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Abstract
To each partition λ = (λ1, λ2, . . .) with distinct parts we assign the probability
Qλ(x)Pλ(y)/Z , where Qλ and Pλ are the Schur Q-functions and Z is a normal-
ization constant. This measure, which we call the shifted Schur measure, is analogous
to the much-studied Schur measure. For the specialization of the first m coordinates of
x and the first n coordinates of y equal to α (0 < α < 1) and the rest equal to zero, we
derive a limit law for λ1 as m, n → ∞ with τ = m/n fixed. For the Schur measure,
the α-specialization limit law was derived by Johansson [J1]. Our main result implies
that the two limit laws are identical.
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1. Introduction
The Schur measure (see [O2]) assigns to each partition λ = (λ1, λ2, . . .) the weight

sλ(x) sλ(y),

where sλ are the Schur functions (see, e.g., [M], [St]). Thus
∑

λ∈P
λ1≤h

sλ(x) sλ(y) (1.1)

is the (unnormalized) probability that λ1, the number of boxes in the first row of the
associated Young diagram, is less than or equal to h. Here P denotes the set of all
partitions. The normalization constant, Z , is determined from the h → ∞ limit

Z :=
∑

λ∈P

sλ(x) sλ(y) =
∏

i, j

1
1 − xi y j

, (1.2)

where the last equality is the Cauchy identity for Schur functions. A theorem of Ges-
sel [Ge] expresses the partition sum (1.1) as an h × h Toeplitz determinant Dh(ϕ). It
follows from this that the normalization constant is also given by

Z = lim
h→∞

Dh(ϕ).

This limit can be explicitly computed by an application of the strong Szegö limit
theorem (see, e.g., [BS]), and thereby the Cauchy identity reappears.

The Toeplitz determinant, or the Fredholm determinant coming from the
Borodin-Okounkov identity (see [BO], [BW]), is the starting point in the analysis of
limit laws for λ1. This analysis together with the Robinson-Schensted-Knuth (RSK)
correspondence gives a new class of limit laws, first discovered in the context of ran-
dom matrix theory (see [TW1], [TW2]), for a number of probability models. Indeed,
the result of Baik, Deift, and Johansson [BDJ] for the limit law of the length, &N (π),
of the longest increasing subsequence in a random permutation π ∈ SN is the now-
classic example. Exponential specialization of the Gessel identity together with the
RSK correspondence∗ shows that

∞∑

N=0

P(&N ≤ h)
t N

N !

is an h × h Toeplitz determinant with symbol ϕ(z) = e
√

t(z+1/z). An asymptotic

∗RSK associates bijectively to each permutation π a pair of standard Young tableaux (P, Q) of the same shape
λ such that &N (π) = λ1 (see, e.g., [St]).
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analysis of this Toeplitz determinant (using the steepest descent method for Riemann-
Hilbert problems; see [DZ]) shows that

lim
n→∞ P

(&N − 2
√

N
N 1/6 < s

)
= F2(s),

where F2 is the limiting distribution of the largest eigenvalue (suitably centered and
normalized) in the Gaussian unitary ensemble (see [TW1]). Similar results hold for
longest increasing subsequences in symmetrized random permutations (see [BR3],
[BR2]) and random words (see [AM], [J2], [ITW], [TW3]), for height fluctuations
in various growth models (see [BR1], [GTW1], [GTW2], [J1]), and for tiling prob-
lems (see [J3]), as well as for extensions to the other rows of the Young diagram (see
[BOO], [J2], [O1]).

In the theory of symmetric functions, there are many important generalizations
of Schur functions (see [M]). These generalizations satisfy Cauchy identities, and it
is natural to inquire about more general Gessel identities. However, one quickly sees
that without determinantal formulas of the type that exist for Schur functions (the
Jacobi-Trudi identity), Gessel identities seem unlikely. Nevertheless, the question of
possible limit laws for sums of type (1.1) remains interesting.

This paper initiates work in this direction. Instead of Schur functions, we work
with Schur Q-functions that have Pfaffian representations. These functions, intro-
duced by Schur in 1911 in his analysis of the projective representation of the symmet-
ric group, now have a combinatorial theory that parallels the combinatorial theory of
Schur functions. This theory, due to Sagan [S] and Worley [Wo] (see also [Ste], [HH]),
is based on a shifted version of the RSK algorithm. Whereas the usual RSK algorithm
associates bijectively to each N-matrix A a pair of semistandard Young tableaux, the
shifted RSK algorithm associates bijectively to each P-matrix∗ A a pair of shifted
Young tableaux. There is a notion of increasing paths, and the length of the maximal
path, L(A), equals the number of boxes in the first row of the shifted tableau. Thus it
is natural to assign to each partition λ into distinct parts, that is, a strict partition, the
probability

P({λ}) = 1
Z

Qλ(x) Pλ(y), (1.3)

where Qλ and Pλ are the Schur Q-functions and Z is a normalization constant. We
call this measure the shifted Schur measure.

At first our analysis is for general parameters x and y appearing in the shifted
Schur measure, and we find that there is indeed a Gessel identity. (It follows from
the Ishikawa-Wakayama Pfaffian summation formula [IW].) Then we specialize the

∗Informally, a P-matrix is an N-matrix where we allow the nonzero entries to be either marked or unmarked.
Precise definitions are given below.
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measure by choosing the first m coordinates of x and the first n coordinates of y
equal to α (0 < α < 1) and the rest equal to zero. We call this α-specialization and
denote the resulting specialized shifted Schur measure by Pσ , where σ = (m, n, α)

denotes the parameters of the measure. Now, however, the matrix on the right side
of the Gessel identity is not Toeplitz, and so the earlier analytical methods are not
immediately available to us. Nevertheless, we do find that the distribution function
for L(A) = λ1 can be expressed in terms of the Fredholm determinant of an operator
which is a perturbation of a direct sum of products of Hankel operators. In the end
we can show that the trace norms of the perturbations tend to zero and are able to
determine the asymptotics.

We asume∗ that m/n = τ is a constant satisfying α2 < τ < α−2. Our main result
is the following.

MAIN THEOREM

Let Pσ denote the α-specialized shifted Schur measure with τ satisfying the stated
restriction. Then there exist constants c1 = c1(α, τ ) and c2 = c2(α, τ ) such that

lim
n→∞ Pσ

(λ1 − c1 n
c2 n1/3 < s

)
= F2(s).

For τ = 1, the constants have a particularly simple form, namely,

c1(α, 1) = 4α

1 − α2 and c2(α, 1) = (2α(1 + 6α2 + α4))1/3

1 − α2 .

Expressions for c1 and c2 in general are given in §6. For the Schur measure, the
corresponding α-specialization limit law was derived by Johansson [J1]; as the main
theorem shows, the two limit laws are identical.† The table of contents provides a
description of the layout of this paper.

