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Abstract: We continue to study a model of disordered interface growth in two dimen-
sions. The interface is given by a height function on the sites of the one-dimensional
integer lattice and grows in discrete time: (1) the height above the site x adopts the height
above the site to its left if the latter height is larger, (2) otherwise, the height above x
increases by 1 with probability p,. We assume that p, are chosen independently at
random with a common distribution F, and that the initial state is such that the origin
is far above the other sites. Provided that the tails of the distribution F at its right edge
are sufficiently thin, there exists a nontrivial composite regime in which the fluctuations
of this interface are governed by extremal statistics of py. In the quenched case, the
said fluctuations are asymptotically normal, while in the annealed case they satisfy the
appropriate extremal limit law.

1. Introduction

Disordered systems, which are, especially in the context of magnetic materials, often
referred to as spin glasses, have been the subject of much research since the pioneering
work in the 1970s. The vast majority of this work is nonrigorous, based on simulations
and techniques for which a proper mathematical foundation is yet to be developed. (See
[MPV] for early developments and [Tal] for a nice overview of the mean field approach.)
As aresult, there is a large number of new and intriguing phenomena observed in these
models which await rigorous treatment. Among the most fundamental of issues are the
existence and the nature of a phase transition into a glassy or composite phase: below a
critical temperature, the dynamics of a strongly disordered system becomes extremely
slow with strong correlations, aging and localization effects and possibly many local
equilibria. We refer the reader to [NSv] and [BCKM] and other papers in the same
volume for reviews and pointers to the voluminous literature and to [NSt1] and [NSt2]
for some recent rigorous results. In view of the difficulties associated with a detailed
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understanding of realistic spinglass systems, other disordered models have been intro-
duced, which are more amenable to existing probabilistic methods.

One of the most successful of such (deceptively) simple models is the one—dimen-
sional random walk with random rates [FIN1]. In this model, the walker waits at a site
x € Z for an exponential time with mean 7, before jumping to either of its two neighbors
with equal probability. The disorder variables t, are i.i.d. and quenched, that is, chosen
at the beginning. Provided that the distribution of 7, has sufficiently fat tails, namely,
if P(ty > t) decays for large t as ™ with ¢ < 1, the walk exhibits aging and local-
ization effects ([FIN1, FIN2]). Various one—dimensional voter models and stochastic
Ising models at zero temperature can be explicitly represented with random walks. This
connection has been explored to demonstrate glassy phenomena such as aging and cha-
otic time dependence ([FIN1, FINS]). The positive temperature versions of such results
remain open problems, even in one dimension.

In contrast with models which are exactly solvable in terms of random walks and
are by now a classical subject in spatial processes ([Gril, Lig]), techniques based on
the RSK algorithm and random matrix theory have entered into the study of growth
processes only recently ([BDJ, Johl, Joh2, BR, PS, GTW1]). The purpose of this paper
is to employ these new methods to prove the existence of a pure phase and a composite
phase in a disordered growth model. It has been observed before in similar models [SK]
that the role of temperature is for flat interfaces apparently played by their slope. In
our case, the initial set is very far from flat and “temperature” is measured instead by
the macroscopic direction (from the origin) of points on the boundary. We identify pre-
cisely the critical direction and demonstrate that the fluctuations asymptotics provide an
order parameter that distinguishes the two phases. We emphasize that a hydrodynamic
quantity, the asymptotic shape, has a discontinuity of the first derivative at the transition
point, at which the shape changes from curved to flat. However, this does not signify the
existence of a new phase as kinks are common in many random growth models [GG],
thus a finer resolution is necessary.

The particular model we investigate is Oriented Digital Boiling (ODB) (Feb. 12,
1996, Recipe at [Gri2], [Gra, GTW1, GTW2]), arguably the simplest interacting mod-
el for a growing interface in the two—dimensional lattice Z2. The occupied set, which
changes in discrete time t = 0, 1,2, ..., is givenby A, = {(x,y) :x € Z, ¥y < h;(x)}.
The initial state is a long stalk at the origin:

0, ifx =0,
—00, otherwise,

ho(x) = {

while the time evolution of the height function #4; is determined thus:
hep1(x) = max{h;(x — 1), bt (x) + &x,¢}-

Here ¢, ; are independent Bernoulli random variables, with P(ex; = 1) = px. Al-
though this model is simplistic, note that it does involve the roughening noise (random
increases) as well as the smoothing surface tension effect (neighbor interaction), the
basic characteristics of many growth and deposition processes. (See Sects. 5.1, 5.2 and
5.4 of [Mea] for an overview of simple models of ODB type as well as some other
disordered growth processes.)

We will assume, throughout this paper, that the disorder variables p, are initially
chosen at random, independently with a common distribution F(s) = P(py < s). We
use ( - ) to denote integration with respect to d F' and label by p a generic random variable
with distribution F'.
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It quickly turns out ((GTW1]), that fluctuation in ODB can be studied via equivalent
increasing path problems. Start by constructing a random m X n matrix A = A(F),
with independent Bernoulli entries ¢; ; and such that P(g; ; = 1) = p;, where, again,

Dj 4 p arei.i.d. Label columns as usual, but start rows at the bottom. We call a sequence
of 1’s in A whose positions have column index nondecreasing and row index strictly
increasing an increasing pathin A, and denote by H = H (m, n) the length of the longest
increasing path. Then, under a simple coupling, h;(x) = H( — x,x + 1) ((GTW1])).
Thus we will concentrate our attention on the random matrix A rather than the associated
growth model. From now on we will also replace p; with its ordered sample, so that
p1 > p2 > --- > p, (see Sect. 2.2 of [GTWI]).

We initiated the study of ODB in a random environment in an earlier paper ((GTW?2]),
from which we now summarize the notation and the main results. Throughout, we denote
by b the right edge of the support of d F and assume it is below 1, i.e.,

b=min{s: F(s) =1} < 1.

Moreover, we fix an & > 0 and assume that n = am. (Actually, n = |am ], but we omit
the obvious integer parts.) As mentioned above, we can expect different behaviors for
different slopes on the boundary of the asymptotic shape, which translates to different
a’s. To be more precise, we define the following critical values:

—1
U S
‘ <1—p> ’

o = <p(1 —p)>_1
< \No-p?|

Note that the second critical value is nontrivial, i.e., aé > 0, iff ((b — p)_z) < 00. Next,
define ¢ = c(«, F) to be the time constant, c = c(«, F) = lim H/m, which deter-
m—0o0

mines the limiting shape of .4;, namely lim A; /¢, as t — o0. In Theorem 1 of [GTW2],
it was found that c exists a.s. and is given by

b+a(l—b)(p/(b—p), ifa <a,
clo, =3 a+all—a)(p/a—p), ifa, <a <a,
1, ifo, < a.

Here a = a(a, F) € [b, 1] is the unique solution to ot(p(l —p)/(a— p)z) =1.

In [GTW2], we also determined fluctuations in the pure regime . < o < .. (The
deterministic regime o, < « has no fluctuations.) The annealed fluctuations ((GTW?2],
Theorem 2) about the deterministic shape ¢ grow as /m and are asymptotically normal:

H —cm

d
o 7 —> N, 1)
as m — 00, where tg = Var((1 —a)p/(a — p)).

