(h) =
∏

i<j

(
N(pi − pj) +

√
N(
√

piξi −√pjξj) + O(1)
)

= Nk(k−1)/2∆(p)

(
1 +

1√
N

∑

i<j

√
p

i
ξi −√p

j
ξj

pi − pj
+ O

( 1
N

))
.
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Thus the factors in (3–11) aside from Mp contribute

1 +
1√
N

(∑

i<j

√
p

i
ξi −√p

j
ξj

pi − pj
−

∑

i<j

ξi√
p

i

)
+ O

( 1
N

)

= 1 +
1√
N

(∑

i<j

√
pj

pi

√
p

j
ξi −√p

i
ξj

pi − pj

)
+ O

( 1
N

)
.

Using the fact that multiplication by ξj corresponds, after taking Fourier
transforms, to −i∂xj

and combining this with the preceding we deduce that
P̂ (x), the Fourier transform of P (λ) with respect to the ξ variables, equals
(

1+
i√
N

∑

i<j

√
pj

pi

√
p

j
xi −√p

i
xj

pi − pj
+

i√
N

Q(x)+O
( 1

N

))
e−

1
2

∑
x2

j+ 1
2 (

∑√
p

j
xj)

2

plus a correction which is exponentially small in N .

The Mean. We have

E(ξ1) =
∫

ξ1 dP (λ) = −i ∂x1 P̂ (x)
∣∣
x=0

.

From the preceding discussion we see that this equals

1√
Np1

∑

j>1

pj

p1 − pj
+ O

( 1
N

)
.

Hence

E(lN ) = E(λ1) = Np1 +
∑

j>1

pj

p1 − pj
+ O

( 1√
N

)
, N →∞. (3–12)

This last formula is, in fact, an accurate approximation for E(lN ) (for distinct
pi) for moderate values of N . Table 1 summarizes various simulations of lN and
compares the means of these simulated values with the asymptotic formula. We
remark that even though the proof assumed distinct pi, we expect the asymptotic
formula to remain valid for p1 > p2 ≥ · · · ≥ pk. (See the last set of simulations
in Table 1.)

The Variance. We write our approximation as P = P0 + N−1/2P1 + O(N−1)
with corresponding expected values E = E0 + N−1/2E1 + O(N−1). (In fact P1

is a distribution, not a measure, but the meaning is clear.) Then the variance of
λ1 is equal to

Np1

(
E(ξ2

1)− E(ξ1)2
)

= Np1

(
E0(ξ2

1)− E0(ξ1)2 +
1√
N

E1(ξ2
1)− 2√

N
E0(ξ1) E1(ξ1) + O

( 1
N

))
.

Of course E0(ξ1) = 0, but also

E1(ξ2
1) = −∂ 2

x1, x1
P̂ 1(x)

∣∣
x=0

= 0.
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k
Probabilities

N NS Mean E(lN )
of {1, . . . , k}

2
{

5
7 , 2

7

}
50 20 000 36.37 36.38

100 20 000 72.12 72.10
500 20 000 357.73 357.81

2
{

6
11 , 5

11

}
50 20 000 30.54 32.27

100 20 000 58.52 59.55
200 20 000 113.71 114.09
400 20 000 223.16 223.18

3
{

1
2 , 5

14 , 1
7

}
50 10 000 27.53 27.90

100 10 000 52.79 52.90
500 10 000 252.80 252.90

1000 10 000 502.78 502.90

3
{

3
8 , 1

3 , 7
24

}
50 10 000 23.96 30.25

100 10 000 44.33 49.00
500 10 000 197.65 199.00

1000 2 000 386.08 386.50

3
{

3
8 , 5

16 , 5
16

}
50 10 000 23.92 28.75

100 10 000 44.16 47.50
200 10 000 83.15 85.00
400 10 000 159.30 160.00
800 10 000 310.08 310.00

Table 1. Simulations of the length of the longest weakly increasing subsequence

in inhomogeneous random words of length N for two- and three-letter alphabets.

NS is the sample size. The last column gives the asymptotic expected value

(3–12).

Since E0(ξ2
1)− E0(ξ1)2 = 1− p1, we find that the variance of λ1 equals

Np1(1− p1) + O(1)

and so its standard deviation equals
√

Np1(1− p1) + O(N−1/2).
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