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Abstract

This paper connects the analysis of the length of the longest weakly increasing subsequence of inhomogeneous random
words to a Riemnn-Hilbert problem and an associated system of integrable partial differential equations. In particular, we
show that the Poissonization of the distribution function of this length can be identified as the Jimbo-Miwa-Ueno tau function.
© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

This paper, a continuation of [16], connects the analysis of the length of the longest weakly increasing subsequence
of inhomogeneous random words to a Riemann–Hilbert problem and an associated system of integrable PDEs. That
such a connection exists is not so surprising given the fundamental work of Baik, Deift and Johansson [3] connecting
the related problem involving random permutations to a Riemann–Hilbert problem. For the reader’s convenience
we first summarize some of the results of [16] before presenting our new results.

A word is a string of symbols, called letters, which belong to an ordered alphabet A of fixed size k. The set
of all such words of length N , W(A, N), forms the sample space in our statistical analysis. We equip the space
W(A, N) with a natural inhomogeneous measure by assigning to each letter i ∈ A a probability pi and defining
the probability measure on words by the product measure. We also order the pi so that

p1 ≥ p2 ≥ · · · ≥ pk

and decompose our alphabet A into subsets A1,A2, . . . ,AM , M ≤ k, such that pi = pj if and only if i and j

belong to the same Aα .
Let

w = α1α2 · · ·αN ∈W, αi ∈ A,

be a word. A weakly increasing subsequence of the word w is a subsequence αi1αi2 · · ·αim such that i1 < i2 < · · · <
im and αi1 ≤ αi2 ≤ · · · ≤ αim . The positive integer m is called the length of this weakly increasing subsequence.
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For each word w ∈ W we define �N(w) to equal the length of the longest weakly increasing subsequence in w. 1

The function

�N :W(A, N) �→ R

is the principal random variable in our analysis, and the corresponding distribution function,

FN(n) := Prob(�N(w) ≤ n),

is our principal object. (Prob is the inhomogeneous measure on random words; it depends upon N and the proba-
bilities pi .)

To formulate the basic result of [16], define

kα = |Aα|,
where

A =
M⋃

α=1

Aα

is the decomposition of the alphabet A introduced above, then

lim
N→∞

Prob

(
�N − Np1√

Np1
≤ s

)
= (2π)−(k−1)/2

∏
α

(1!2! · · · (kα − 1)!)−1

×
∫

· · ·
∫

ξi ∈ Ξ

ξ1 ≤ s

∏
α

�α(ξ)
2 e−∑ ξ2

i /2δ
(∑√

piξi

)
dξ1 · · · dξk,

where �α(ξ) is the Vandermonde determinant of those ξi with i ∈ Aα , and Ξ denotes the set of those ξi that
ξi+1 ≤ ξi whenever i and i + 1 belong to the same Aα .

This result has the following random matrix interpretation. The limiting distribution function (as N → ∞) for the
appropriately centered and normalized random variable �N is related to the distribution function for the eigenvalues
ξi in the direct sum of mutually independent kα × kα Gaussian unitary ensembles, 2 conditional on the eigenvalues
ξi satisfying

∑√
piξi = 0. In the case when one letter occurs with greater probability than the others, this result

implies that the limiting distribution of (�N −Np1)/
√

N is Gaussian with variance equal to p1(1 −p1). In the case
when all the probabilities are distinct, we proved the refined asymptotic result

E(�N) = Np1 +
∑
j>1

pj

p1 − pj

+ O

(
1√
N

)
, N → ∞.

The derivation of the above asymptotic formulae follows from a direct asymptotic analysis of the right-hand side
of the basic combinatorial equation,

Prob(�N(w) ≤ n) =
∑
λ�N
λ1≤n

sλ(p)f λ.

Here λ � N denotes a partition of N , sλ(p) is the Schur function of shape λ evaluated at p := (p1, p2, . . . , pk,

0, 0, . . . ), and f λ equals the number of standard Young tableaux of shape λ, see, e.g. [27]. After [16] was written,

1 There may be many subsequences of w that have the identical length �N (w).
2 A basic reference for random matrices is Mehta’s book [23].
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Stanley [28] showed that the measure Prob({λ}) := sλ(p)f λ also underlies the analysis of certain (generalized)
riffle shuffles of Bayer and Diaconis [5]. Stanley relates this measure to quasisymmetric functions and does not
require that p have finite support. (Many of our results generalize to the case when p does not have finite support,
but we do not consider this here.) The measure considered here and in [28] is a specialization of the Schur measure
Prob({λ}) := sλ(x)sλ(y) [25]. For the Schur measure, Okounkov [25] has shown that the associated correlation
functions satisfy an infinite hierarchy of PDEs; namely, the Toda lattice hierarchy of Ueno and Takasaki [32]. Similar
results were also obtained by Adler and van Moerbeke [1,33].

Gessel’s theorem [13] (see also [16,30]) implies that the (exponential) generating function of Prob(�N ≤ n) is a
Toeplitz determinant 3

GI (n; {pi}, t) :=
∞∑

N=0

Prob(�N(w) ≤ n)
tN

N !
= Dn(fI ), (1.1)

where

fI (z) = et/z
k∏

j=1

(1 + pjz).

Probabilistically, GI (n; {pi}, t) is the Poissonization of �N . Similar Poissonizations have proved crucial in the
analysis of the length of the longest increasing subsequences in random permutations [2,3,20] (see also [21,22,30]
and references therein).

In the present paper we use (1.1) to express GI (n; {pi}, t) in terms of the solution of a certain integrable system of
nonlinear PDEs. Indeed, we show that GI (n; {pi}, t) can be identified as the Jimbo–Miwa–Ueno [18,19] τ -function
corresponding to the (generalized) Schlesinger isomonodromy deformation equations of the 2 × 2 matrix linear
ODE which has M + 1 simple poles in the finite complex plane and one Poincaré index 1 irregular singular point
at infinity. Recall that the number M is the total number of the subsets Aα ⊂ A. The poles are located at 0 and
−piα (iα = maxAα). The integers kα appear as the formal monodromy exponents at the respective points −piα .
We also evaluate the remaining monodromy data and formulate a 2 × 2 matrix Riemann–Hilbert problem which
provides yet another analytic representation for the function GI (n; {pi}, t). Similar to the problems considered in
[3,6], the Riemann–Hilbert representation of GI (n; {pi}, t) can be used for the further asymptotic analysis of the
random variable �N(w) via the Deift and Zhou [11] method. In the homogeneous case, i.e. when M = 1, the system
of Schlesinger equations we obtain reduces to a special case of Painlevé V equation. This result was obtained earlier
in [30]. The exact formulation of the results indicated above is presented in Theorem 1 in Section 4.

Our derivation of the differential equations for the function GI (n; {pi}, t) follows a scheme well known in soliton
theory (see e.g. [24]) called the Zakharov–Shabat dressing method. We are able to apply this scheme since there
exists a matrix Riemann–Hilbert problem associated to any Toeplitz determinant as was shown by Deift [10]. For
the reader’s convenience this is derived in Section 2.