By contrast, quenched fluctuations conditioned on the state of the environment grow
more slowly, as m!/3, and satisfy the Fp—distribution known from random matrices
([TW1, TW2]). To formulate this result, we let r; = p;/(1 — p;), define u, to be the
solution of
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2 Xn: 1 (1.1)
n 4~ (+ru?  @w-1)7? ‘
j=1

which lies in in the interval (—r; ' 0). This solution exists provided that on ! Z;'-=]
rj < 1 which holds a.s. for large n as soon as o < «a,. Next, set ¢, = c(u,,) where

c(u) =

1.2
1~|—r]u (1.2

Then ([GTW2], Theorem 3) there exists a constant gy 7 0 so that

H —c¢,m
P m_S|P1a.--,Pn — Fa(s),

as m — 0o, almost surely, for any fixed s.

For fluctuation results in this paper we need to impose some additional assumption
on F, which are best expressed in terms of G(x) = 1 — F((b — x)—), the distribution
function for b — p. First we list our weaker conditions:

(a) If x,y > 0and x ~ y, then G(x) ~ G(y).
®) If x,y > 0and x = O(y), then G(x) = O(G(y)).
(c) Asx — 0, G(x) = o(x?/logx~1).

Our stronger assumptions on F require that there exists a y > 0 so that:

(a’) The function G(x)/x" is nonincreasing in a neighborhood of x = 0.
) Gx) = O(xz/log”x_l) as x — 0 for some v > 2y + 4.

If o, > 0, then automatically G(x) = o(x?) as x — 0. The stronger assump-
tions thus do not require much more: for nicely behaved G they amount to G(x) =
0 (x?/log" x~!) for some v > 8. The quenched and annealed fluctuations are now
determined by the next two theorems.

Theorem 1. Assume that 0 < o < a, let

1
_b(l—b)<&—y>,

and let ® be the standard normal distribution function. If (a)—(c) hold, then for any fixed
s, asm — 09,

<H —cpm +2t4/n
P
T/n

Here, the convergence is in probability if (a)—(c) hold, and almost sure if (a') and (V')
hold.

SS | p17'~-3pn>_)q)(s)'

Theorem 2. Assume that 0 < « < «., and that (a)—(c) hold. Then, for any fixed s

P(H <cem—(1—a/aymG=(s/n) | pl,...,pn> —e*
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in probability. In particular,
P (H <cm—(—-aja)m G_l(s/n)) — e ',

Throughout, we follow the usual convention in defining G '(x) = sup{y : G(y) <
x} to be the left continuous inverse of G, although any other inverse works as well.

Assume, for simplicity, that, as x — 0, G(x) behaves as x" for some > 2. Then,
in contrast with the pure regime, the annealed fluctuations in composite regime scale
as m'~1/7 while the quenched ones scale as m!/?. In fact, this can be guessed from
[GTW2]. Namely, as explained in Sect. 2 of that paper, the maximal increasing path has
a nearly vertical segment of length asymptotic to (1 — «/e.)m in (or near) the column
of A which uses the largest probability p;. Therefore, this vertical part of the path dom-
inates the fluctuations, as the rest presumably has o(,/m) fluctuations. (These are most
likely not of the order exactly m!/3 as they correspond to the critical case o = .. The
precise nature of the critical fluctuations is an interesting open problem.) The variables
in the pj—column are Bernoulli with variances about (1 — b), thus the contribution of
the vertical part to the variance is about (b(1 —b)(1 —« /ozé)m)l/ 2= 74/n. The annealed
case then simply picks up the variation in the extremal statistic pj.

Simple as the above intuition may be, Theorems 1 and 2 are not so easy to prove and
require considerable additional technical details. We also note the mysterious correction
27t.4/n in Theorem 1 for which we have no intuitive explanation.

The fluctuations results in [GTW2] and the present paper thus sharply distinguish
between two different phases of one particular growth model. Nevertheless, it seems
natural to speculate that this phenomenon is universal in the sense that it occurs in other
one—dimensional finite range dynamics of ODB type, started from a variety of initial
states. Indeed, such universality has been established in other random matrix contexts
[Sos]. Fluctuations of higher—dimensional versions seem much more elusive; it appears
that a glassy transition should take place, but the fluctuation scalings could be completely
different.

To elucidate, we present some simulation results. In all of them, we start from the flat
substrate hg = 0 and use F(s) = 1 — (1 — 2s)7, so that b = 1/2. It is expected that, as
n increases, the quenched fluctuation experiences a sudden jump from 1/3 to 1/2. We
simulate two dynamics, the ODB and the two—sided digital boiling (abbreviated simply
as DB), given by

i1 (x) = max{h; (x — 1), bt (x + 1), by (x) + €54}

The top of Fig. 1 illustrates the ODB on 600 sites (with periodic boundary), run until
time 600. The occupied sites are periodically colored so that the sites which become
occupied at the same time are given the same color. On the left, n = 1 (i.e., p is uniform
on [0, 1/2] and . = 0), while n = 3 (and . > 0) on the right. The darkly colored
sites thus give the height of the surface at different times and provide a glimpse of its
evolution. In the pure regime (n = 1), the boundary of the growing set reaches a local
equilibrium ([SK]), while in the composite regime (n = 3) the boundary apparently
divides into domains, which are populated by different equilibria and grow sublinearly.
This is the mechanism that causes increasing fluctuations. The bottom of Fig. 1 confirms
this observation; it features a log—log plot of quenched standard deviation (estimated
over 1000 independent trials) of /;(0) vs. ¢t up to t = 10000. The n = 1 case is drawn
with +’s and the n = 3 case with X’s; the two least squares approximations lines (with
slopes 0.339 and 0.517, respectively) are also drawn. We note that the asymptotic speed
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Fig. 1. Evolution and quenched deviation in the two phases of disordered ODB

of this flat interface is known: lim;_, o /;(0)/t = sup,,. (¢ +1)c(a). Here is the reason:
if ODB dynamics h!, h, start from initial states hf), ho = sup; hf), respectively, and are
coupled by using the same coin flips &y, then &, = sup; h! for every t.

Perhaps surprisingly, it appears that the phase transition in the DB does not occur
at n = 2, and in general the delineation is much murkier. At this point, we cannot
even eliminate the possibility of continuous dependence of fluctuation exponent on 7.
In Fig. 2, we present the results of simulations for n = 0.2 (left) and n = 1 (right). The
top figures only show evolution near time ¢+ = 5000, as no difference is readily apparent
at earlier times. The plot of quenched deviations is analogous to the one in Fig. 1, with
the least squares slopes 0.395 (n = 0.2) and 0.49 (n = 1).

The organization of the rest of the paper is as follows. Section 2 reviews the set-up
from [GTW1, GTW2], in Sect. 3 we prove the relevant asymptotic properties of the
order statistics and of the solutions of (1.1) and (1.2), and demonstrate how Theorem 2
follows from Theorem 1. Section 4 is a detailed analysis of the asymptotic behavior of
steepest descent curves. The proof of convergence in probability in Theorem 1 is then
concluded in Sect. 4. Finally, Sect. 5 strengthens the results of Sect. 3 (under the stronger
conditions) so that almost sure convergence is implied.