2. Schur Q-functions
This section and §3 summarize the properties of the Schur Q-functions and the shifted
RSK algorithm which we need in this paper. The material is not new on our part. It is
presented to establish the notation used in subsequent sections and as a convenience
to the reader. A complete presentation can be found in the books by Macdonald [M]
and Hoffman and Humphreys [HH], in the papers by Sagan [S] and Stembridge [Ste],
and in the dissertation of Worley [Wo].

∗The stated restriction on τ is very likely unnecessary for the validity of the final result. Some details of the
proof would be different in the other cases, but we did not carry them out.
†We note that our α is related to Johansson’s q by q = α2. For the α-specialized Schur measure, c1(α, 1) =
2α/(1 − α) and c2(α, 1) = α1/3(1 + α)1/3/(1 − α).
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If λ = (λ1, λ2, . . . ) is a partition of n, we denote this by λ + n. The length of λ is
denoted by &(λ). Let Pn denote the set of all partitions of n, and let P := ⋃∞

n=0 Pn .
(P0 is the empty partition.) Introduce Dn ⊂ Pn , the set of partitions of n into distinct
parts. For example,

D6 =
{
{6}, {5, 1}, {4, 2}, {3, 2, 1}

}
.

Let D := ⋃∞
n=0 Dn , the set of all partitions into distinct parts. If λ + n is a partition

with distinct parts, we denote this by λ |= n and call λ a strict partition of n.
Associated to a strict partition λ is a shifted shape S(λ). One starts with the usual

Young diagram Y (λ) and for i = 1, 2, . . . , &(λ) simply indents the i th row to the
right by i − 1 boxes. The result is S(λ). We usually use λ ∈ D to denote both a strict
partition and the shifted shape S(λ).

We let N denote the set of positive integers, and

P = {1′, 1, 2′, 2, 3′, 3, . . .}

with the ordering
1′ < 1 < 2′ < 2 < 3′ < 3 < · · · .

We call the elements either marked or unmarked, depending on whether the element
is primed or not. When we do not wish to distinguish a marked element m′ from the
unmarked element m, we write m∗. A (generalized) shifted Young tableau, T , is an
assignment of elements of P to a shifted shape λ having the following properties.
(T1) T is weakly increasing across rows and down columns.
(T2) For each integer m∗, there is at most one m′ in each row and at most one m

in each column of T . (Thus the marked elements are strictly increasing across
rows of T and the unmarked elements are strictly increasing down columns of
T .)

An example of a shifted tableau of shape (7, 5, 3, 2, 1) is

1′ 1 2′ 2 2 5′ 6
2′ 2 3′ 4 5

3′ 4 5
6 7′

7′.

To each shifted tableau T we associate a monomial

xT = xa1
1 xa2

2 · · · xam
m · · · ,

where am is the number of times m∗ appears in T . Thus as far as the monomial is
concerned, we do not distinguish between marked and unmarked elements. In the
above example,

xT = x2
1 x5

2 x2
3 x2

4 x3
5 x2

6 x2
7 .
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Let λ be a strict partition of n. The Schur Q-function, the generating function of
shifted tableaux of shape λ, is

Qλ(x) :=
∑

T

xT , (2.1)

where the sum runs over all shifted tableaux of shape λ |= n. The Schur Q-function is
the analogue of the Schur function sλ when one replaces semistandard Young tableaux
of shape λ by shifted tableaux of shape λ. (Of course, here λ must be a strict partition.)
It is convenient to introduce the Schur P-function

Pλ(x) = 1
2&(λ)

Qλ(x).

We remark that a shifted tableau T of shifted shape λ |= n is called standard
if it has no marked elements and uses each unmarked letter 1, 2, . . . , n exactly once.
Schur showed that the number of standard shifted tableaux of shape λ |= n, λ =
(λ1, λ2, . . . , λ&), is

f λ
s = n!

λ1!λ2! · · · λ&!
∏

1≤i< j≤&

λi − λ j

λi + λ j
. (2.2)

This should be compared with the number of standard Young tableaux

f λ = n!
&1!&2! · · · &k !

∏

1≤i< j≤k

(&i − & j ),

where λ = (λ1, λ2, . . . , λk) and & j = λ j +k − j . The number of semistandard Young
tableaux of shape λ which can be formed using the integers 1, 2, . . . , n is

dλ(n) = sλ(

n︷ ︸︸ ︷
1, . . . , 1, 0, 0, . . .).

Similarly, the number of shifted tableaux of shape λ which can be formed using the
integers 1∗, 2∗, . . . , n∗ is

dλ
s (n) = Qλ(

n︷ ︸︸ ︷
1, . . . , 1, 0, 0, . . .).

This specialization of Qλ is important below.
The Schur Q-functions satisfy a Cauchy identity

∑

λ∈D

Qλ(x) Pλ(y) =
∞∏

i, j=1

1 + xi y j

1 − xi y j
= Z . (2.3)
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The right-hand side enumerates all matrices A whose entries are chosen from P∪{0}:
the denominator counts matrices with entries in N∪{0}, while the numerator accounts
for the primes. We call these matrices P-matrices. The above product is frequently
specialized to x = (x1, x2, . . . , xm, 0, . . .) and y = (y1, y2, . . . , yn, 0, . . .). We use
the same symbol Z to denote this specialization. It is clear from the context how to
interpret Z .

Define symmetric functions qk by

Q(t) :=
∞∏

i=1

1 + t xi

1 − t xi
=

∞∑

k=0

qk(x)tk . (2.4)

(When necessary to indicate the dependence upon x , we write Q(t, x).) It follows
from Q(t)Q(−t) = 1 that

q2m =
m−1∑

r=1

(−1)r−1qr q2m−r + 1
2
(−1)mq2

m,

which shows that q2m ∈ Q[q1, q2, . . . , q2m−1] and hence by induction on m,

q2m ∈ Q[q1, q3, q5, . . . , q2m−1].

Denote by ( the subring of ) generated by the qr ,

( = Z[q1, q3, . . .].

If λ = (λ1, λ2, . . .), we let
qλ := qλ1qλ2 · · · .

It is known that the qλ with λ strict form a Z-basis of (.
We now give the classical definition of the Schur Q-function. (Of course, in this

presentation it is a theorem.) If λ is a strict partition of length at most n, then Qλ

equals the coefficient of tλ := tλ1
1 tλ2

2 · · · in

Q(t1, t2, . . . , tn) =
n∏

i=1

Q(ti )
∏

i< j

F(t−1
i t j ),

where
F(y) = 1 − y

1 + y
= 1 + 2

∑

r≥1

(−1)r yr

and Q is defined by (2.4); in particular, for r > s,

Q(r,s) =
( 1

2π i

)2
∫∫

t−r−1
1 t−s−1

2 F(t2/t1)Q(t1)Q(t2) dt1 dt2, (2.5)
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where the contours could be chosen to be circles with |t2| < |t1|.∗
Here are some additional properties of Schur Q-functions.