The basic idea of the Riemann–Hilbert approach to Toeplitz determinants suggested in [10] is a representation
of a Toeplitz determinant Dn(φ) as a Fredholm determinant of an integral operator acting on L2(C), C = unit
circle, and belonging to a special integrable class which admits a Riemann–Hilbert representation [15]. Borodin and
Okounkov [8] (see also [4] for a simplified derivation and [22,9] for a particular case of φ) found a different Fredholm
determinant representation for Dn(φ). The Fredholm operator in this representation acts on l2({n, n+1, . . . }) which
makes the representation quite suitable for the analysis of the large n asymptotics of Dn(φ) (see [9,21,22]). Borodin

3 If φ is a function on the unit circle with Fourier coefficients φj := 1/2π
∫ π

−π
e−ijθ φ(eiθ ) dθ then Tn(φ) denotes the Toeplitz matrix

(φi−j )i,j=0,1,...,n−1 and Dn(φ) its determinant.
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[7] subsequently observed that the discrete Fredholm representation of [8] involves a discrete analog of the integrable
kernels and can be supplemented by a discrete analog of the Riemann–Hilbert problem. (This is similar to the pure
soliton constructions in the theory of integrable PDEs [24].)

We conclude this introduction by noting that our derivation of integrable PDEs for the Toeplitz determinant
Dn(fI ) can be applied to any Toeplitz determinant whose symbol φ satisfies the condition,

d

dz
log φ(z) = rational function of z.

This is one place where the finite support of p is crucial. It is an interesting open problem, particularly in light of
[28], to remove this restriction.

2. Fredholm determinant representation of the Toeplitz determinant and the Riemann–Hilbert problem

Let φ(z) be a continuous function on the unit circle C = {|z| = 1} oriented in the counterclockwise direction.
Let n ∈ N and denote by Kn(φ) the integral operator acting on L2(C) with kernel

Kn(z, z
′) = zn(z′)−n − 1

z − z′
1 − φ(z′)

2π i
. (2.1)

It was shown in [10] that

Dn(φ) = det(1 − Kn(φ)), (2.2)

where the determinant on the right is a Fredholm determinant taken in L2(C). (Note that Kn(z, z
′) has no singularity

at z = z′.) Eq. (2.2) follows from the “geometric sum form” of the kernel Kn,

Kn(z, z
′) =

n−1∑
k=0

zk
1 − φ(z′)

2π i
(z′)−k−1,

which shows that the Toeplitz matrix Tn(φ) is essentially the matrix representation of the operator 1 −Kn(φ) in the
basis {zk}−∞<k<∞. (For more details see [10].)

The integral operator Kn(φ) belongs to the class of integrable Fredholm operators [10,15,31], i.e., its kernel is
of the form

Kn(z, z
′) = f T(z)g(z′)

z − z′ ,

where

f (z) = (f1, f2)
T = (zn, 1)T (2.3)

and

g(z) = (g1, g2)
T = (z−n,−1)T 1 − φ(z)

2π i
. (2.4)

We require, so that there is no singularity on the diagonal of the kernel,

f T(z)g(z) = 0. (2.5)
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An important property of these operators is that the resolvent Rn = (1 − K)−1 − 1 also belongs to the same class
(see again [10,15,31]). Precisely,

Rn(z, z
′) = F T(z)G(z′)

z − z′ , (2.6)

where

Fj = (1 − Kn)
−1fj , Gj = (1 − KT

n )−1gj , j = 1, 2.

The vector functions F and G can be in turn computed in terms of a certain matrix Riemann–Hilbert problem
[15]. Indeed, let us define (cf. [10,15]) the 2 × 2 matrix valued function

Y (z) = I −
∫
C

F(z′)gT(z′)
dz′

z′ − z
, z /∈ C. (2.7)

Let Y±(z) denote the boundary values of the function Y (z) on the contour C,

Y±(z) = lim
z′→z

z′∈±side

Y+(z′).

From (2.7) it follows that

Y+(z) − Y−(z) = −2π iF(z)gT(z) (2.8)

and hence (recall (2.5))

Y+(z)f (z) = Y−(z)f (z).

Using this, the matrix identity

F(z′)gT(z′)f (z) = f T(z)g(z′)F (z′) (associativity of the matrix product)

and (2.7), we have

Y±(z)f (z) = f (z) −
∫
C

f T(z)g(z′)F (z′)
dz′

z′ − z
= f (z) +

∫
C

K(z, z′)F (z′) dz′.

From the definition of F it follows that

F(z) = Y±(z)f (z). (2.9)

This and (2.8) imply the jump equation,

Y−(z) = Y+(z)(I + 2π if T(z)g(z)), z ∈ C. (2.10)

This equation, supplemented by the obvious analytic properties of the Cauchy integral in (2.7), shows that the
function Y (z) solves the following 2 × 2 matrix Riemann–Hilbert problem:

• Y (z) is holomorphic for all z /∈ C,
• Y (∞) = I ,
• Y−(z) = Y+(z)H(z), z ∈ C,
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where the jump matrix H is

H(z) = I + 2π if T(z)g(z), (2.11)

H(z) =
(

2 − φ(z) (φ(z) − 1)zn

(1 − φ(z))z−n φ(z)

)
. (2.12)

These analytic properties determine Y uniquely. To see this, we first observe that det H(z) ≡ 1 implies that the
scalar function det Y (z) has no jump on C; hence, it is holomorphic and bounded on the whole complex plane.
This together with the normalization condition at z = ∞ implies that det Y (z) ≡ 1. Suppose that Ỹ (z) is another
solution. Since both the functions Ỹ (z) and Y (z) satisfy the same jump condition across the contour C, the matrix
ratio Ỹ (z)Y−1(z) has no jump across C. This means that Ỹ (z)Y−1(z) ≡ constant, and from the condition at z = ∞
we actually have that Ỹ (z)Y−1(z) ≡ I . The uniqueness now follows.

Since Y is the unique solution of the Riemann–Hilbert problem, one can now reconstruct the resolvent R using
(2.9) and the similarly derived identity

G(z) = (Y T
±)−1(z)g(z) (2.13)

for G. We shall refer to this Riemann–Hilbert problem as the Y -RH problem.
Following [10] theY -RH problem can be transformed to an equivalent Riemann–Hilbert problem which is directly

connected with the polynomials on the circle C orthogonal with respect to the (generally complex) weight φ(eiθ ).
To this end we first note that since the entries of f are polynomials in z, (2.9) implies that F is an entire function
of z. Since Y (z) → I as z → ∞, it follows in fact that F is polynomial,

F(z) =
(

Pn(z)

Qn−1(z)

)
, Pn(z) = zn + · · · , Qn−1(z) = qn−1z

n−1 + · · · (2.14)

for some constant qn−1. On the other hand, denoting by Yj the j th column of the matrix Y , we obtain from the jump
equation (2.10) (or, more precisely, from the equation Y+ = Y−H−1) that

Y1+(z) = Y−(z)

(
φ(z)

(φ(z) − 1)z−n

)
= −z−nY−(z)

(
0
1

)
+ φ(z)z−nY−(z)

(
zn

1

)
= −z−nY2−(z) + φ(z)z−nY−(z)f (z)

= −z−nY2−(z) + φ(z)z−nF (z). (2.15)

Define

J (z) =
{−Y1(z), |z| < 1,

z−nY2(z), |z| > 1,

and consider the 2 × 2 matrix function

Z(z) = σ3(F (z), J (z))σ3, σ3 =
(

1 0

0 −1

)
. (2.16)

The function Z is analytic outside of C, and it has the following asymptotic behavior as z → ∞:

Z(z) =
(
I + O

(
1

z

))(
zn 0

0 z−n

)
. (2.17)
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For the jump relation on the contour C we have from (2.15),

Z+(z) = σ3(F (z),−Y1+(z))σ3

= σ3(F (z), z−nY2−(z) − φ(z)z−nF (z))σ3 = σ3(F (z), z−nY2−(z))

(
1 −φ(z)z−n

0 1

)
σ3

= σ3(F (z), z−nY2−(z))σ3σ3

(
1 −φ(z)z−n

0 1

)
σ3 = Z−(z)

(
1 φ(z)z−n

0 1

)
.