2. The Basic Set-up

We recall how we approached these problems in [GTW 1, GTW2]. The starting point is
the identity

P(H < h) =det(I — Kp),
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Fig. 2. Evolution and quenched deviation in disordered DB

where K}, is the infinite matrix acting on £2(Z*1) with (j, k)—entry

o
KnGo k) =D (0 /9t jrert @4/0-)hk—t-1-
=0
The subscripts denote Fourier coefficients and the functions ¢4 are given by
n
or@=[[0+r2. e-@=0-2"H".

j=1

The matrix Kj, is the product of two matrices, with (j, k)—entries given by

1 z B .
(O4+/P-)—h—jk—1 = - / H(l +rjz) (2 — 1" gk g
j=1

1 u _ I
(O—/ P+ )+ j+k+1 %/H(l—i-rjz) U — 1)y™m gm=h=i=k=2 4.
j=1

The contours for both integrals go around the origin once counterclockwise; in the second

integral 1 is on the inside and all the —rj_1 are on the outside.
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If h = ¢, m + h’ we have
1 h+j+k
(O+/9-)—h—j—k—1 = s V(2)z dz, 2.1

1 ',
@/ P+ jkt = 35— / V()R g, (2.2)

where
n
Y@ =[]0 +r) @1t
j=1

The idea is to apply steepest descent to the above integrals. If o(z) = m~!log ¥ (2),
then

n
, o rj 1 Cn—l
o' (z) = — + + 2.3

@ n;1+rjz z—1 Z @3)

and, with u,, and ¢, as defined above, o'(u,) = o”(u,) = 0. The steepest descent
curves both pass through u,,. As n — oo the zeros/poles —r;l accumulate on the half-

line (—oo, &], where & = 1 — b~ !. In the pure regime the points u, and the curves are
bounded away from this half-line, behave regularly and have nice limits. However in the
composite regime the points and curves come very close to &, their behavior is not so
simple, and we apply steepest descent not quite as described.

3. Preliminary Lemmas I: Properties of p,, u,, and c,

Until Sect. 5, we assume that all limits are in probability, unless otherwise indicated. To
prove the first part of Theorem 1 and Theorem 2, we thus assume that (a)—(c) hold.

We letg; = b — pj, so that g1, -- -, g, are chosen independently according to the
distribution function G, then ordered so that g1 < g2 < --- < gj.

Lett) < < ... < t, bean ordered sample of i.i.d. uniform (0, 1) random variables.
Then we may construct the G—sample by setting g; = Gt 7). We will also use the
well-known fact that, given ¢;, the conditional distribution of #;, ...#;_1 is that of an
ordered sample of j — 1 uniforms on [0, ¢;].

Lemma 3.1. There exist a positive constant ¢| so that x < GG '(x) < x/cy for
x € (0, 1). Moreover, G(G‘l(x)) ~xasx — 0.

Proof. Write the complement of the range of G as U; I;, where [; are disjoint and either
of the form [a;, b;) or (a;, b;). If x € (0, 1) is in the range of G, then G(G~Yx)) = x,
otherwise, if x € I;, G(G™'(x)) = b;. By (a), b; ~ a; if a; — 0. The last sentence in
the statement is then proved, and the first follows. 0O

Lemma 3.2. With c| as in Lemma 3.1, forn < 1 and j > 2,
P (G(q1) > 1G(g)) = (1 — e~
Proof. By Lemma 3.1 and remarks preceding it,

P(G(‘Zl) > UG(Qj)) = P(t1 >c177tj) :(1_51,’)./'—1. O
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Lemma 3.3. lim,,_, o P (q1 < G_l(s/n)) =1—e7".

Proof. Fix an & > 0. First, by monotonicity of G~!, #; < s/n implies g1 < G~!(s/n).
Second, by Lemma 3.1 and the monotonicity of G we have that, for large enough n, g; <
G~ !(s/n) implies 1; < G(G™(11)) = G(q1) < G(G™'(s/n)) < (1 + &)s/n. These
give the inequalities P(q; < G~'(s/n)) = 1 — (1 —s/n)",and P(q1 < G~ '(s/n)) <
1—(1—(14¢)s/n)". The statement of the lemma now follows upon first letting n — oo
andthene — 0. O

Remark. Tt follows from Lemma 3.3, and the fact that G(x) = o(x?) near x = 0, that
n'2q; — oo asn — oco.

Lemma 3.4. With high probability q1/q> is bounded away from 1 as n — o0o. More
precisely, for every n > 0 there is a § > 0 such that P(q1 < (1 —8)q2) = 1 — n for
large enough n.

Proof. 1t follows from Lemma 3.1 that for every n > 0 there exists a §; > 0 so that the
following implication holds for r, < §1:1f G(q1) > (1 —81)G(g2) thent; > (1 — n)t7.
Furthermore, by the assumption (a), there exists a § € (0, 1) so that, for » < &,
q1 > (1 — &)gp implies G(gq1) > (1 — 81)G(q2). Therefore,

P(gr > (1 =08)g2) = P(ti > (1 —=mn) + Pt > ) =n+ P2 > §),
and the proof is concluded since f, — O a.s. O

Lemma3.5. n~! Y] q1/q]3 — 0asn — oo.

Proof. Forany fixed k we have n ™! Zl;:l ql/q; < k/ng? — 0.Also,n™! 27:k+1 qj_2

< (q_2> + 1 a.s. for large n.
Let § > 0 be given. By the above paragraph, it suffices to show that

lim sup P <i > 8)
n—>00 qk+1

will be arbitrarily small for sufficiently large k. Now, from the assumption (b), it follows
that for some n > 0 we have G(q1) > nG(gk+1) wWhenever g1 > 8qx+1 and g1 < 7.
With this n (which we may assume is less than 1) we have, from Lemma 3.2,

P (q—l > 5) <A —cf+ Pg1 =),
qk+1

which is clearly enough. O

From now on {¢, } will denote a sequence of random variables satisfying ¢, = o(q1).
Since g1 > n~'/? we shall assume when convenient that also ¢, > n~!/?. In the state-
ment of the next lemma, the expression O (¢;) could have been replaced by the less
awkward o(q1). The reasons for the present statement are that the substitute for this
lemma (Lemma 6.2) when we consider almost sure convergence will have this form,
and that the same sequence {¢,} will appear in later lemmas.
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Lemma 3.6. Let {v,} be a sequence of points in a disc with diameter the real interval
[=ri' = O(gn), &) Then

1 " rj r
,}LOQ;Z (1 +7jvn)? <<1 +rs)2>'

Proof. Write v, = (b, — 1)/b,,. Then if we recall that§ = (b —1)/band p; = b —q;
we see that b — by, lies in a disc with diameter [0, g1 + O(¢;)] and that

B bi(b —q;))(1 —b+q;)
_Z(1+rvn)2 _Z (b —b+q;)?