(1) The Qλ, λ strict, form a Z-basis of (.
(2) Using (2.5) and the expansion for F , we have for r > s ≥ 0,

Q(r,s) = qr qs + 2
s∑

i=1

(−1)i qr+i qs−i . (2.6)

For r ≤ s, we define Q(r,s) = −Q(s,r). Now let λ be a strict partition that we
write in the form λ = (λ1, λ2, . . . , λ2n), where λ1 > λ2 > · · · > λ2n ≥ 0.
Define the 2n × 2n antisymmetric matrix

Mλ = (Q(λi ,λ j ));

then we have
Qλ = pf(Mλ), (2.7)

where pf denotes the Pfaffian.

3. Shifted RSK algorithm
For later convenience, we use a nonstandard labeling of matrix A: rows are numbered
starting at the lower left-hand corner of A, and columns have the usual left-to-right
labeling. To each P-matrix A we (bijectively) associate a biword wA as follows. For a
fixed column index we scan the matrix for increasing values of the row index. If the
(i, j)-entry is unmarked with value ai j , we repeat the pair

(
j
i

)
ai j times in wA. If the

(i, j)-element is marked, the i of the first pair
(

j
i

)
appearing in wA is marked. For

example, if

A =




1 2 0
1′ 0 2′

3′ 0 1



 ,

then

wA =
(

1 1 1 1 1 2 2 3 3 3
1′ 1 1 2′ 3 3 3 1 2′ 2

)
.

A description of the shifted RSK algorithm is more involved than that of the
usual RSK algorithm, though the general features remain the same. Namely, there is
a row bumping (and column bumping) procedure that, when iterated on a sequence

∗This requires that x ∈ &1 and that the poles x−1
i lie outside the contours. Notice that if the t1-contour were

deformed to one inside the t2-contour, then since Q(t)Q(−t) = 1, the residue at the pole t1 = −t2 crossed
would be 2 t−r−s−1

2 . The integral of this equals zero as long as r and s are not both zero. This shows that the
contours can also be chosen so that |t2| > |t1|. Equivalently, the integral representation holds for r < s as well.
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α whose elements are in P, gives a shifted tableau S, the insertion tableau. (This is
applied to the sequence in the bottom half of the biword wA.) The top half of wA gives
a recording tableau T . We now state the final result, referring the interested reader to
either [HH] or [S].

THEOREM (Sagan [S], Worley [Wo])
There is a bijective correspondence between P-matrices A = (ai j ) and ordered pairs
(S, T ) of shifted tableaux of the same shape, such that T has no marked letters on
its main diagonal. The correspondence has the property that

∑
i a∗

i j is the number of
entries t of T for which t∗ = j , whereas

∑
j a∗

i j is the number of entries s of S for
which s∗ = i . (Recall that the ∗ means we do not distinguish between a marked or
unmarked form of an integer.)

We designate the matrix S, respectively, T , to be of type s, respectively, t .
An important property of the RSK algorithm is its relationship to increasing

subsequences of maximal length in the biword wA (equivalently, increasing paths
in the matrix A of maximal weight). The shifted RSK algorithm of Sagan and
Worley shares a similar property once the notion of an increasing subsequence
is properly formulated. Let ψ ∈ Pm , φ ∈ Pn , and denote by ψ / φ the con-
catenation (ψ1, . . . , ψm, φ1, . . . , φn). Denote by rev(φ) the reverse of φ, rev(φ) =
(φn, φn−1, . . . , φ1). Given a sequence α from P, an ascent pair (ψ, φ) for α is a pair
of subsequences ψ of rev(α) and φ of α such that if ψ ∈ Pm and φ ∈ Pn , then
(1) ψ / φ is weakly increasing with respect to the ordering of P;
(2) for all k ∈ N, at most one (unmarked) k appears in ψ ;
(3) for all k ∈ N, at most one (marked) k′ appears in φ.
Thus the unmarked symbols are strictly increasing in ψ and the marked symbols are
strictly increasing in φ. The length of ψ / φ is defined to be m + n − 1. (Note that
the length here is one less than the length defined in either [HH] or [S].) Let α ∈ Pn ,
and let L(α) denote the length of the longest ascent pair (ψ, φ) of α. Then we have
the following.

THEOREM (Sagan [S], Worley [Wo])
If α is a sequence from P and T is the shifted tableau of shape (λ1, λ2, . . . , λk) re-
sulting from the insertion of α (following the rules of the shifted RSK algorithm), then
L(α) = λ1.

Here is an example of an increasing path displayed in the P-matrix A. In this example,
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L(A) = 16:∗




1′ 0 3′ 0 2′ 1′ → 2′

0 1′ 0 1 → 0 →
↑
3 0

1 2 0
↑
1 0 0 3′

1 0 1′
↑
2′ 1′ 0 0

0 1 0
↑
1′ 0 0 1′

↗
0 1′ 1′ 0 0 0 0

0 0
↑
1′ ← 1′ ← 1′ ← 1′ ← 2′





.

A quick way to compute this length is to apply a modified patience sorting algorithm
(see [AD]) to the lower row of the associated biword. (We leave this as an exercise for
the interested reader.) Of course, another way is to apply the shifted RSK algorithm
and count the number of boxes in the first row.

4. A Gessel identity
The Gessel identity [Ge] (see also [TW3]) states that the sum

∑

λ∈P
λ1≤h

sλ(x) sλ(y)

equals a certain h ×h Toeplitz determinant. The proof begins by expressing the Schur
functions sλ as determinants (the Jacobi-Trudi identity) and proceeds by recognizing
this sum of products of determinants as the expansion of a single determinant of
the product of two (nonsquare) matrices. (This expansion is called the Cauchy-Binet
expansion.)

We are interested in sums of the form
∑

λ∈D
λ1≤h

Qλ(x) Pλ(y), (4.1)

where now, as we have seen, the Qλ and Pλ are given by Pfaffians. What is needed is
a Pfaffian version of the Cauchy-Binet formula. Fortunately, Ishikawa and Wakayama
[IW] have such a formula (see also Stembridge [Ste]).

Introduce

I h
r =

{
I = (i1, . . . , ir ) : 1 ≤ i1 < · · · < ir ≤ h

}
,

∗Note, for example, that the path segment 1′ → 2′ in the upper right-hand corner contributes a weight of two,
not three, since the marked elements are strictly increasing.
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and denote by AJ the submatrix formed from A by taking those rows and columns
indexed by J ∈ I h

r . Then the Pfaffian summation formula is the following.