Summarizing the analytic properties of Z we conclude that it solves the following Riemann–Hilbert problem:

• Z is holomorphic for all z /∈ C,
• Z(z)z−nσ3 → I, z → ∞,
• Z+(z) = Z−(z)S(z), z ∈ C,

where the jump matrix S(z) is

S(z) =
(

1 z−nφ(z)

0 1

)
. (2.18)

We shall refer to this Riemann–Hilbert problem as Z-RH problem. As in the Y -RH problem, the solution of the
Z-RH problem is unique. Indeed, assuming that Z̃ is another solution, we introduce the matrix ratio X := Z̃Z−1.
By the same reasoning as in the case of the Y -RH problem, we conclude that X is entire. Since

X(z) = (Z̃(z)z−nσ3)(znσ3Z−1(z)) → I as z → ∞,

it follows that X ≡ I and hence, that Z is unique. We note that Y (and hence the resolvent R) can be reconstructed
from Z using (2.16). It also should be pointed out that the existence of the solution of the Z-RH problem (as well
as of the Y -RH problem) is equivalent to the nondegeneracy of the Toeplitz matrix Tn(φ), i.e. to the inequality

Dn(φ) �= 0,

which we always assume.

Remark. There is a more direct and elegant way to pass to the Z-RH problem which was pointed out by the referee
of this paper. One first notes that the jump matrix H admits the factorization,

H(z) =
(

zn −1

1 0

)(
1 z−nφ(z)

0 1

)(
z−n 0

−1 zn

)
,

which then suggests the definition

Ỹ (z) =




Y (z)

(
zn −1

1 0

)
, |z| < 1,

Y (z)

(
zn 0

1 z−n

)
≡ Y (z)

(
1 0

z−n 1

)
znσ3 , |z| > 1,

(2.19)

so that the function Ỹ would satisfy the Riemann–Hilbert problem,

• Ỹ is holomorphic for all z /∈ C,
• Ỹ (z)z−nσ3 → I, z → ∞,
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• Ỹ−(z) = Ỹ+(z)

(
1 z−nφ(z)

0 1

)
, z ∈ C.

The function Z(z) is related to Ỹ (z) by

Z(z) = σ3Ỹ (z)σ3. (2.20)

We conclude this section by summarizing the relation of the Z-RH problem to the orthogonal polynomials on C

with respect to the (generally complex) weightφ. This relation is due to Deift [3] (see also [10]). 4 Let {Pk(z)}k=0,1,...

denote the system of the monic polynomials defined by

Pk(z) = zk + · · · ,

∫
C

Pn(z)P̄m(z)φ(z)
dz

iz
= hnδnm, n ≥ m,

where bar denotes complex conjugation. Similarly, introduce a second system of polynomials, {P ∗
k (z)}k=0,1,..., by

replacing φ with φ̄ in the definition of Pn. Suppose now that

Dk(φ) �= 0, k = 1, . . . , n + 1. (2.21)

Then (see [29]) both the sets of polynomials {Pk}k=0,1,...,n and {P ∗
k }k=0,1,...,n exist, and the normalization constants

hk and h∗
k , k = 1, . . . , n, are all nonzero. In fact, we have the explicit representations

Pn(z) = Dn+1(φ|z)
Dn(φ)

, hn = 2π
Dn+1(φ)

Dn(φ)
, P ∗

n (z) = Dn+1(φ̄|z)
Dn(φ̄)

, h∗
n = 2π

Dn+1(φ̄)

Dn(φ̄)
, (2.22)

where Dn+1(φ|z) denotes the Toeplitz determinant Dn+1(φ) whose last row is replaced by the row (1, z, z2, . . . , zn).
If we define

Qk = −2π

h̄∗
k

P̄ ∗
k

(
1

z̄

)
zk, (2.23)

and

Z(z) =




Pn(z)
1

2π i

∫
C

Pn(z
′)(z′)−nφ(z′)

dz′

z′ − z

Qn−1(z)
1

2π i

∫
C

Qn−1(z
′)(z′)−nφ(z′)

dz′

z′ − z


 , (2.24)

then it is a calculation to show that this Z defines a (unique) solution of the Z-RH problem (cf. [3,6,12]). Indeed, the
analyticity in C \C and the jump condition follow from the basic properties of Cauchy integral, and the asymptotic
condition at z = ∞ is equivalent to the fact that the polynomials Pn and P ∗

n−1 are monic orthogonal polynomials
with the weights φ(z) dz and φ̄(z) dz, respectively.

4 The Z-RH problem is the analog for polynomials on the circle of the Riemann–Hilbert problem derived in [12] for polynomials which are
orthogonal with respect to an exponential weight on the line (see also [6]).
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3. Toeplitz determinants as integrable systems

3.1. Universal recursion relation

In this section φ will be an arbitrary continuous function with Fourier coefficients φj . We assume that the
associated Toeplitz matrix Tn(φ) is invertible. Then the corresponding matrix RH problem is uniquely solvable,
and the following equation connects the Toeplitz determinant Dn(φ) with the solution Z of the Riemann–Hilbert
problem,

Dn+1

Dn

= Z12(0), (3.1)

where Zij, i, j = 1, 2, denotes the entries of matrix Z. Indeed, using (2.22) we have that

Dn+1

Dn

= 1

2π
hn,

On the other hand, (2.24) gives

Z12(0) = 1

2π
hn,

and (3.1) follows.

Remark. One can prove (3.1) using only the connection with the integrable operator Kn(φ) introduced in (2.1).
To see this first note

Kn+1(z, z
′) = (z/z′)n+1 − 1

z − z′
1 − φ(z′)

2π i
= 1

z′

n∑
k=0

(
z

z′

)k 1 − φ(z′)
2π i

= Kn(z, z
′) + f1(z)g1(z

′)
1

z′ ,

where f and g are defined in (2.3) and (2.4), respectively. Attaching to the functions f , g superscript “n” to denote
their n dependence, we can rewrite the last equation as an operator equation

Kn+1 = Kn + f n
1 ⊗ gn+1

1 , (3.2)

where the symbol a ⊗ b denotes the integral operator with kernel a(z)b(z′). Recalling the definition of F , (2.6), it
follows from (3.2) (cf. [15,31]) that

det(1 − Kn+1) = det(1 − Kn)det(1 − [(1 − Kn)
−1f n

1 ] ⊗ gn+1
1 ) = det(1 − Kn)det(1 − Fn

1 ⊗ gn+1
1 )

= det(1 − Kn)(1 − trace Fn
1 ⊗ gn+1

1 ) = det(1 − Kn)

(
1 −

∫
C

F1(z)g1(z)
dz

z

)
,

where F1 := Fn
1 and g1 := gn

1 . Thus (see also (2.2))

Dn+1

Dn

= det Kn+1

det Kn

= 1 −
∫
C

F1(z)g1(z)
dz

z
. (3.3)

Recalling (2.7), we rewrite (3.3) as

Dn+1

Dn

= Y11(0),

which together with (2.16) yields (3.1).
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3.2. Differentiation formulae

Here we restrict to the symbol

φ(z) = etz
M∏

α=1

(
z − rα

z

)kα

, (3.4)

where rα := −piα , and we recall (see Section 1) that iα = maxAα , kα = |Aα|, and

A =
M⋃

α=1

Aα

is the decomposition of the alphabetA into subsetsA1,A2, . . . ,AM such that pi = pj if and only if i and j belong
the same Aα . We also recall that

M∑
α=1

kα = k,

and

1 > p1 ≥ p2 ≥ · · · ≥ pk > 0,
k∑

j=1

pj = 1 (3.5)

denote the probabilities assigned to the letters i = 1, 2, . . . , k, in the alphabet A. Note that from the probabilistic
conditions (3.5) it follows that

−1 < rα < 0, α = 1, . . . ,M, rα �= rβ, α �= β, (3.6)

and

M∑
α=1

kαrα = −1. (3.7)

The symbols fI and φ are related by

fI (z) = φ

(
1

z

)
,

and therefore; the corresponding Toeplitz matrices are mutually transpose. Thus

GI (n; {pi}, t) = Dn(φ).