If we subtract from this the same expression with b, replaced by b, that is,

2
_Zb b - QJ)(l b+61]) 3.1)

j=2 ql
we obtain

lZn:(b—q-)(l—bJrq-)[—b’% —b—z} (3.2)
negs Tl =b+ap* g | '

We shall show that this is o(1). Assuming this for the moment, we can finish the proof by
first noting that we may, with error o(1), start the sumin (3.1) atn = 1 since ¢; > n—12
and then (3.1) has the a.s. limit

<b2(b—q)<1—b+q>>:< r >
q? (A +rg)?2]"

It remains to show that (3.2) is o(1). If we replace the numerator b? on the right by
b,%, the error is o(1), since n-l > qj_2 is a.s. bounded. If we make this replacement then
what we obtain is bounded by a constant times

—Z

j=2

(bn — b)* — 2(by — b)q;
q]‘(bn _b+9j)2

Since |b — by | < g1+ O(¢y) = q1 +o0(q1) it follows from Lemma 3.4 that |b, —b+q|
is at least a constant times ¢ ; for large n and so the above is at most a constant times

_Z|b 6117

j / =2 q]
and by Lemma 3.5 thisis o(1). O
We denote
, (1-bya\'"?
0=1—-a/a, B = BT . 3.3)

Lemma 3.7. We have u,, = —rfl +Bn V2 o™ ?) asn — .
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Proof. We show first that u,, > & cannot occur for arbitrarily large n. If it did, then we
would have, using Eq. (1.1) for u,,

1 1 o r o — r;
p? = « o i
& —1)? : (un — 1)? = (1+r16)? i ; (1+rj§)?

It follows from the remark following Lemma 3.3 that the first term on the right is o(1)
and from Lemma 3.6 that the second term on the right has limit

a<;2> = ab2<g> <b?
(1+r8) ®—-p

since we are in the composite regime. This contradiction shows that u,, < & for suffi-
ciently large n, and so u, € [—rl_l, &]. By Lemma 3.6 again,

= i N = l - 06< : > = b’a/a!
ng At 1) (I+re2 7 ¢

Therefore Eq. (1.1) for u,, becomes

o r 1

r
— = -«
n (1+ru)?  (E—1)7? <(1 +ré)?
Since r; = b/(1 — b) + o(1) we find that the solution is as stated. O

> + o(1) = b*0 + o(1).

Next, we see how ¢,, behaves.
Lemma 3.8. We have ¢, = c(a, F) — 6 q1 +0(q1) asn — 00, where 6 is given in (3.3).
Proof. Write

_gznz Fjln O TiUp (3.4)

Cp =
n _21+rjun nl+ru,

1—u,

By Lemma 3.7, the last term above is o(n—1?). Equation (1.1) tells us that

d =0
du 1—u l—i—rj u=u,,_ ’
and so
d riu o« r
du = L+rju | lu=u, T on (14 riup)?
a(l b)
= 1 =—— 1
ﬂ2+ o) = ==+ o(D).

By Lemma 3.6 and its proof, with an error o(1) the derivative of the expression in
the parentheses above equals in [u,,, £] what it equals at u = &, so the above holds with
uy replaced by any point in this interval. From this and (3.4) we get

a(l —b)

cn =cup) =cé) — ,3 ——— (& —up) + o0 —uy).
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We have

E —u, = 1— b—l _ rl—l + 0(}’1_1/2) — pl—l _b—l + 0(}1_1/2) — ('b]_; +0(q1)’

where we have used the fact that ¢; > n~!/2. Thus

1—-56
e = c(€) - “(b3—ﬂz)ql +olqn).

Finally, as ((b — p)z) < 00, we can use the central limit theorem to conclude that
c&)=c(a, F) + 0 (n~Y?%), which completes the proof. O

Remark. Lemmas 3.3 and 3.8 show that Theorem 2 follows from the part of Theorem 1
on convergence in probability.

4. Preliminary Lemmas II: Steepest Descent Curves

Now we go to our integrals (2.1) and (2.2). We are not going to apply steepest descent
with ¥ as the main integrand, but rather with the function | which is ¢ with the factor
1 + r1z removed. It is convenient to introduce the notation

¥i(z, ¢) = 1_[(1 +rjz) (z — H™ Z*(]*c)m’
Jj=2

where ¢ > 0. (This parameter is not to be confused with the time constant ¢ = c(«, F)
defined earlier.) Thus 1 (z) = ¥1(z, ¢;) in this notation. We also define the integrals

I = — f(1+r - ——1f - i
= 12) Y1z, 0)dz, I (0) =z | U+rz2)” ¥i(z,c)” z “dz.
2i 2mi

(Since I7(c) = 0 when ¢ > 1 we always assume that ¢ < 1.) Notice that these are
exactly the integrals (2.1) and (2.2) when we set

c=cp+ W +j+k)/m.

Since j, k > 0 and we will eventually set &’ = snl/?

, we may also assume that
c>cy— O0m™ V2. (4.1)

To apply steepest descent to /7 (c) we must locate the critical points and determine
the critical values of V1 (z, ¢). Thus we define

1
o1(z,¢) = - log ¥1(z, ©),

so that

n
, _« rj 1 c—1
OI(Z’C)_anzl+rjz+z—l+ z
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As before, if the parameter ¢ does not appear we take it to be ¢,,, e.g., 01(z) = o1(z, ¢).

So
o ri

’ 1 4
010 = - log Y1) = 0'(2) ~

Using o/ (uy,) = 0" (u,) = 0 we get from the above and Lemma 3.7 that
o
Bv/n

To determine the critical values of o1 (z, ¢) let us first find the value of ¢ for which its
derivative has a double zero. (This is the analogue of the quantity ¢, for o (z).) For this
we use the analogue of (1.1) and (1.2) but where the terms corresponding to j = 1 are
dropped from the sums. If we call the solution of (1.1) # and set ¢ = c¢(u) then 61/ (z,0)
has a double zero at u. In analogy with u,,, we know that i is to the right of and within
O(m=172) of _},2—1' As for ¢, we use Lemma 3.8, its analogue where the sums in (1.1)
and (1.2) start with j = 2, as well as Lemma 3.4, to see that to a first approximation

o1 (un) = (I+o(1), of (uy) = %(1 +o(1)). (4.2)

c=cn—0(q2—q1)

and that g — q1 > n~1/2_ From this and (4.1) we see that ¢ > c.
Using subscripts for derivatives now, we have

o1;(u, c) = o1, (u,c) =0,
and we want to see how the critical points ufﬁ of o1(z, ¢) move away from u as ¢
increases from c. (Here we take u, < uj.) The function o1,(z, ¢) vanishes at # and is
otherwise positive in (—r, 1. 0). It follows that for ¢ close to but larger than ¢ we have

u; < u < u/. Differentiating o Z(uﬁt, ¢) = 0 with respect to ¢ gives

+ ”ft + + d”f 1
0=o01,(u,, 0 ;. + 01zc(ug, ¢) = o1(uz, ©) I + u_i 4.3)
C

Since u < 0 it follows that du’ /dc # 0, and so each of uF is either a decreasing or
increasing function of ¢ for ¢ > ¢. From their behavior that we already know for ¢ close
to ¢ we deduce that u increases and u decreases as ¢ increases. In particular, u_ is

even closer to —r, ! than i.
We remark that from (4.3) and the signs of du"/dc we deduce

U]ZZ(M:_, ¢) >0, o1, ,c)<0. “4.4)

Next we shall determine the asymptotics of the critical values o (u, ¢). The sequence
{¢n} is as described before Lemma 3.6.