THEOREM (Ishikawa and Wakayama [IW])
Let A = (ai j )0≤i, j≤h and B = (bi j )0≤i, j≤h be (h + 1) × (h + 1) skew-symmetric
matrices, h ∈ N. Then

∑

0≤r≤h
r even

∑

I∈I h
r

γ |I | pf(AI ) pf(BI ) +
∑

0≤r≤h
r odd

∑

I∈I h
r

γ |I | pf(A0I ) pf(B0I )

= (−1)h(h−1)/2 pf
( −A Ih+1

−Ih+1 C

)
,

where C = (Ci j )0≤i, j≤h is the (h + 1) × (h + 1) antisymmetric matrix

Ci j =






γ j b0 j if i = 0, j ≥ 1,

γ i bi0 if i ≥ 1, j = 0,

γ i+ j bi j if i ≥ 1, j ≥ 1.

Here |I | = ∑
ik , and A0I , where I = {i1, i2, . . .}, stands for AJ , where J =

{0, i1, i2, . . .}.

Observe that I h
r is the set of partitions with exactly r distinct parts such that the

largest part is at most h. For any such partition, r ≤ h. In (4.1) we break the sum
into two sums—the first sum over distinct partitions with an even number of parts and
the second sum over distinct partitions with an odd number of parts. Recalling the
Pfaffian representation (2.7) of Qλ, we note that if λ has an odd number of parts, then
we extend the partition by appending zero, giving us a vector of even length. Thus the
sum appearing in the Pfaffian summation formula is (up to a reversal of labels) the
sum over distinct partitions satisfying λ1 ≤ h. From (2.7), we see that Ah(x) is the
(h + 1) × (h + 1) antisymmetric matrix

(
0 −qt

q Q̂h(x)

)
.

Here q is the (h × 1)-matrix with elements qr (x) (r = 1, 2, . . . , h), Q̂h(x) is the
h × h antisymmetric matrix with elements Q(r,s)(x), and qt denotes the transpose of
q . (Recall that Q(r,0) = qr .) The Pfaffian representation for Pλ is obtained from the
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Qλ Pfaffian representation by inserting the factor 2−&(λ). The matrix Bh is

Bh(y) =
(

0 − 1
2 qt

1
2 q 1

4 Q̂h(y)

)

=
(

1 0
0 1

2

)
Ah(y)

(
1 0
0 1

2

)
.

Applying the summation formula then gives for h ∈ N,
∑

λ∈D
λ1≤h

Qλ(x) Pλ(y) = pf
(−Ah(x) I

−I Bh(y)

)

=
(

det(I − Ah(x)Bh(y))
)1/2

.

The ±-factors are accounted for by the reversal of labels or, more simply, because we
are computing probabilities.

Introducing the antisymmetric matrix

Kh(x) =
(

1 0
0 1√

2

)

Ah(x)

(
1 0
0 1√

2

)

or, more explicitly,

Kh(x)rs =






− 1√
2

qs(x), r = 0, s ≥ 1,

1√
2

qr (x), r ≥ 1, s = 0,

1
2 Q(r,s)(x), r ≥ 1, s ≥ 1,

(4.2)

we obtain our Gessel identity,
∑

λ∈D
λ1≤h

Qλ(x) Pλ(y) =
(

det(I − Kh(x)Kh(y))
)1/2

. (4.3)

Observe that it follows from (4.3) and the Cauchy identity (2.3) that

lim
h→∞

det
(
I − Kh(x)Kh(y)

)
= Z2. (4.4)

5. Shifted Schur measure
Let Pm,n denote the set of P-matrices of size m × n. For A ∈ Pm,n , we recall that
L(A) denotes the length of the longest increasing path in A. Let x = (x1, x2, . . .) and
y = (y1, y2, . . .) with 0 ≤ xi < 1 and 0 ≤ yi < 1. We assume that the matrix ele-
ments ai j are distributed independently with a geometric distribution with parameter
xi y j . Specifically, for k ≥ 1,

P(ai j = k) = P(ai j = k′) =
(1 − xi y j

1 + xi y j

)
(xi y j )

k
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and
P(ai j = 0) = 1 − xi y j

1 + xi y j
.

We have, of course,
∞∑

k∗=0

P(ai j = k∗) = 1 − xi y j

1 + xi y j
+ 2

∑

k≥1

(1 − xi y j

1 + xi y j

)
(xi y j )

k = 1.

Let Pm,n,s,t (t ∈ Nm , s ∈ Nn) denote the set of A ∈ Pm,n satisfying, for 1 ≤ i ≤
m and 1 ≤ j ≤ n,

∑

1≤ j≤n

a∗
i j = si and

∑

1≤i≤m

a∗
i j = t j .

Then for A ∈ Pm,n,s,t we have

P({A}) =
∏

1≤i≤m
1≤ j≤n

(1 − xi y j

1 + xi y j

)
xs yt = 1

Z
xs yt .

Since the right-hand side does not depend upon the A chosen in Pm,n,s,t , the condi-
tional probability

P
(

L ≤ h
∣∣∣
∑

j

a∗
i j = si ,

∑

i

a∗
i j = t j

)

is uniform. Note that this uses both the independence and the geometric distribution
of the random variables ai j .

By the shifted RSK correspondence, to each A ∈ Pm,n,s,t we associate bijec-
tively a pair (S, T ) of shifted tableaux of the same shape λ |= N (N := ∑

i, j a∗
i j ) of

types s and t , respectively. The condition L(A) ≤ h becomes λ1 ≤ h. Hence

Pm,n(L ≤ h) =
∑

A∈Pm,n/Pm,n,s,t

P
(
&(A) ≤ h

∣∣ A ∈ Pm,n,s,t
)
P(A ∈ Pm,n,s,t )

=
∑

A∈Pm,n/Pm,n,s,t

1
|Pm,n,s,t |

1
Z

xs yt |Pm,n,s,t |

= 1
Z

∑

N≥0

∑

λ|=N
λ1≤h

Qλ(x)Pλ(y).

(Here Pm,n denotes probability before α-specialization.) Thus, by (4.3),

Pm,n(L ≤ h) = 1
Z

(
det(I − Kh(x)Kh(y))

)1/2
. (5.1)

The above uses the combinatorial definition (2.1) of the Schur Q-function. The reason
for the occurence of Pλ(y) (instead of Qλ(y)) is that the recording tableau T has no
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marked elements on the diagonal, which accounts for the factor 2−&(λ). (There are
exactly 2&(λ) entries on the main diagonal in a marked shifted tableau of shape λ, and
so there are 2&(λ) ways to mark and unmark the diagonal elements.)

Observe the consequence that the distribution function Pm,n (L ≤ h) is a sym-
metric function of x = (x1, . . . , xm) and of y = (y1, . . . , yn).