In what follows, we will write Tn(t), Kn(t) and Dn(t) for Tn(φ), Kn(φ) and Dn(φ), respectively, or Tn({pi}, t),
Kn({pi}, t) and Dn({pi}, t) if the dependence on p1, . . . , pk is of interest.

We shall derive the differential formulae for the Toeplitz determinant Dn(t) with respect to the variables t and
rα, α = 1, . . . ,M assuming that the latter are subject to restriction (3.6) only, i.e. we will only assume that

−1 < rα < 0, α = 1, . . . ,M, rα �= rβ, α �= β.

The integers kα will be kept constant. This means that when vary the points rα we do not assume restriction (3.7)
to hold. We will begin with the t-derivative.
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Since ∂φ/∂t = zφ,

∂

∂t
Kn(z, z

′) = (z/z′)n−1

z − z′ (−z′)
φ(z′)
2π i

= 1−φ(z′)
2π i

+ z
(z/z′)n−1 − 1

z − z′
1 − φ(z′)

2π i
− (z/z′)n − 1

z − z′
z′

2π i
. (3.8)

Let Λ be the integral operator with the kernel

Λ(z, z′) = (z/z′)n − 1

z − z′
z′

2π i
.

Consider the operator product ΛKn:

(ΛKn)(z, z
′) = 1 − φ(z′)

2π i

∫
C

(z/w)n − 1

z − w
w

(w/z′)n − 1

w − z′
dw

2π i
= 1 − φ(z′)

2π i

∫
C

n−1∑
j,l=0

( z

w

)l (w

z′

)j

(z′)−1 dw

2π i

= 1 − φ(z′)
2π i

∑
j−l=−1

zl(z′)−j−1 = 1 − φ(z′)
2π i

n−2∑
j=0

zj+1(z′)−j−1 = 1 − φ(z′)
2π i

z
(z/z′)n−1 − 1

z − z′ .

Recalling the definitions of f and g, (2.3) and (2.4), (3.8) can be written compactly as

∂

∂t
Kn = −f2 ⊗ g2 − Λ(1 − Kn). (3.9)

From this formula we see that (cf. the derivation of (3.3))

∂

∂t
log Dn(t) = −trace

(
(1 − Kn)

−1 ∂

∂t
Kn

)
= trace F2 ⊗ g2 + trace Λ =

∫
C

F2(z)g2(z) dz, (3.10)

where we used the fact that

trace Λ = n

2π i

∫
C

dz = 0.

Recalling (2.7) we convert (3.10) into the identity

∂

∂t
log Dn(t) = −resz=∞(Y22(z)),

which in terms of the Z-function is

∂

∂t
log Dn(t) = −resz=∞(znZ22(z)),

or equivalently,

∂

∂t
log Dn(t) = (Γ1)22, (3.11)

where the matrix Γ1 = Γ1({pi}, t) is defined by the expansion,

Z(z) =

I +

∞∑
j=1

Γj

zj


 znσ3 , |z| > 1. (3.12)

Remark. In the basis {zn}∞n=−∞, (3.9) coincides with (3.22) of [30].
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Eq. (3.11) is the t-differentiation formula, i.e. it gives an expression of the t-derivative of log Dn in terms of the
solution Z of the Riemann–Hilbert problem. We shall proceed now with the derivation of the rα-differentiation
formula. Since (we recall that rα are assumed independent and that the kα are kept constant)

∂

∂rα
φ = − kα

z − rα
φ,

the rα-analog of (3.8) reads

∂

∂rα
Kn(z, z

′) = kα
(z/z′)n − 1

z − z′
1

z′ − rα

φ(z′)
2π i

= kα

2π i

(z/z′)n − 1

z − z′
1

z′ − rα
− kα

(z/z′)n − 1

z − z′
1

z′ − rα

1 − φ(z′)
2π i

.

(3.13)

Introducing the integral operator Λα with the kernel,

Λα(z, z
′) = kα

2π i

(z/z′)n − 1

z − z′
1

z′ − rα
,

we consider again the operator product ΛαKn. The residue type calculations, similar to the ones used in the t-case,
yield the equation

(ΛαKn)(z, z
′) = kα

2π i
(1 − φ(z′))

[
(z/z′)n − 1

(z′ − z)(rα − z)
+ (rα/z

′)n − 1

(rα − z)(rα − z′)

]
,

which in turn implies that (3.13) can be rewritten as

∂

∂rα
Kn(z, z

′) = kα

2π i

1 − φ(z′)
(rα − z)(rα − z′)

[(
rα

z′

)n

−
(

z

z′

)n]
+ [Λα(1 − Kn)](z, z

′).

With the help of the vector functions,

f̃ (z) := 1

z − rα
f (z), g̃(z) := 1

z − rα
g(z),

the last equation can be transformed into the following compact form (cf. (3.9)):

∂

∂rα
Kn = kαr

n
α f̃2 ⊗ g̃1 − kαf̃1 ⊗ g̃1 + Λα(1 − Kn). (3.14)

Let the vector function F̃ (z) = (F̃1(z), F̃2(z))
T be defined by the equation

F̃j := (1 − Kn)
−1f̃j , j = 1, 2.

We observe that

F̃ (z) = 1

z − rα
Y−1(rα)F (z), (3.15)

where the matrix function Y (z) is the solution of the Y -RH problem corresponding to Dn(t). Indeed by the definition
of the vector function F(z) (see (2.6)) its component Fj (z) satisfies the integral equation,

Fj (z) −
∫
C

Kn(z, z
′)Fj (z

′) dz′ = fj (z). (3.16)

Dividing both sides of this equation by (z − rα), using the formula

Kn(z, z
′) = f T(z)g(z′)

z − z′ ,
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and simple algebra, we can rewrite (3.16) as an equation for the ratio Fj/(z − rα):[
Fj (z)

z − rα

]
−
∫
C

Kn(z, z
′)
[
Fj (z

′)
z′ − rα

]
dz′ +

∫
C

f̃ T(z)g(z′)
[
Fj (z

′)
z′ − rα

]
dz′ = f̃j (z).

By applying the operator (1 − Kn)
−1 to the both sides of this equation it can be transformed into the relation,[

Fj (z)

z − rα

]
+
∫
C

F̃ T(z)g(z′)
[
Fj (z

′)
z′ − rα

]
dz′ = F̃j (z),

or

1

z − rα
Fj (z) +

2∑
i=1

F̃i(z)

∫
C

gi(z
′)Fj (z

′)
dz′

z′ − rα
= F̃j (z).

The last equation in turn can be viewed as the linear algebraic system for the vector F̃ (z),

F̃j (z) −
2∑

i=1

AjiF̃i(z) = 1

z − rα
Fj (z), j = 1, 2, (3.17)

where the matrix A is given by the formula,

Aji =
∫
C

Fj (z
′)gi(z

′)
dz′

z′ − rα
.