Lemma 4.1. For ¢ — ¢, = O(¢,),

2 2, 2
o1l ) =a1(—r;" e) - nip” ¢ —cn+ —(1+o(ln~12) | (4.5)
20 r B
and for all ¢ > ¢y,
o1 (u:', c) < 01(—rf1, &)—mn V2 —c)+0mh. (4.6)

for some n > 0. Moreover for all ¢
o1lug,0) > o1(=r; o) + o5

when n is sufficiently large.
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Remark. In these and analogous inequalities below we think of o7 as actually meaning
Noi.

Proof. Consider first the case ¢ = ¢,. We have

1
o1(un +¢) = o1(up) + o (up) ¢ + ;2/0 (1 —1) oy (un + 1¢) dt.

If £ = O(g,) then it follows from Lemma 3.6 that oy (u, + 1) = o{ () + o(1).
Hence, by (4.2), we have for such ¢

o o

01t +0) = 01(un) = gt (W + o(l)) 2. 4.7)

This has zero derivative for 8
=—(1 1
¢ ﬁ( +o(1))
and it follows that
_ 2

Ul =y + %(1 +o(l) = —r;' + 7’;(1 +o(1)). 4.8)
(This critical value must be uz; rather than u, since the latter is within O(n—1/2)
of —ry ') From this and (4.7), taking ¢ = —r;' —u, = —(8 4+ o(1))n~"/? and

.= ”;t, —up = (B+o(1)n"Y2? and subtracting, it follows that
o1ul) = o1(—=r;") = 2(a+o(1)n". (4.9)

To determine the behavior of u" and o1 (u/, ¢) for more general ¢ we assume first
that
c=cntol), ul =un+0n)=—ri"+ 0.
Then
G]ZZ(“j_a C) = G{/(un) -

by (4.2). Therefore (4.3) gives

du}
dc

2
= —(B*/a +o(1) Juc = ”1%(1 +o(1)),

whence

'32
ul =ul +r—(c—a) +o(l)
2
=—r;! +%(1 +0(1))+r1%(c—cn)(1+o(1)), (4.10)

by (4.8). This holds if ¢ — ¢, = O(g;,) since this assures that uj = u, + O(¢,). The
above gives

2
log(—ul) =log(—r;") — 2r18(1 + o(1))n~1/% — r%%(c — )1 +0(1). (4.11)

(Again, real parts are tacitly meant.)
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To determine, o1 (u/", ¢) we use o1, (u/, ¢) = 0 to deduce
d + +
%al(uc ,c) =logu, . 4.12)

We continue to assume that ¢ — ¢, = O(gy) so our estimates hold. Integrating (4.12)
using the first part of (4.10) gives (since “:f, — —rfl)

2
a1(ug) + (c = ca) logug, — %r%% (c =) (1 +0(1))

= o1(—r; ") = 2@ +o())n! +log<—r;1)<c —cn)
2/3

o1, c)

2
—2r1B(c —c)n V21 + <1>)——r (c —en)? (14 0(1)),

by (4.9) and (4.11). This gives (4.5).
For all ¢ > ¢, we use the fact that log(—u") is a decreasing function of c, since u
increases, and integrate (4.12) with respect to ¢ from ¢, to ¢, which gives
o1(u, ¢) < o1(uf) +log(—ug )(c — cn).

Using (4.9) and (4.8) give (4.6).

For the lower bound for o7 (u_ , ¢), we assume first that ¢ < ¢,. By (4.1) this im-
plies in particular that ¢ — ¢, = O(n~%). Now o (z) is decreasing on the interval
(u,, uj) and u:“ —u, > . To see the last inequality, note that, from Lemma 3.6,
01z;(uy + ¢, ¢) # 0 for ¢ = O(¢,) and ¢ — ¢, = o(1). Therefore o1, (u, + ¢, c) can
vanish for at most one such ¢ and, since uj —u, = O(¢,), wemusthaveu, —u_ > ¢,.

Take any sequence ¢, = 0(q1) and write

o1(uz,¢) = o1(uf —@n, ¢) = o1(uf —@n) + (c — cp) log(pn — ul).

(As usual, we imagine real parts having been taken.) If we apply (4.7) with ¢ = u" —u,
and with ¢ = u” — ¢, — u, and subtract, we obtain

o (uf —pn) = o<u+)—En‘”zwn(1+o<1>>+2ﬂ2 (=200 = un) +@D)) (+o(1)).

By subtracting the first parts of (4.10) and (4.8) we see that this equals

0(” §0n) + — 132

Since ¢, > n—12, as we may assume, we obtain
o1} — gn) > o1(u}) + ngy

for some > 0. Also, since ¢ — ¢, > —nn~!/? for some 1 and log(1 — @n/ul) is
positive and O (¢,) we have

—1/2

(c — cy) log(p, — u:_) > (c—cp) 10g(—uj) —nn ©n.

Putting these together gives
o1(u;, ¢) > o1(uf, ) + ng;

for some 1 > 0.
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This was for ¢ < ¢,. For ¢ > ¢, we use what we get from (4.12) by replacing
with ~, subtracting the two, and integrating. Together with using the already proved
inequality for ¢ = ¢, this gives

c
o1(u;,c) —or(ur,c) > np? +/ log(u; /ul)dc.
Cn
The logarithm is nonnegative. Hence o (1., ¢) — o1 (u, ¢) > ng? for all c.
If ¢ — ¢, = O(¢y) then using this and (4.5) give

o1(u;,¢) > ar(—ri ") +log(ry (e — ¢u) + ng?

with a different n. If ¢ > ¢,, we use

o1(u; ) —oi(u,) = /Clog(—“c_)dc-

Cn
Since u_ is decreasing and is less than —r !'when ¢ = ¢, this gives

o1(ug, ¢) = o1(uy ) +log(ry (e — cn)
> o1(ul) +log(r (e — cn) + o

Combining this with (4.5) for ¢ = ¢, shows that

o1, c) > o (=7 +log(r ) (e — ) + ne?

holds for these ¢ as well. Since {¢,} was an arbitrary sequence satisfying ¢, = 0(q1)
the last statement of the lemma follows. 0O

Next we consider the steepest descent curves, which we denote by C* (c) correspond-
ing to the integrals / £(c). It follows from (4.4) that C*(c) passes through uj‘ because
on the curve [1(z, ¢)| has a maximum at that point; similarly, C~(c) passes through
u, . We have enough information to evaluate the portions of these integrals taken over
the immediate neighborhoods of these points, but we also have to show that the integrals
over the rest of the curves are negligible. This requires not only that the integrands are
much smaller there, which they are, but also that the curves themselves are not too badly
behaved.