6. Proof of the main theorem

6.1. An operator formulation
We begin by deriving an alternative representation for det(I − Kh(x)Kh(y)) in terms
of Toeplitz and Hankel operators on the Hilbert space &2(Z+) (Z+ := N ∪ 0). These
may well be of independent interest in the theory of Schur Q-functions. We assume
at first only that x, y ∈ &1 together with uniform estimates x j , y j ≤ c < 1

To set notation, we let {e j } j≥0 denote the canonical basis of &2(Z+). Since the
vector e0 occurs frequently, we denote e0 by e, and it is convenient to set e−1 = 0.
The backward shift operator ) is characterized by

)e j = e j−1,

and its adjoint )∗ is the forward shift operator. The two satisfy

) )∗ = I and )∗ ) = I − e ⊗ e, (6.1)

where for vectors u and v we denote by u ⊗ v the operator sending a vector f to
u (v, f ).

Suppressing temporarily the parameters x and y, we define L to be the matrix
with entries

L j k =
( 1

2π i

)2
∫ ∫

Q(z) Q(ζ )

z j+1 ζ k+1
dz dζ

z + ζ
, (6.2)

where Q is defined as in (2.4). Here the contours can be taken to be concentric circles
of different radii near the unit circle. Since Q(z) Q(−z) = 1, the residue at ζ = −z in
the integral defining L is zero, so we may freely choose whether the z-contour lies in-
side or outside the ζ -contour without affecting the value of the integral. (Equivalently,
L is symmetric.)

From (2.5), we see that

Q( j,k) = L j−1,k − L j,k−1,

where we set L−1,k = 0. Note that L j−1,0 = q j . The matrix elements K jk given in
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(4.2) are then

K j k =






− 1√
2

L0,k−1, j = 0, k 4= 0,

1√
2

L j−1,0, j 4= 0, k = 0,

1
2
(
L j−1,k − L j,k−1

)
, j, k > 0.

By introducing the vector q = q(x) = (q0(x), q1(x), . . .), the operator K can be
written

K = 1
2
()∗L − L)) + 1

2
ω(e ⊗ q − q ⊗ e), (6.3)

where ω = 1 −
√

2.
The operator L is expressible in terms of Toeplitz and Hankel matrices acting

on &2(Z+). Recall that T (ψ), the Toeplitz matrix with symbol ψ , has ( j, k)-entry
ψ j−k (subscripts denote Fourier coefficients here), while the Hankel matrix H(ψ)

has ( j, k)-entry ψ j+k+1. If we assume that the contours in (6.2) are chosen so that
|ζ | < |z| and expand (z + ζ )−1 in powers of ζ/z, we obtain

Li j =
∞∑

k=0

(−1)k
( 1

2π i

)2
∫ ∫

z−i−k−2 ζ k− j−1 Q(z) Q(ζ ) dz dζ.

Now make the substitution ζ → −ζ−1 to obtain

(−1) j
∞∑

k=0

( 1
2π i

)2
∫ ∫

z−i−k−2 ζ−k+ j−1 Q(z)
Q̃(ζ )

dz dζ,

where Q̃(ζ ) = Q(ζ−1). The z-integral gives Qi+k+1, while the ζ -integral gives
(Q̃−1)k− j . It follows that

L = H(Q) T (Q̃−1) J, (6.4)

where J is the diagonal matrix with diagonal entries (−1) j . If in the last integrals we
make the substitutions z → −z, ζ → −ζ , we find that also

L = −J H(Q−1) T (Q̃). (6.5)

If we reintroduce our parameters x and y, which we now write for notational conve-
nience as subscripts, and use the two representations of L , we see that

det (I + Lx L y) = det
(
I − H(Qx ) T (Q̃−1

x ) H(Q−1
y ) T (Q̃y)

)

= det
(
I − T (Q̃y) H(Qx ) T (Q̃−1

x ) H(Q−1
y )

)
.

Here we have used the general identity det (I − AB) = det (I − B A), valid if one
of the operators is trace class and the other bounded, and the fact that the Hankel
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operators are Hilbert-Schmidt under our assumptions on x and y. Another general
fact is

T (ψ1) H(ψ2) + H(ψ1) T (ψ̃2) = H(ψ1 ψ2). (6.6)

In particular, if ψ1 is a minus function (Fourier coefficients with positive index all
vanish), then T (ψ1) H(ψ2) = H(ψ1ψ2). From this we find that

T (Q̃y) H(Qx ) = H(Qx Q̃y) and T (Q̃−1
x ) H(Q−1

y ) = H(Q̃−1
x Q−1

y ),

so the product of these equals H(φ) H(φ̃−1), where

φ(z) := Qx (z) Q̃y(z). (6.7)

Since yet another general identity is

T (ψ1) T (ψ2) = T (ψ1 ψ2) − H(ψ1) H(ψ̃2), (6.8)

we have I − H(φ) H(φ̃−1) = T (φ) T (φ−1), and we have shown that

det (I + Lx L y) = det T (φ) T (φ−1). (6.9)

If a symbol φ has geometric mean 1 and is sufficiently well behaved, then the strong
Szegö limit theorem says that

lim
h→∞

det Th(φ) = E(φ) := exp
( ∞∑

n=1

n (log φ)n (log φ)−n

)
,

where Th(φ) = (φ j−k) j,k=0,...,h−1. In the case of our symbol given by (6.7), we find
that

E(φ) =
( ∏

i, j

1 + xi y j

1 − xi y j

)2
= Z2,

where Z is as in the right side of (2.3). But there is another formula for E(φ), namely
(see [W]),

E(φ) = det T (φ)T (φ−1),

and so from (6.9) we have the identity

det(I + Lx L y) = Z2.

In the case of Schur functions, the right-hand side of the Gessel identity is a
Toeplitz determinant, and the Cauchy identity for Schur functions emerges as a con-
sequence of the Szegö limit theorem. In view of the last identity and the connection
between the operators L and K on &2(Z+), it is tempting to try to find, using these,
an independent derivation of (2.3). It follows from (6.3) that I − K (x) K (y) and
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I +Lx L y differ by a finite-rank operator. This operator cannot contribute to the deter-
minant, but we do not see, a priori, why this is so. So such an independent derivation
eludes us.

To continue now, we let Ph be the projection operator onto the subspace of &2(Z+)

spanned by {e0, e1, . . . , eh}. Thus if K is the operator on &2(Z+), then Kh = Ph K Ph .
Instead of working directly with the product K (x) K (y), it is convenient to write
(2×2)-matrices with operator entries. Thus det (I − Kh(x) Kh(y)) is the determinant
of (

Ph 0
0 Ph

) (
I K (x)

K (y) I

) (
Ph 0
0 Ph

)
,

thought of as acting on Ph &2(Z+) ⊕ Ph &2(Z+). To simplify notation, we use Ph to
denote also (

Ph 0
0 Ph

)
,

and we set

K =
(

0 K (x)

K (y) 0

)
.

Thus
det

(
I − Kh(x) Kh(y)

)
= det Ph(I + K )Ph .