Eq. (3.15) follows directly from (3.17) in virtue of definition (2.7) of the matrix function Y (z).
We now able to finish the derivation of the rα-differentiation formula for the Toeplitz determinant Dn(t). In fact

from (3.14) it follows that (cf. the derivation of (3.10))

∂

∂rα
log Dn(t) = −trace

(
(1 − Kn)

−1 ∂

∂rα
Kn

)
= −kαr

n
α trace F̃2 ⊗ g̃1 + kα trace F̃1 ⊗ g̃1 − trace Λα

= −kαr
n
α

∫
C

F̃2(z)g1(z)
dz

z − rα
+ kα

∫
C

F̃1(z)g1(z)
dz

z − rα
, (3.18)

where, similar to the t-derivative case, we used the fact that

trace Λα = nkα
2π i

∫
C

dz

z(z − rα)
= 0.

Using now (3.15) and the fact that det Y (z) ≡ 1 we derive from (3.18) that

∂

∂rα
log Dn(t) = kαr

n
αY21(rα)

∫
C

F1(z)g1(z)
dz

(z − rα)2
− kαr

n
αY11(rα)

∫
C

F2(z)g1(z)
dz

(z − rα)2

+kαY22(rα)

∫
C

F1(z)g1(z)
dz

(z − rα)2
− kαY12(rα)

∫
C

F2(z)g1(z)
dz

(z − rα)2
,

or

∂

∂rα
log Dn(t) = −kαr

n
αY21(rα)Y

′
11(rα) + kαr

n
αY11(rα)Y

′
21(rα) − kαY22(rα)Y

′
11(rα) + kαY12(rα)Y

′
21(rα),

(3.19)

where we use the notation,

Y ′
ij(rα) := ∂Yij(z)

∂z

∣∣∣∣
z=rα

, i, j = 1, 2.
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Eq. (3.19) can be also rewritten as

∂

∂rα
log Dn(t) = −kα(r

n
αY21(rα) + Y22(rα))Y

′
11(rα) + kα(r

n
αY11(rα) + Y12(rα))Y

′
21(rα), (3.20)

which in turn can be transformed into an expression of the ∂log Dn(t)/∂rα in terms of the Z-function. Indeed
recalling formulae (2.3), (2.9) and (2.16), we see that inside the unit circle C the following equation takes place:

Z(z) =
(

znY11(z) + Y12(z) Y11(z)

−znY21(z) − Y22(z) −Y21(z)

)
, |z| < 1,

so that (3.20) can be converted into the rα-differentiation formula,

∂

∂rα
log Dn(t) = −kα(Z11(rα)Z

′
22(rα) − Z21(rα)Z

′
12(rα)). (3.21)

3.3. Schlesinger equations

In this section we show that Dn(t) is the Jimbo–Miwa–Ueno τ -function of the generalized Schlesinger system of
nonlinear differential equations describing the isomonodromy deformations of the 2 × 2 matrix linear ODE which
has M + 1 simple poles in the finite complex plane and one Poincaré index 1 irregular singular point at infinity.
We will also evaluate the relevant monodromy data that single out the Dn(t) from all the other solutions of the
Schlesinger system. In the uniform case, when all pi are equal, the system reduces to the particular case of Painlevé
V equation, i.e. we are back to the uniform result of [30].

Define

Φ0(z) = e(tz/2)σ3

(
1 0

0 znψ−1(z)

)
, (3.22)

where

ψ(z) =
M∏

α=1

(
z − rα

z

)kα

. (3.23)

We note that that the product

etzψ(z) := φ(z)

is our symbol, i.e. the function defined in (3.4). We also note that Φ0 is analytic and invertible in C\{0, r1, . . . , rM},
and that it satisfies the linear differential equations

Φ0
z (z) = Ω(z)Φ0(z), (3.24)

Φ0
t (z) = 1

2zσ3Φ
0(z), (3.25)

Φ0
rα
(z) = kα

z − rα

(
0 0
0 1

)
Φ0(z), (3.26)

where Ω is the rational matrix function,

Ω(z) = t

2
σ3 + n + k

z

(
0 0
0 1

)
−

M∑
α=1

kα

z − rα

(
0 0
0 1

)
. (3.27)
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(Subscripts on Φ0 denote differentiation.) Introduce

Φ(z) = Z(z)Φ0(z), (3.28)

where Z is the solution of the Z-RH problem corresponding to our symbol φ, and consider the logarithmic derivative

B(z) := Φz(z)Φ
−1(z). (3.29)

The key observation is that B is continuous across the contour C. Indeed, the Z-jump matrix S (see (2.18)) admits
the following factorization:

S(z) = Φ0(z)

(
1 1
0 1

)
(Φ0(z))−1, (3.30)

so that the Φ-jump matrix does not depend on z. In fact we have

Φ+(z) = Φ−(z)

(
1 1
0 1

)
, z ∈ C. (3.31)

This implies that

B+(z) = B−(z), z ∈ C,

and hence the function B(z) is an analytic function on C \ {0, r1, . . . , rM}. We also recall that the only conditions
which we impose on the points rα are the inequalities (3.6), i.e.,

−1 < rα < 0, α = 1, . . . ,M, rα �= rβ, α �= β. (3.32)

We now calculate the principal part of B at each of its singular points. Since Z is holomorphic and invertible
inside of C, it follows from:

B(z) = Z(z)Ω(z)Z−1(z) + Zz(z)Z
−1(z) (3.33)

that in a neighborhood of z = rα ,

B(z) = − kα

z − rα
Z(rα)

(
0 0
0 1

)
Z−1(rα) +

∞∑
j=0

bα
j (z − rα)

j . (3.34)

Likewise in a neighborhood of z = 0, (3.33) and (3.27) imply that

B(z) = n + k

z
Z(0)

(
0 0
0 1

)
Z−1(0) +

∞∑
j=0

b0
j z

j . (3.35)

Finally, from (3.33) and the Laurent expansion (3.12) we obtain the power series of B at ∞,

B(z) = t

2
σ3 +

∞∑
j=1

b∞
j z−j . (3.36)

Eqs. (3.34),(3.45) and (3.46) imply that B is a rational function,

B(z) = t

2
σ3 + B0

z
+

M∑
α=1

Bα

z − rα
, (3.37)
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with the matrix residues given by

B0 = Z(0)

(
0 0
0 n + k

)
Z−1(0), (3.38)

Bα = −Z(rα)

(
0 0
0 kα

)
Z−1(rα), α = 1, . . . ,M. (3.39)

Thus from (3.29) we conclude that Φ satisfies the linear differential equation,

Φz(z) = B(z)Φ(z), (3.40)

with the coefficient matrix B determined by (3.37)–(3.39).

Remark. In soliton theory (see [24]), the method that we used to derive (3.40) is called Zakharov–Shabat dressing
of the vacuum equation (3.24). We also note that, as is common in the analysis of soliton equations, we have moved
the exponential factor e±z/2 to the asymptotic condition at z = ∞.