To see what is needed, let I'* be arcs of steepest descent curves for a function p,
curves on which Jp is constant. In analogy with our C*(c) we assume R p is increasing
on '™ as we move away from the critical point and decreasing on I'*". If s measures arc
length on '+ we have for 7 € T'F,

d /
dz __lP@l “@13)
ds p'(2)

If the arc goes from a to b then

/Fi o' (@)l ds = ¢/Fp/(Z) dz = F(p(b) — p(a)).
Hence the length of I'* is at most
b) —

p(b) — p(a) 1

rninzel"i [0 (2)] ’
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This is to be modified if p’ has a simple zero at z = a, for example. In this case we
replace p’(z) by p’(z)/(z — a). (This is seen by making the variable change z = a ++/€.)
Our goal is Lemma 4.5 below. In order to use the length estimate (4.14) to deduce
the bounds of the lemma, we must first locate regions in which our curves are located,
and then find lower bounds for 01’ (z, ¢) in these regions. (Upper bounds for |o1(z, ¢)|
will be easy.) These will be established in the next lemmas.
Forr > Odefinen(r) =#{j : r; > r}.

Lemma 4.2. The curves C*(c) lie in the regions

) _1 cn
{Z Darg(rm 4 2)| < n—om(r) —l—cn}

forallr and in |z + r;l | > 8n~V if 8 is small enough.
Proof. For a point z on either of the curves, say in the upper half-plane, we have
n
o
cm = — X:arg(rj_l +z2)targ(z—1)+(c—1) argz
n

j=2
an(r)

arg(r ' +2) + ¢ arg(r ! + 2),

which gives the first statement of the lemma. For the second, observe that if ¢ = O(¢;)
then o{(r{l +¢,¢) = a/n¢ + O(1). This shows, first, that u_ lies to the right of the
circle|¢| =68 n~lif § is small enough and, second, that 1/ al’ (z, ), thought of as a vector,
points outward from this circle if § is small enough. Since a point of C™ (¢) moves in
the direction of 1 /O’l/ (z, ¢) as it moves away from u, (see (3.7) of [GTW2]), the curve
can never pass inside the circle. Therefore the entire disc |¢| < § n™! lies to the left of
C~(c). This gives the second statement for C~(c) and it follows also for C*(c) since
this is to the right of C™(¢). O

The next lemma, together with (4.13) and the length estimate (4.14), will imply that
for z large the curves will move in the direction of z and are well-behaved. If we take
any 7 < b/(1 — b) then a positive proportion of the r; are greater than 7 and so by
Lemma 4.2 the curves lie in a region

[z:1areG ™" + 21 = 71 - 9)) 4.15)
for some § > 0.

Lemma 4.3. We have z 0{(z, ¢) = c+a asn — oo and z — oo through region (4.15).

Proof. We have

n
'(z.¢) = omnY+0"H+d
zojz.o)=c+a+0n")+0( )+n§

1
l—i—rjz’

and it suffices to show that the last term tends to 0 as n — oo and z — oo through
region (4.15). If z is in this region and r < 7 /2 then |1 +7z| > §(1 4 r|z|) for another §.
The same bound will hold for all » < b/(1 — b) if z is large enough. Choose M large and
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break the sum on the right, with its factor n~!, into two parts, the terms where r jlzl < M
and the terms where r;[z| > M. We find that its absolute value is at most

n(n—n(M/\z]) + ﬁ

The first term tends to 0 as z — oo while the second could have been arbitrarily small
to begin with. O

Remark. If P(p = 0) is positive then the above has to be modified. We replace ¢ + o
byc+a P(p > 0).

Because of the above lemma we need only consider z in a bounded set. We use the
fact that by Lemma 4.2 with r = r, our curves lie a region

{z Darg(ry 42 < —snY, Iy 2l > 5n*1} . (4.16)

Lemma 4.4. For all 7 in any bounded subset of the region (4.16) we have

(z—u)(@z—ul)

ol(z.c)|>8n"°
loy(z, )| = T

for some § > 0 independent of c.

Proof. To obtain the lower bound we write

n

o 1 1 c—1
B(s:2) =52, 83,53 D)=~ + +—

nis S +z z-1 z
Of course o (z, ¢) = ¢(r2_1, r3_1, -, r;’1). Think of s, = r2_1 and z as fixed, and con-
sider the problem of finding inf |¢ (s; z)|, where s3, - - -, s, are subject to the conditions

sj >, ¢(s;ul) =0.

If we take sequences so that the inf is approached in the limit, then some s; may tend
to infinity, others may tend to s2, and the rest, if any, tend to values strictly greater than
s2. Thus our inf is equal to the minimum of |¢ (s; z)|, where ¢ now has the form

n'
o nij 1 c—1
G52, 83, 5w D =—p ——+ +

j -1
”j:2S1+Z b4 z

withn” <n, Y n; =n—1,and thes; with j > 2 satisfying s; > s> and the constraints
¢ (s;uf) =0.

Notice that the minimum cannot be zero since ¢ (s; z), thought of for the moment
as a function of z, has n’ finite zeros. It has zeros at uzc and one between each pair of
consecutive —s; since all the coefficients of 1/(s; + z) are positive. This accounts for
all n’ zeros, so our z cannot be one of them.

We apply Lagrange multipliers to find the minimum of |¢(s; z)|? over s3, - - - , Su,
achieved at interior points. There are two constraints, hence two multipliers A and pu.
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If p + iq is the value ¢ (s; z), where its absolute value achieves its minimum, then the
equations we get are

R (p —iq) — AR
¢ — = ,
P (s;+2% (s +u)?  (sj+ul)?

where we have divided by the factor n; appearing in all terms. This is the same sixth
degree polynomial equation for all the s;. It follows that there are at most six different
s j. Assuming there are exactly six (if there are fewer the argument is the same and the
final estimate is better) we change notation again and write these as s3, - - -, sg so that
the minimum is achieved for

8
o nj 1 c—1
52, §3,+++,88; 7) = — + +
(52, 53 8 2) n;s]-—i-z z—1 z

with other n ;.
This has eight zeros. Two of them are uLi and the other six, lying between consecutive
—s;j, we denote by uy, - - -, ug. We have the factorization

b(s: 2) = 1—c z—uy) (@ —ub) [1°,(1 = z/up)
’ ue uf z(z—1) 1_[§=2(1 —s)

and it remains to find a lower bound for this. Near z = 0 we have o{(z,¢) = (1 —
Azl =14 a(r)+o(1),soif cis close to 1 then (1 — c)/u:r =1—a(r)+o0().In
particular this is bounded away from zero. Thus the first factor above is bounded away
from zero. As for the factors in the products, observe first that each factor 1 — z/s; is
bounded since z and all factors 1/s; are. For the others, we use again the fact that the
curves lie in a region (4.16). In any bounded subset of this region each |1 —z/u;| > nn™!
for some 1 > 0. (If z is in a neighborhood of 0 this is clear since each u; < 0. Otherwise
write 1 — z/u; = z(z7' — u; 1Y.) Therefore the product of these is bounded below by a
constant times n . This completes the proof. O

Now we can show that the curves C*(c) are not too badly behaved.