It follows from (4.4) and the infinite-dimensional version of Jacobi’s theorem on
the principal (n ×n)-minor of the inverse of a (finite) matrix∗ that this may be written

det
(
I − Kh(x) Kh(y)

)
= Z2 det

(
(I − Ph)(I + K )−1(I − Ph)

)
. (6.10)

Thus our first goal is to compute (I + K )−1.
Using the easily verified fact

)∗ L + L ) = q ⊗ q − e ⊗ e (6.11)

and (6.3), we see that K = )∗L + R− = −L) + R+, where

R± = 1
2
(
± q ⊗ q ∓ e ⊗ e + ω(e ⊗ q − q ⊗ e)

)
. (6.12)

Thus

I + K =




I )∗Lx + R−

x

)∗L y + R−
y I,



 ,

where subscripts have the usual meaning.

∗The infinite-dimensional result follows by replacing the operator K by PN K PN , applying the finite-
dimensional result, and taking the (N → ∞)-limit. We use the fact that K is trace class, which holds since the
Hankel operators are trace class. Of course, all this requires that the infinite-dimensional operator be invertible.
This follows from the limit results we establish, as we see at the end of §6.3.
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6.2. Calculation of (I + K )−1

The fundamental objects that appear here are I + Lx L y and I + L y Lx , and we begin
by showing that they are invertible and computing their inverses. Define

H1 = H(Qx Q̃−1
y ) and H2 = H(Qy Q̃−1

x ).

We prove the basic identities
(
I + Lx L y

)−1 = I − H1 H2 and
(
I + L y Lx

)−1 = I − H2 H1. (6.13)

We do this with the help of (6.6) and (6.8). Using these and (6.4), we find that

H1 H2 Lx = H(Qx Q̃−1
y ) H(Qy Q̃−1

x ) H(Qx ) T (Q̃−1
x ) J

= H(Qx Q̃−1
y )

[
T (Qy) − T (Qy Q̃−1

x ) T (Q̃x )
]

T (Q̃−1
x ) J

=
[
H(Qx ) T (Q̃−1

x ) − H(Qx Q̃−1
y ) T (Qy Q̃−1

x )
]

J

= Lx − H1 T (Qy Q̃−1
x ) J.

Thus
(I − H1 H2) Lx = H1 T (Qy Q̃−1

x ) J. (6.14)

From (6.14) and (6.5) we obtain similarly

(I − H1 H2) Lx L y = −H1 T (Qy Q̃−1
x ) H(Q−1

y ) T (Q̃y)

= H1 H(Qy Q̃−1
x ) T (Q̃−1

y ) T (Q̃y) = H1 H2.

This establishes the first identity of (6.13), and the second is obtained by interchanging
x and y.

Beginning the calculation of (I + K )−1, we refer to (6.11) and (6.12) and find
that



I Lx)

L y) I



 (I + K ) =




I + Lx L y 0

0 I + L y Lx



 +




Lx)R−

y R+
x

R+
y L y)R−

x ,



 ,

where we use subscripts as before. Using (6.13), this may be written




I + Lx L y 0

0 I + L y Lx







I +




(I − H1 H2)Lx)R−

y (I − H1 H2)R+
x

(I − H2 H1)R+
y (I − H2 H1)L y)R−

x







 .
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Hence

(I + K )−1 =



I +




(I − H1 H2)Lx)R−

y (I − H1 H2)R+
x

(I − H2 H1)R+
y (I − H2 H1)L y)R−

x









−1

×




I − H1 H2 (I − H1 H2)Lx)

(I − H2 H1)L y) I − H2 H1



 .

To compute the entries of the matrix inside the large bracket, we show that

(I − H1 H2)Lx)qy = H1 H2 e and (I − H1 H2) qx = T1 e, (6.15)

where we set

T1 = T (Qx Q̃−1
y ) and T2 = T (Qy Q̃−1

x ).

For the first we use the fact that )q = Le, which gives

(I − H1 H2)Lx )qy = (I − H1 H2) Lx L y e = H1 H2 e.

To derive the second we use the fact that qx = T (Qx ) e and compute

H1 H2 T (Qx ) = H(Qx Q̃−1
y ) H(Qy Q̃−1

x ) T (Qx ) = H(Qx Q̃−1
y ) H(Qy)

= T (Qx ) − T (Qx Q̃−1
y ) T (Q̃y).

Since T (Q̃y) e = e (the matrix is upper-triangular with (0, 0)-entry 1), this gives

H1 H2 qx = qx − T1 e,

which is equivalent to the desired identity. Of course, the same identities hold if we
make the interchanges x ↔ y and 1 ↔ 2.

With these identities and the fact that )R− = −(1/2) − )q ⊗ (q + ωe), we find
that the matrix in large brackets may be written

I + 1
2

(
−H1 H2e ⊗ (qy + ωe) T1e ⊗ (qx − ωe) + (I − H1 H2)e ⊗ (ωqx − e)

T2e ⊗ (qy − ωe) + (I − H2 H1)e ⊗ (ωqy − e) −H2 H1e ⊗ (qx + ωe)

)

.

This in turn has the form

I +
4∑

i=1

ai ⊗ bi ,
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where

a1 = 1
2




−H1 H2e

−ωH2 H1e + T2e + ωe



 , a2 = 1
2




−ωH1 H2e + T1e + ωe

−H2 H1e



 ,

a3 = 1
2




−ωH1 H2e

H2 H1e − ωT2e − e



 , a4 = 1
2




H1 H2e − ωT1e − e

−ωH2 H1e



 ,

b1 =




qy

0



 , b2 =




0

qx



 , b3 =




e

0



 , b4 =




0

e



 .

At this stage we have shown that

(I +K )−1 =
(

I +
4∑

i=1

ai ⊗bi

)−1



I − H1 H2 (I − H1 H2)Lx)

(I − H2 H1)L y) I − H2 H1



 . (6.16)

If we have a finite-rank operator
∑

ai ⊗ bi , then

(
I +

∑
ai ⊗ bi

)−1
= I −

∑

i, j

(S−1)i j ai ⊗ b j , (6.17)

where S is the matrix with entries

Si j = δi j + (bi , a j ).

In our case we have to compute 16 inner products, which is not as bad as it might
seem since there are basic inner products from which the others can be derived. And
if we have evaluated any inner product, then we have evaluated another with the inter-
changes x ↔ y and 1 ↔ 2. Two basic inner products are trivial:

(e, e) = 1 and (e, qy) = 1.

Two are not evaluable in simpler terms but just notationally. We set

t = (T1e, e) = (T2e, e) and h = (H1 H2e, e) = (H2 H1e, e).