Let us now dress the t-vacuum equation (3.25), i.e. consider the t-logarithmic derivative of Φ

V (z) := Φt(z)Φ
−1(z). (3.41)

The Φ-jump matrix (3.31) does not depend on t as well. Hence

V+(z) = V−(z), z ∈ C,

and V is analytic on C \ {0, r1, . . . , rm}. In fact, since

V (z) = Z(z) 1
2 (z)σ3Z

−1(z) + Zt(z)Z
−1(z) (3.42)

(cf. (3.33)) and Z is holomorphic at the points {0, r1, . . . , rM}, we conclude that V is entire. Moreover, from the
expansion (3.12) we have that

V (z) = z

2
σ3 + 1

2
[σ3, Γ1] +

∞∑
j=1

vj z
−j , |z| > 1,

and hence

V (z) = 1
2zσ3 + 1

2 [σ3, Γ1]. (3.43)

([L,M] := LM − ML.)
This in turn yields the t-equation for Φ,

Φt(z) = V (z)Φ(z), (3.44)

where the coefficient matrix V is defined by the equations,

V (z) = 1
2zσ3 + V0, (3.45)

V0 = 1
2 [σ3, Γ1], (3.46)

Γ1 = −resz=∞(Z(z)z−nσ3) (3.47)

(see also (3.12)).



A.R. Its et al. / Physica D 152–153 (2001) 199–224 215

Eqs. (3.40) and (3.44) form an overdetermined system for the function Φ in the variables z and t . From the
compatibility condition,

Φzt = Φtz,

we derive the following equation for the coefficient matrices B and V :

Bt(z) − Vz(z) = [V (z), B(z)], (3.48)

or, taking into account (3.45),

Bt(z) − 1
2σ3 = 1

2z[σ3, B(z)] + [V0, B(z)]. (3.49)

Since this equation is satisfied identically in z, a comparison of the principal parts of both the sides at z =
0, r1, . . . , rM , then leads to the differential relations,

∂Bα

∂t
= [ 1

2 (rα)σ3 + V0, Bα], α = 0, 1, . . . ,M. (3.50)

(It is notationally convenient to define r0 = 0.)
The important point now is that the matrix V0 can be expressed in terms of the matrices Bα , so that relations

(3.50) form a closed system of nonlinear ODEs for the matrix residues Bα . In fact, expanding both sides of (3.33)
in a Laurent series at z = ∞, using (3.12)–(3.37), and equating the terms of order z−1 we have

m∑
α=0

Bα = t

2
[Γ1, σ3] + (n + k)

(
0 0
0 1

)
−

m∑
α=1

kα

(
0 0
0 1

)
+ nσ3

= t

2
[Γ1, σ3] + n

(
0 0
0 1

)
+ nσ3 = t

2
[Γ1, σ3] + n

2
σ3 + n

2
I. (3.51)

Comparing the last equation with (3.46) we obtain

V0 = 1

t

m∑
α=0

Bα − n

2t
σ3 − n

2t
I, (3.52)

so that (3.50) becomes

∂Bα

∂t
= n − trα

2t
[Bα, σ3] +

m∑
γ=0

[Bγ , Bα]

t
, α = 0, 1, . . . ,M. (3.53)

If we vary the points rα , then we obtain M additional linear differential equations for Φ(z) = Φ(z, t, r1, . . . , rM),

Φrα (z) = − Bα

z − rα
Φ(z), α = 1, . . . ,M. (3.54)

Indeed, introducing the rα-logarithmic derivative,

Uα(z) := Φrα (z)Φ
−1(z),

and using exactly the same line of arguments as before, we conclude that Uα is analytic on C \ {0, r1, . . . , rm}.
Simultaneously, the rα-vacuum equation (3.26) implies the identity,

Uα(z) = kα

z − rα
Z(z)

(
0 0
0 1

)
Z−1(z) + Zrα (z)Z

−1(z) (3.55)
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(cf. (3.33) and (3.42)) which indicates that the only singularity of Uα is a simple pole at z = rα with

kα

z − rα
Z(rα)

(
0 0
0 1

)
Z−1(rα) ≡ − Bα

z − rα

(see also (3.39)) as the corresponding principal part. Moreover, taking into account that the asymptotics of Z(z) as
z → ∞ does not depend on rα we conclude that

Uα(z) → 0, z → ∞,

and hence

Uα(z) = − Bα

z − rα
.

Eq. (3.54) now follows.
The compatibility conditions of Eqs. (3.54) with (3.40) lead to the nonlinear r-differential equations for the

matrices Bα = Bα(t, r1, . . . , rM),

∂Bα

∂rγ
= [Bα,Bγ ]

rα − rγ
, α �= γ = 1, . . . ,M, (3.56)

∂B0

∂rα
= [B0, Bα]

r0 − rα
, α = 1, . . . ,M, (3.57)

∂Bα

∂rα
=
∑
γ �=α

[Bγ , Bα]

rγ − rα
, α = 1, . . . ,M, (3.58)

which supplement t-equation (3.53).
The total system ((3.53)–(3.58)) of nonlinear PDEs is the (generalized) system of Schlesinger equations which

describes the isomonodromy deformations (see e.g. [18,19]) of the coefficients of the 2 × 2 system of linear ODEs
having M + 1 regular singularities at the points z = rα , α = 0, . . . ,M and an irregular singular point of Poincaré
index 1 at infinity (see (3.37) and (3.40)),

dΦ(z)

dz
= B(z)Φ(z), B(z) = t

2
σ3 +

M∑
α=0

Bα

z − rα
. (3.59)

The monodromy data of Eq. (3.59) which single out the solution of ((3.53),(3.56),(3.57) and (3.58)), which we
are interested in, coincide, after the proper normalization, with the data of the Z-RH problem. More precisely, let
us denote Φ∞(z) the analytic continuation of Φ(z) from |z| > 1 to the whole complex z-plane. Then, the Z-RH
problem and Eq. (3.28) imply the following representations of the function Φ∞(z) in the neighborhoods of its
singular points:

Φ∞(z) = Φ̂α(z)

(
1 0
0 (z − rα)

−kα

)(
1 −1
0 1

)
, z ∈ Urα , (3.60)

Φ∞(z) = Φ̂0(z)

(
1 0
0 zn+k

)(
1 −1
0 1

)
, z ∈ U0, (3.61)

Φ∞(z) = Φ̂∞(z) e(tz/2)σ3

(
zn 0
0 1

)
, z ∈ U∞, Φ̂∞(∞) = I. (3.62)
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Here Φ̂α(z), Φ̂0(z), and Φ̂∞(z) denote the matrix functions which are holomorphic and invertible in the neighbor-
hoods Urα , U0, and U∞, respectively. Formulae (3.60),(3.61) and (3.62) allow us to identify the diagonal matrices,

Eα =
(

0 0
0 −kα

)
, E0 =

(
0 0
0 n + k

)
, and E∞ =

(−n 0
0 0

)
, (3.63)

as the formal monodromy exponents (cf. [18,19]) of Φ∞(z) at the points rα , 0, and ∞, respectively. The corre-
sponding connection matrices, i.e. the matrices Cα in the representations,

Φ∞(z) = Φ̂α(z)(z − rα)
EαCα, α = 0, . . . ,M,

all are given by

Cα =
(

1 −1
0 1

)
, α = 0, . . . ,M. (3.64)

Since the numbers kα , k, and n are integers, all the monodromy matrices of Φ∞(z) are trivial. There are also
no Stokes’ matrices at the irregular singular point z = ∞ since the asymptotic series (3.12), as a Laurent series,
converges in a disk centered at infinity. Therefore the complete monodromy data of the linear system (3.59) for
our random word problem, consists of (i) (3.63), the formal monodromy exponents at the singular points, and (ii)
(3.64), the corresponding connection matrices.

3.4. Toeplitz determinant as a τ -function

In this section we shall derive the exact formulae for the logarithmic derivatives of the Toeplitz determinant
Dn(t, r1, . . . , rM) in terms of the matrices Bα which, as we saw in the previous section, satisfy the Schlesinger
equations ((3.53)–(3.58)). To this end we will exploit (3.11) and (3.21) whose right-hand sides we will express via
Bα using a technique similar to the one that led to (3.52). We begin with (3.11).