Lemma 4.5. For some constant A > 0 the length of C*(c) is O(n?) and

/ 2|72 |dz| = O(n?).
C—(c)

Proof. It follows from Lemma 4.3 that C*(c) lies in a bounded set. For, this lemma
implies that the vectors 1/07](z, ¢) point outward from a large circle |z| = R, and since
by (4.13) C*(c) goes in the direction opposite to 1/0/(z, ¢), a point of the curve starting
at u" can never pass outside the circle. Also, some disc |z| < §(1 — c¢) is disjoint from
C*(c) because 1/ ol’ (z, ¢) points outward from a small enough circle |z| = §(1 —¢) and
so CT1(c) cannot cross into it. It follows that al/ (z, ¢), and so also o1(z, ¢), is bound-
ed on any portion of C*(c) close to z = 0. A similar argument shows that some disc
|z — 1| < & lies entirely inside C*(c). Finally, we know that u is within o172
of —r; ! and if ¢ = o(g1) then o](r; ' + £, ¢) = a/n¢ + O(1). In particular u
lies in a region |¢| > dn~! for some 8 > 0. Since also o] = —a/n¢? + O(1), by
Lemma 3.6, we deduce that o'(z, ¢) = O(n) when |z —u_| < sn~1/2, thus for such
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z we have 0(z, c) = o (u;, c)+ 0|z — u;|2) But it follows from Lemma 4.1 that
o1(u;,c) — o (u ,C) > <pn, and then, since n=' = 0((pn) o1 (uc ,c) < o1(z, c) for
lz—u_| <én~ 1/2 As the maximum of o (z, ¢) on C*(c) occurs at u;}, this shows that
the dlstance from C*(c) to u_ is at least sn~'/2. With these facts established we use
the lower bound of Lemma 4.4, the length estimate (4.14) (extended as in the remark
following it), and the obvious upper bound for |o1(z, ¢)| in the region (4.16) to deduce
that the length of C*(c) is O (n?) for some constant A.

As for the integral over C ™ (c), we observe that, since ¢ < 1 and cm is an integer,
1 — ¢ is at least a constant times n~!. Since C~(c) lies outside a disc lz] < 6(1 — o),
we have z~! = O(n) on C~(c). A lower bound for the distance from C~(c) to ul
is obtained using the fact that oy (u., ¢) — o1 (u}, ¢) > (p,2l. Since o] is bounded in a
neighborhood of uj, we have o1(u_, c¢) > o1(z, c) for |z — uj| less than <p,% times a
sufficiently small constant. This shows that C~(c) is at least this far from u". We apply
the other bounds as before; we think of the integral over the portion of C~(c¢) outside a
large circle as the sum of integrals over the arcs from ay to ay1, where ay is the point
of C™ (c) where |z| = k. Lemma 4.3 and (4.14) are used again here. O

5. Asymptotic Evaluation of the Integrals

We evaluate I*(c) first when ¢ — ¢, = O(¢y). Then o1, (u}, ¢) = /B> + o(1) and so
if we set z = u + ¢ we have

o1(z,¢) = o1 (uf, ¢) + 2(1+0(1))§

2p
aslongas ¢ = O(¢y). If |¢| = ¢, then the real part of the second term above is less than
a negative constant times (p,% and, since this real part decreases as we go out C*(c), it is
at least this negative whenever || > ¢, . If we recall that this gets multiplied by m in the
exponent and the fact that C*(c) has the length at most a power of n (by Lemma 4.5),

. . . . . . 2
we see that the contribution of this part of the integral is O (e’”"(“c+ )=ng;+0(logn) ) ¢

follows from Lemma 3.3 and assumption (c) that with high probability ¢; > logn/n'/2,

and we could have chosen ¢, to satisfy this also. Thus, with error o(e™° O ) the integral
I7(c) is equal to
B (1 + 1 (u* + ¢)) MBI+ g ot o)
. c

271 Ji¢i<g,

(since am = n). Since ¢, > n~12 in the limit after making the variable change

. — n~l 2; the integration can be taken over (—ioo, ico) (downward really, but we
can reverse the directions of integrations), the linear factor ¢ contributes zero, and by
(4.10),

np’

1+r1u =r (2,371_1/2 —(c—c¢y) +on™ 1/2+|c—cn|)>.

Thus the integral is asymptotically equal to S+/2min~!/? times the above and, by (4.5),
2
rp

\/27T

r|ﬁ2 . 2a —1/2 2
— A —cp+2% (140(1

le( . ) 1 5 m(c Cn flﬁ( o(1)n ) .

() = n~! (2 + %n”z(c —cp) +o(l +n'?|c — cn|>
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This assumes thatc—c, = O (¢y,).Forall ¢ > ¢, we use the second part of Lemma 4.1
and again the fact that C T (c) has the length at most a power of n. We deduce

r'e=0 (‘/fl(_"l_ Leyem'™ <v—c»z>+0<logn>>

forc > ¢,.
For the integral over C ™ (c) we use the last part of Lemma 4.1 and the second part of
Lemma 4.5. These imply that the integral over C™ is

0 (yi(=rt oy et 00w ) — oy (=1 ! o)),

But our integral for 1~ (¢) is not taken over C~ (c). Recall that the original contour
must have all the —rj_1 on the outside whereas —r~ ! is inside (more precisely, on the
other side of) C™ (c). Therefore if we deform the contour to C™ (c) we pass through the
pole at —rfl. Thus

I~ =ryn(=r' 0™ +o@i(=r, o).

Now recall thatin I (c) wesetc—c, = h'+ j+£,in I~ (c) wesetc—c, = h'+L+k
and then we sum over £ to get the matrix product. Recall also that (—rl_l, c) =
Y1 (=) (=ry) 7€) The factors (—r1) €= in I+ (c) and (—r)" =) in [~ (c)
will combine to give (—r1)"*~/) which can be eliminated without affecting the determi-
nant. It follows that we can modify the expressions for / ) by removing these factors.

We can also remove the factors (—rl_l)il since they cancel upon multiplying. Thus
our replacements are

2 r 2 —
I (c) - —‘rﬁ - <2+ np 1/2(c—Cn>) (et o)

if c — ¢, = O(¢,), and
1+(C) -0 <e—nn1/2(c—cn)+0(logn)> i

if ¢ > ¢,,. Furthermore, I ~(c) — r1 + o(1).
Recall next that we set i’ = sn'/? andin I (c), ¢ = c, +sn'/>+ [xn'/? | + |zn'/?],
so that

c—cp=(64+x +z+o(1))n1/2/m =a(s+x +z+0(1))n_1/2,

and eventually we multiply by n because of the scaling. Take first the case c—c,, = O (¢,,),
that is, x +z = O(n'/?¢,). Sincem = n/a and r;1 8 = = (1 + o(1)) the modified
I7(c) equals

r12/33
V2

On the other hand, /™ (¢) is equal to r; with error o(1). The result of multiplying these to-
gether, multiplying by n, and integrating with respect to z over (0, 00), is asymptotically
equal to

n—l(zr +S +x +Z+0(1 +x +y))e—(ZT-FS+X+Z+0(1))2/2‘L’2.

1
V2T

o~ Crbs /20, (5.1)
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This holds for ¢ — ¢, = O(g,). If ¢ — ¢, > @, we have, for our modified I T (c), the
estimate

19) (e—nnl/Z(c—cn)-i-O(logn)) — O(I’l_]).
Integrating the square of this over a region x + z = O (n'/?) will give o(1).