(The equality of the first two inner products follows from the fact that T ∗
1 = J T2 J

and Je = e.) The nontrivial ones are

(T1e, qy) = 1 and (H1 H2e, qy) = 1 − t.
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For the first, we have (T1e, qy) = (T1e, T (Qy)e) = (T (Q̃y)T1e, e), and this is the
(0, 0)-entry of T (Q̃y) T (Qx Q̃−1

y ) = T (Qx ). The (0, 0)-entry equals 1. For the sec-
ond, we have

(H1 H2e, qy) = 1 −
(
(I − H1 H2)e, qy

)
= 1 −

(
e, (I − H2 H1)qy

)
= 1 − (e, T2e)

by the second identity of (6.15).
We can now write down all 16 inner products. For convenience, we multiply them

by 2:

2(a1, b1) = −1 + t, 2 (a2, b1) = ωt + 1,

2(a3, b1) = −ω(1 − t), 2 (a4, b1) = −t − ω − 2,

2(a1, b2) = ωt + 1, 2 (a2, b2) = −1 + t,

2(a3, b2) = −t − ω − 2, 2 (a4, b2) = −ω(1 − t),

2(a1, b3) = −h, 2 (a2, b3) = −ωh + t + ω,

2(a3, b3) = −ωh, 2 (a4, b3) = h − ωt − 1,

2(a1, b4) = −ωh + t + ω, 2 (a2, b4) = −h,

2(a3, b4) = h − ωt − 1, 2 (a4, b4) = −ωh.

Let us see which vectors arise in the end. From (6.16) and (6.17),

(I + K )−1 =




I − H1 H2 (I − H1 H2)Lx)

(I − H2 H1)L y) I − H2 H1



 −
4∑

i, j=1

si j ai ⊗ b′
j , (6.18)

where si j = (S−1)i j and

b′
j =




I − H2 H1 )∗L y(I − H1 H2)

)∗Lx (I − H2 H1) I − H1 H2



 b j .

The quantities that appear in the ai , other than e, which we can ignore since (I −
Ph)e = 0, are H1 H2e and T1e in the first component and H2 H1e and T2e in the
second. Those in the b j are qy and e in the first component and qx and e in the second.
For b′

j we use (6.15) to see that T2e, H2 H1e, )∗L y T1e, and )∗L y(I−H1 H2)e appear
in the first component and T1e, H1 H2e, )∗Lx T2e, and )∗Lx (I − H2 H1)e in the
second. (The e that appear once again drop out in the end.)

Two new vectors appear here (as well as those obtained by the usual interchanges).
We claim that

)∗L y T1e = T2e − te and )∗L y(I − H1 H2)e = H2 H1e + t T2e − (1 − h)e.
(6.19)
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For the first, we have

L y T1 = −J H(Q−1
y )T (Q̃y)T (Qx Q̃−1

y ) = −J H(Q−1
y )T (Qx )

= −J H(Q̃x Q−1
y ) = H(Qy Q̃−1

x )J,

so
)∗L y T1e = )∗H(Qy Q̃−1

x )e = T2e − te.

For the second, we take transposes and interchange x and y in (6.14) to obtain

L y T1 = −J H(Q−1
y L y(1 − H1 H2)e = J T (Q̃x Q−1

y )H(Qy Q̃−1
x )e

= −T (Qy Q̃−1
x )H(Q̃x Q−1

y )e = H(Qy Q̃−1
x )T (Qx Q̃−1

y )e.

So

)∗L y(1 − H1 H2)e =
[
H(zQy Q̃−1

x ) − e ⊗ T2e
]
T (Qx Q̃−1

y )e

= H(zQy Q̃−1
x )H(zQx Q̃−1

y )e − (T1e, T2e)e

= H2 H1e + (T2e ⊗ T1e)e − (T1e, T2e)e.

The next-to-last term equals t T2e, while the last inner product equals

(J T ∗
2 J J T1 Je, e) =

(
T (Qx Q̃−1

y )T (Q̃y Q−1
x )e, e

)
=

(
(I − H1 H2)e, e

)
.

This establishes the second claim.
It follows from the above that the only vectors that arise in the b′

j are T2e and
H2 H1e in the first component and T1e and H1 H2e in the second.

6.3. Specialization
At this point we impose the α-specialization. Thus the first m xi and the first n yi
are equal to α and the rest are equal to zero. We assume that τ = m/n is a constant
satisfying α2 < τ < α−2, and we first determine the asymptotics as n → ∞ of the
quantities appearing in the inner products. We claim that

lim
n→∞ t = 0 and lim

n→∞ h = 1
2
.

For the first, we have

t = (T1)0,0 = 1
2π i

∫ (1 + αz
1 − αz

)m( z − α

z + α

)n dz
z

. (6.20)

If we apply steepest descent, we see that the saddle points should satisfy

τ

1 − α2z2 + 1
z2 − α2 = 0
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iβ

α1/α

iβ

Figure 1. Steepest descent curve

and so are given by

z = ± i

√
1 − α2 τ

τ − α2 = ±iβ.

These are purely imaginary under our assumption on τ . The steepest descent curve
passes through these points and closes at α and −α−1 (see Fig. 1). The integral is
O(n−1/2). For the second, we have

(H1 H2)i, j =
( 1

2π i

)2 ∞∑

k=0

∫ ∫ (1 + αz
1 − αz

)m( z − α

z + α

)n(1 + αζ

1 − αζ

)n(ζ − α

ζ + α

)m

× z−i−k−2 ζ−k− j−2 dz dζ

=
( 1

2π i

)2
∫ ∫ (1 + αz

1 − αz

)m( z − α

z + α

)n(1 + αζ

1 − αζ

)n(ζ − α

ζ + α

)m
z−i−1

× ζ− j−1 dz dζ

zζ − 1
, (6.21)

where the contours are such that |zζ | > 1. Setting i = j = 0 and making the
substitution ζ → ζ−1 gives

h = (H1 H2)0,0

=
( 1

2π i

)2
∫ ∫ (1 + αz

1 − αz

)m( z − α

z + α

)n(ζ + α

ζ − α

)n(1 − αζ

1 + αζ

)m dz dζ

z(z − ζ )
,
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where now on the contours (both still described counterclockwise) |z| > |ζ |. If we
ignore the z − ζ in the denominator, we have two integrals, to each of which we apply
steepest descent. The saddle points are ±iβ for both. The new z-contour is as before,
but the new ζ -contour closes at −α and α−1. We first deform the original ζ -contour to
this, always remaining inside the original z-contour. Then we deform the z-contour to
its steepest descent curve. In the process we pass through the points of the ζ -contour
from −iβ to iβ in the right half-plane. The z residues at these points are 1/ζ , and so
the deformations lead to the double integral over the steepest descent contours, which
is O(n−1/2), plus (2π i)−1 ∫ iβ

−iβ dζ/ζ = 1/2. This establishes the second limit.
When ω = 1 −

√
2, we find that det S has the limit (5 − 3

√
2)/8 4= 0 as t → 0,

h → 1/2.∗ Hence the entries of S−1 are all bounded. (The invertibility of S for large
n implies in turn the invertibility of I + K and hence the validity of the determinant
identities we have been using.)