Eq. (3.52) was obtained by expanding both sides of (3.33) about ∞ and then equating the terms of order z−1. Let
us now analyze the terms of order z−2. From (3.27) it follows that

Ω(z) = t

2
σ3 + n

z

(
0 0
0 1

)
− 1

z2

M∑
α=1

rαkα

(
0 0
0 1

)
+ O

(
1

z3

)
:= t

2
σ3 + Ω1

z
+ Ω2

z2
+ O

(
1

z3

)
.

Combining this with expansion (3.12) of Z, we get the following expression for the order z−2 term of the right-hand
side of (3.33):

1
2 t[σ3, Γ1]Γ1 + 1

2 t[Γ2, σ3] + [Γ1,Ω1] + Ω2 − Γ1 + 1
2n[Γ1, σ3].

The order z−2 term of the left-hand side follows directly from (3.37):

M∑
α=1

rαBα.

Equating the two expressions we arrive at

M∑
α=1

rαBα = t

2
[σ3, Γ1]Γ1 + t

2
[Γ2, σ3] + [Γ1,Ω1] + Ω2 − Γ1 + n

2
[Γ1, σ3]. (3.65)
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This equation together with (3.51) determines Γ1 in terms of the matrices Bα . Indeed, (3.51) gives the off diagonal
part of Γ1. Using that for L diagonal

diag[P,L] = 0,

we have from (3.65) that

diag Γ1 = −diag
m∑

α=1

rαBα + t

2
diag([σ3, Γ1]Γ1) + Ω2. (3.66)

Using the identity that for any 2 × 2 matrix P ,

diag([σ3, P ]P) = − 1
2 [σ3, P ]2σ3,

we obtain from (3.51) and (3.66) the final expression for the diagonal part of Γ1,

diag Γ1 = −diag
M∑

α=1

rαBα − 1

t

(
M∑

α=0

Bα − n

2
σ3 − n

2
I

)(
M∑

α=0

Bα − n

2
σ3 − n

2
I

)
σ3 + Ω2

= −diag
M∑

α=1

rαBα − 1

t
diag

((
M∑

α=0

Bα − n

2
σ3 − n

2
I

)
M∑

α=0

Bασ3

)
+ Ω2

= −diag
M∑

α=1

rαBα − 1

t
diag


 M∑

α,γ=0

BαBγ σ3 − n

2

M∑
α=0

(σ3 + I )Bασ3


+ Ω2

= −diag
M∑

α=1

rαBα − 1

t
diag


 M∑

α,γ=0

BαBγ σ3 − n

2

M∑
α=0

Bα(σ3 + I )


+ Ω2. (3.67)

We also made use of the identities,

diag(PL) = 0 if diag P = 0 and diag L = L,

and

diag

(
M∑

α=0

Bα − n

2
σ3 − n

2
I

)
= 0. (3.68)

(The latter follows from (3.51).)
We are at last ready to evaluate ∂log Dn/∂t in terms of Bα . To this end it is convenient to use

trace Γ1 = 0 (which follows from det Z ≡ 1)

to rewrite (3.11) in the form

∂

∂t
log Dn(t) = −1

2
trace(Γ1σ3), (3.69)

and then use (3.67) and (3.68) to obtain

∂

∂t
log Dn(t) = 1

2

M∑
α=0

rαtrace(Bασ3) + 1

2t

M∑
α,γ=0

trace BαBγ − n2

2t
− 1

2

M∑
α=1

rαkα. (3.70)
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For future comparison with the Jimbo–Miwa–Ueno τ -function it is convenient to use (3.68) one more time and
rewrite (3.70) as

∂

∂t
log Dn(t) = 1

2

M∑
α=0

rα trace(Bασ3) + 1

2t

∑
j �=i=1,2

(
M∑

α=0

Bα

)
ij


 M∑

γ=0

Bγ




ji

− 1

2

M∑
α=1

rαkα. (3.71)

Let us now perform the similar transformations with the right-hand side of Eq. (3.21). We first notice that its
subscripts-free form can be written down as

∂

∂rα
log Dn(t) = trace(Z−1(rα)Z

′(rα)Eα), (3.72)

where

Eα =
(

0 0
0 −kα

)

is the formal monodromy exponent at rα (see (3.63)) and in transforming (3.21) into (3.72) we took into account
that det Z(z) ≡ 1. Secondly, by rewriting Eq. (3.33) as the equation

Z−1(z)Z′(z) = Z−1(z)B(z)Z(z) − Ω(z),

we get the following representation of the product Z−1(rα)Z
′(rα)Eα:

Z−1(rα)Z
′(rα)Eα = t

2
Z−1(rα)σ3Z(rα)Eα +

M∑
γ=0
γ �=α

Z−1(rα)BγZ(rα)Eα

rα − rγ
− t

2
σ3Eα −

M∑
γ=0
γ �=α

EγEα

rα − rγ

+[Z−1(rα)Z
′(rα)Eα,Eα]. (3.73)

(For notational convenience we set, as before, r0 := 0 and k0 := −n − k.)
Using Eq. (3.73) in the right-hand side of Eq. (3.72) and taking into account that

Bα = Z(rα)EαZ
−1(rα),

we arrive to the following rα-analog of (3.70),

∂

∂rα
log Dn(t) = t

2
trace(Bασ3) +

M∑
γ=0
γ �=α

trace(BαBγ )

rα − rγ
− kαt

2
−

M∑
γ=0
γ �=α

kαkγ

rα − rγ
. (3.74)

Combining Eqs. (3.71) and (3.74) we obtain the main result of this section which is the following equation for
the total differential of the function log Dn(t, r1, . . . , rM),

d log Dn = 1

2

M∑
α,γ=0
α �=γ

trace(BαBγ )
drα − drγ
rα − rγ

+ 1

2

M∑
α=0

trace(Bασ3)d(rαt)

+1

2

∑
1≤i,j≤2

i �=j

(
M∑

α=0

Bα

)
ij


 M∑

γ=0

Bγ




ji

dt

t
− 1

2

M∑
α=1

kαd(rαt) − 1

2

M∑
α,γ=0
α �=γ

kαkγ
drα − drγ
rα − rγ

. (3.75)
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Eq. (3.75) describes the Toeplitz determinant Dn(t) in terms of the solution of the Schlesinger system ((3.53)–(3.58))
up to a multiplicative constant (depending on n and kα). Simultaneously, this equation shows, upon comparison
with the expression (5.17) in [18] for the logarithmic derivative of the τ -function, that

Dn(t) = e−(t/2)
∑

αrαkα

M∏
α,γ=0
α �=γ

|rα − rγ |−(kαkγ /2)τJMU, (3.76)

where we use the notation τJMU ≡ τJMU(t, r0, r1, . . . , rM) for the Jimbo–Miwa–Ueno τ -function corresponding to
the linear system (3.59) and evaluated for the monodromy data given in (3.63) and (3.64).

Remark. It follows from (3.76) that τJMU vanishes as rα → rγ for some pair (α, γ ). This fact, of course, can be
established directly from the definition of the τ -function.

4. Summary of the results

Recall that Dn(φ) denotes the Toeplitz determinant associated with the symbol

φ(z)=etz
M∏

α=1

(
z − rα

z

)kα

, −1 < rα < 0, α = 1, . . . ,M, rα �= rβ, α �= β, kα ∈ N,
∑

kα=k, t ∈ R,

and that the generating function GI (n; {pi}, t) is given by the formula

GI (n; {pi}, t) = Dn(φ), rα = −piα .