It follows that the matrix product scales to the operator on (0, co) with kernel (5.1).
This is a rank one kernel so its Fredholm determinant equals one minus its trace, which

equals
2
1 / T+s g—x2/2r2.
V2t J-o

This establishes the convergence in probability statement of Theorem 1.

Remark. One could rightly object that to scale a product to a trace class operator we
should know that each factor scales in Hilbert-Schmidt norm. In our case the second
limiting kernel is a constant and the product is not even Hilbert-Schmidt. But we could
have multiplied the kernel of the first operator by (1 4+ x) (1 4 z) and the kernel of the
second operator by (1 +z) ~1(1+y)~!. This would not have affected the determinant of
the product, both operators would have scaled in Hilbert-Schmidt norm and the product
would have scaled in trace norm to the rank one kernel

1 o Qrts+x)?/202 l1+x

V2T 14y

which has the same Fredholm determinant.

6. Almost Sure Convergence

What is needed, and all that is needed, is an “almost sure” substitute for Lemma 3.6
under assumptions (a") and (b’). We begin with a lemma on extreme order statistics of
uniform random variables, part or all of which may well be in the literature.

Lemma 6.1. Let a > 1 be arbitrary. Then, almost surely,

n 151 1
, —=1- ;
n logn 1) log® n

v

for sufficiently large n. Here, 1) is a positive constant depending on a.
Proof. We use the notation #, ; for our ¢; to display their dependence on n. We have
P(th1 <8) =1—(1=28)" ~nd ifns = o(1).

In particular

It follows that, a.s. for sufficiently large k we have

2—k

tZk,l > k—a.
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Take any n and let k£ be such that 2k=1 — 5 < 2% From the above we have, a.s. for

sufficiently large n
27k

n
h1 =t > ,
ml =0k = k4 ~ nlog®n
for some 7.
For the ratio we use the fact that
tn,j j P
P >1-68)=1—-(1-=68) ~js if j§ =o(1). 6.1)
In,j+1
Now suppose that
t, 1
LIS , (6.2)
th2 log® n

and let k be such that 2= < n < 2k, Take any J (which will eventually be of order
log k). Then there are two possibilities:

) L j <tni forall j < J;
2) Dok j > In,1 for some j < J.

Consider possibility (1) first. Let G, be the event that #, 1 < aloglogn/n. By
Ex. 4.3.2 of [Gal], P (G, eventually) = 1. Moreover,

P({tzk’j <tyjforallj <J}NG,) < P(l‘zk’j < 2loglogn/nforall j < J)

J
- <2k') <2 log 1ogn) < e]loglogk—]log J+AJ’
J! n -

for some constant A. If J = B log k then the bound above equals e~ 802 B—A)logk g4 jf
we choose B large enough the sum over & of these probabilities will be finite. With this
J, (1) can therefore a.s. occur for only finitely many k.

Next consider possibility (2) and let j be the smallest integer < J such that 7« ; >
tn,1. Then tyx ; < 1y 2 and 1, 1 = tyx ¢ for some £ < j. It follows that rox ;_1/tok ; >
th.1/ty,2 and by (6.2) this is at least 1 — C/k“, for some constant C (which will change
from appearance to appearance). Therefore, by (6.1),

P((6.2) and (2) both happen)
< Pty 1/t ;> 1 — C/k" forsome j < J) < CJ*/k* < Clog” k/k".

It follows that (2) and (6.2) can happen together only for finitely many n. The upshot
is that a.s. the inequality (6.2) can occur for only finitely many »n, which completes the
proof. O

We are now ready to prove our substitute for Lemma 3.6. Recall that we can set g; =
Gl ;). The assumption (a') implies that G is continuous near 0, so that GG x) =x
for small x.

Lemma 6.2. Suppose (') and (V') are satisfied. Then there exists a sequence @, >
logn/n'/? such that a.s. for any sequence {v,} lying in the disc with diameter the real
interval [—rl_l — O(pp), €] we have

n

. 1 rj _ r
Jim o2 A +rjv)? <<1 +rs>2>'

Jj=2
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Proof. From the proof of Lemma 3.6 we see that we want to show that, for some sequence
¢n as described, we have a.s.

n

1 q1
lim — =
n—o0 n Z 14; (qj — (g1 + O(pn)))?

-1 14
=(532)
y G
when x < y are small enough. Therefore, it follows from the second part of Lemma 6.1,
that a.s. for large n,

Assumption (a’) implies that

L 6.3)
75 log n
for another constant n > 0. Set
1 7
Vn = B log® nQZ-

Let us show that v, > logn/n'/?. Assumption (a’) implies that G~!(x) is at most
a constant times x!/7, thus the fact that #{ = O(loglogn/n) shows that ¢ is at most
a constant times (loglogn/n)!/? . Furthermore, assumption (b') gives, with a slightly
smaller v, x> > G(x)log” x~!. Applying this with x = ¢; = G~!(7;) and using the
first part of Lemma 6.1 gives

qi > log” q; '

nlogtn
We therefore deduce that

ai > %log”‘“ n (6.4)
for a slightly smaller v than in (b). By (6.3) the same holds for ¢g; and so

Y>> — log

and ¥, > logn/n'/? as long as v — 3a > 2. Since a > 1 is arbitrary the requirement
becomes v > 5. But from (a’) and (b") we see that necessarily y > 2, so that v > 8.
If j > 2, then (6.3) and the inequality g < ¢; imply that

—(q1 + Y a4

n
= 2 log® n
We take for {¢,} any sequence satisfying

logn
1/2 << (pl’l << lﬁn

At this point we follow the proof of Lemma 3.6 to see that the expression

log " Z a1 6.5)

j= ZqJ

needs to go to 0 a.s. to conclude the proof of this lemma. This is what we will demonstrate.
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For any k;,, if we separate the sum in (6.5) over j < k, from the sum over j > k,,
we see that (6.5) is at most

log? n 11
S ko +log2n T 23— (6.6)
nqi Thn+1 157 G

We first determine k, so the second term in (6.6) goes a.s. to 0. By strong law,
n~'Y q; — (g7%) as., solog® n g1 /qk,+1 needs to go to 0. We have, for each § > 0,

P(logz"n 0 zS)
Dkn+1
1 y
= (T 2 ) =7 (2 = () )
Gty +1) ~ log*n tkp+1 log’* n

7\ kn s\
() )
log? n -

This is summable over n if we choose

kn = log® n (logz“ n)yj + 1.

With this choice, the second summand in (6.6) therefore goes to 0 a.s.
On the other hand, the first term in (6.6) is with the same choice of k;, at most a

constant times
log®+3a

2
ngqi

and from (6.4) this is o(1) times log(27’+4)“_” n. Since a > 1 was arbitrary and v >
2y + 4, we can make (2y + 4)a — v < 0 and then the first summand in (6.6) goes to 0
a.s. This completes the proof. O

With this lemma in place of Lemma 3.6 the reader will find that all subsequent limits
and estimates in Sects. 4 and 5 will hold almost surely, thus giving the second statement
of the theorem. The reason our sequence had to satisfy ¢, > logn/n'/? is that errors

of the form O (e’”‘/’% +0(1°g”)> appeared in the evaluation of /¥ (c) and these had to be

o(1).
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