We also denote by Dn+1(φ|z) the Toeplitz determinant Dn+1(φ) whose last row is replaced by the row
(1, z, z2, . . . , zn), and we shall assume that Dn(φ) �= 0.

The following theorem identifies Dn(φ) as an object of the theory of integrable systems; more specifically, as an
object of the theory of generalized Schlesinger equations developed in [18,19].

Theorem 1. Let Z denote the 2 × 2 matrix function defined by

Z(z) =




Dn+1(φ|z)
Dn(φ)

− i

2π

∫
C

Dn+1(φ|z′)
Dn(φ)

(z′)−nφ(z′)
dz′

z − z′

−D̄n(φ̄|1/z̄)
D̄n(φ̄)

zn−1 i

2π

∫
C

D̄n(φ̄|1/z̄′)
D̄n(φ̄)

(z′)−1φ(z′)
dz′

z − z′


 , (4.1)

where C is the unit circle |z| = 1 oriented counterclockwise. Introduce the 2 × 2 matrices Bα := Bα(t) :=
Bα({rα}, t), α = 0, 1, . . . ,M , by the equations,

Bα = −Z(rα)

(
0 0
0 kα

)
Z−1(rα), α = 0, . . . ,M, (4.2)

where

r0 := 0, and k0 := −n − k.
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(The invertibility of Z follows from statement 4 below.) Then the following statements hold:

1. d log Dn(t, r1, . . . , rM) = 1

2

M∑
α,γ=0

α �=γ

trace(BαBγ )
drα − drγ
rα − rγ

+ 1

2

M∑
α=0

trace(Bασ3) d(rαt)

+1

2

∑
1≤i,j≤2

i �=j

(
M∑

α=0

Bα

)
ij


 M∑

γ=0

Bγ




ji

dt

t
− 1

2

M∑
α=1

kα d(rαt)

−1

2

M∑
α,γ=0
α �=γ

kαkγ
drα − drγ
rα − rγ

. (4.3)

2. The matrices Bα satisfy the system of nonlinear PDEs (generalized Schlesinger equations),

∂Bα

∂t
= n − trα

2t
[Bα, σ3] +

M∑
γ=0

[Bγ , Bα]

t
, α = 0, 1, . . . ,M. (4.4)

∂Bα

∂rγ
= [Bα,Bγ ]

rα − rγ
, α �= γ = 1, . . . ,M, (4.5)

∂B0

∂rα
= [B0, Bα]

r0 − rα
, (4.6)

∂Bα

∂rα
=
∑
γ �=α

[Bγ , Bα]

rγ − rα
, α = 1, . . . ,M. (4.7)

3. Eqs. (4.4)–(4.7) are the compatibility conditions for the system of linear equations,

∂Φ(z)

∂z
=
(

t

2
σ3 +

M∑
α=0

Bα

z − rα

)
Φ(z), (4.8)

∂Φ(z)

∂t
=
(

z

2
σ3 − n

2t
σ3 − n

2t
I + 1

t

M∑
α=0

Bα

)
Φ(z), (4.9)

∂Φ(z)

∂rα
= − Bα

z − rα
Φ(z), α = 1, . . . ,M, (4.10)

which in turn implies that the system (4.4)–(4.7) describes the isomonodromy deformations of the z — Eq. (4.8).
4. The function Z is alternatively defined as an unique solution of the matrix Riemann–Hilbert problem,

• Z is holomorphic for all z /∈ C,
• Z(z)z−nσ3 → I, z → ∞,

• Z+(z) = Z−(z)

(
1 z−nφ(z)

0 1

)
, z ∈ C.

(In particular, we have that det Z ≡ 1.) Eq. (4.3) can be rewritten in terms of Z as

d log Dn = −(resz=∞(znZ22(z))) dt −
M∑

α=1

kα(Z11(rα)Z
′
22(rα) − Z21(rα)Z

′
12(rα)) drα. (4.11)
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Also,

Dn+1

Dn

= Z12(0). (4.12)

5. The function

Φ(z) := Z(z) e(tz/2)σ3

(
1 0

0 znψ−1(z)

)
, ψ(z) =

M∏
α=1

(
z − rα

z

)kα

,

satisfies the linear system (4.8)–(4.10) with the matrices Bα given by (4.2).
6. The matrices Bα are alternatively defined as the solution of the inverse monodromy problem for the linear

equation (4.8) characterized by the following monodromy data:
• the formal monodromy exponents at the singular points rα , ∞ are given by the equations

Eα =
(

0 0
0 −kα

)
, E∞ =

(−n 0
0 0

)
,

• the corresponding connection matrices are:

Cα =
(

1 −1
0 1

)
, C∞ = I.

• the Stokes matrices at the irregular singular point, z = ∞, are trivial.

7. Dn(φ) = e−(t/2)
∑

αrαkα

M∏
α,γ=0
α �=γ

|rα − rγ |−(kαkγ /2)τJMU, (4.13)

where τJMU ≡ τJMU(t, r0, r1, . . . , rM)denotes the Jimbo–Miwa–Ueno τ -function corresponding to the linear system
(4.8) and evaluated for the monodromy data indicated. Eq. (4.13) in turn implies the following representation for
the generating function GI (n; {pi}, t),

GI (n; {pi}, t) = et/2
M∏

α,γ=0
α �=γ

|piα − piγ |−(kαkγ /2)τJMU(t, 0,−pi1 , . . . ,−piM ), pi0 := 0. (4.14)

Remark 1. In the uniform case, i.e. when M = 1 and k1 = k, the linear system (4.8) reduces to the 2 × 2 system
of linear ODEs which has two regular singular points and one irregular point of Poincaré index 1. In this case, as
it is shown in [18,19], the isomonodromy Eqs. (4.4)–(4.7) reduce to the special case of the fifth Painlevé equation.
Consequently this suggests that the uniform generating function GI (n; t) can be expressed in terms of a solution of
the fifth Painlevé equation. That this is so was obtained earlier in [30] via a direct analysis of the Toeplitz determinant
Dn(t).

Remark 2. The methods developed in this paper can be easily generalized to any symbol φ(z) := φ(z, t) such that

∂z log φ, ∂t log φ

are rational in z.

Remark 3. In virtue of the Fredholm determinant formula (2.2) for the Toeplitz determinant Dn(φ), Eq. (4.13)
can be interpreted as an example of the general relation [26] between the Jimbo–Miwa–Ueno isomonodromy
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τ -function and the Sato–Segal–Wilson τ -function defined via an appropriate determinant bundle (see also [14] for
another example of this relation).

Remark 4. The generalized Schlesinger system (4.4)–(4.7) appeared earlier in [17] in connection with the sine
kernel Fredholm determinant considered on a union of intervals. The corresponding monodromy data, and hence
the solution, are different from the ones related to the Toeplitz determinant Dn(t). For instance, the sine kernel
monodromy matrices are not trivial (see [17]; see also [14] for higher matrix dimensional generalizations); in fact,
each of them equals the identity matrix plus a one-dimensional projection.

Remark 5. From the point of view of the asymptotic analysis of the Toeplitz determinant, the most important
statement of Theorem 1 is Statement 4. It allows one to apply the Riemann–Hilbert asymptotic methods of [3,6,11].

Remark 6. This paper has been primarily concerned with the isomonodromy/Riemann–Hilbert aspect of our
integrable system. Presumably an analysis of the additional compatibility conditions, which arise if one extends
(4.8)–(4.10) by a relevant n-difference equation, would lead to a Toda like system, see [1,25,33].
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