6.4. Scaling
If we write P for I − Ph , then we see from (6.18) that P(I + K )−1 P equals the
identity operator I minus




P H1 H2 P 0

0 P H2 H1 P



 −




0 P(I − H1 H2)Lx)P

P(I − H2 H1)L y)P 0





+
4∑

i, j=1

si j Pai ⊗ Pb′
j . (6.22)

Eventually we set i = h + n1/3x, j = h + n1/3 y, where h = cn + n1/3s with c to be
determined. The operators P H1 and H1 P give rise to integrals like

∫ (1 + αz
1 − αz

)m( z − α

z + α

)n
z−cn−n1/3x dz

(with a different x), and P H2 and H2 P give rise to integrals like
∫ (1 + αz

1 − αz

)n( z − α

z + α

)m
z−cn−n1/3x dz.

If we make the substitution z → z−1 in the latter, we get an integral like
∫ ( z + α

z − α

)n(1 − αz
1 + αz

)m
zcn+n1/3x dz.

∗Computations verify that when τ < α2, the limit of h is zero and t = (−1)m + o(1), and that the limit of det S
is (9 − 4

√
2)/2 as m → ∞ through even values and −1/2 as m → ∞ through odd values. For the limits when

τ > α−2, we replace m by n. The proofs should be similar to what we have already done, except that the saddle
points will now be real.
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If we set
ψ(z) =

(1 + αz
1 − αz

)m( z − α

z + α

)n
z−cn,

our integrals become
∫

ψ(z) z−n1/3x dz and
∫

ψ(z)−1 zn1/3x dz.

If we think of the factors ψ(z)±1 as the dominant ones and apply steepest descent,
there are in general two saddle points for the two integrals, and the product of the
critical values is exponentially small or large. If c is chosen so that the critical points
coincide,∗ then the product of the critical values is 1 and the product of the operators
has nontrivial scaling.

To determine c, let σ(z) = n−1 log ψ(z), so that

σ ′(z) = 2ατ

1 − α2z2 + 2α

z2 − α2 − c
z
.

If we eliminate c from σ ′(z) = σ ′′(z) = 0, we obtain

τ(1 + α2z2)

(1 − α2z2)2 − α2 + z2

(z2 − α2)2 = 0. (6.23)

The function on the left is strictly increasing from −∞ to +∞ on the interval
(α, α−1). It follows that there is a unique point z0 in this interval where the func-
tion vanishes. This is our saddle point, and we set

c = 2αz0

( τ

1 − α2z2
0

+ 1
z2

0 − α2

)
> 0. (6.24)

From the behavior of σ ′(z) for large negative z and near −α−1, α, and zero, we see
that σ ′ has a zero in (−∞, −α−1) and a zero in (−α, 0). Since it has a double zero
at z0, this accounts for all four of its finite zeros. Since σ ′(z) tends to +∞ at the
endpoints of (α, α−1), it follows that it is positive everywhere there except at z0, and
this implies that σ ′′′(z0) > 0. (Well, this only shows that σ ′′′(z0) ≥ 0. We find in
Section 6.6 an explicit expression for σ ′′′(z0) in terms of z0, from which it is clear
that it is positive.)

The two steepest descent curves, which we call (+ for the first integral and (−

for the second, together form a single contour. The first emanates from z0 at angles
±π/3 with branches going to ∞ in two directions. The second emanates from z0 at
angles ±2π/3 and closes at z = 0 (see Figure 2).

It is convenient to replace &2([h, ∞)) by &2(Z+), and to do that we change our
meaning of the operator P . A P appearing on the left is to be interpreted as )h ,

∗This c is the c1(α, τ ) of the main theorem.
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!

!

0

!

z0

!

Figure 2. Steepest descent curves (±

and a P appearing on the right is to be interpreted as )∗h . So, for example, the i th
component of PT1e is (T1e)h+i and the (i, j)-entry of P H1 H2 is (H1 H2)h+i,h+ j .
With these reinterpretations of P , the operators in (6.22) all act on &2(Z+) and the
determinant has not changed. (Recall that h = cn + n1/3s.)

Let D be the diagonal matrix with i th diagonal element equal to ψ(z0)−1zn1/3s+i
0 ,

and multiply (6.22) by
(

D 0
0 D−1

)
on the left and by

(
D−1 0

0 D

)
on the right. This does

not affect the determinant. (The reason is that all the operators in (6.22) have (i, j)-
entry O(r i+ j ) for fixed n, where r can be any number larger than α, and α < z0 <

α−1.) We show that after these multiplications the first operator scales to the the direct
sum of two Airy operators,∗ the second operator has trace norm o(1), and the vectors
in the sum all have norm o(1).

∗If a matrix acting on &2(Z+) has entries M(i, j) and if the kernel n1/3 M([n1/3x], [n1/3 y]) acting on L2(0, ∞),
which is unitarily equivalent to the matrix operator, converges in trace norm to a limiting kernel, then we say
that the matrix scales in trace norm to the limiting kernel. The Fredholm determinant of M(i, j) then converges
to the Fredholm determinant of the limiting kernel. This is what happens here, with the limiting kernel being the
direct sum of two Airy kernels.
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6.4.1. The first operator in (6.22)
The upper left corner of the first operator becomes, aside from the identity operator,
D P H1 H2 P D−1. We write this as

(D P H1 D0) (D−1
0 H2 P D−1),

where D0 is the diagonal matrix with i th diagonal element equal to zi
0 , and we scale

each factor. We have

zn1/3s+i+ j
0 (P H1)i, j = zn1/3s+i+ j

0
2π i

∫ (1 + αz
1 − αz

)m( z − α

z + α

)n
z−h−i− j−2 dz

= zn1/3s+i+ j
0

2π i

∫
ψ(z) z−n1/3s−i− j dz

z2 . (6.25)

The main fact is the following. Define

ψ(z, γ ) =
(1 + αz

1 − αz

)m( z − α

z + α

)n
z−γ n,

and set
In(x) = 1

2π i

∫
ψ(z, c + n−2/3x)

dz
z2 ,

the contour being the unit circle. Then

ψ(z0)
−1 zn1/3x

0 n1/3 |In(x)| ≤ e−δx , (6.26)

valid for some δ and all n if x is bounded from below, and

lim
n→∞ ψ(z0)

−1 zn1/3x
0 n1/3 In(x) = z−1

0 g Ai(gx) (6.27)

pointwise, with g the constant given by (6.30). (The limit in (6.27) is uniform for x in
a bounded set.)

We first show that (6.26) holds if n1/3x > ηn for some η > 0. For this we set
γ = c + n−2/3x so that γ − c > η, write our main integrand as ψ(z, γ ), and do
steepest descent. With

σ(z, γ ) = n−1 log ψ(z, γ ) = σ(z) − (γ − c) log z, (6.28)

our saddle points z±
γ (there are two of them when γ > c) are solutions of σ ′(z±

γ , γ ) =
0. Differentiating this with respect to γ gives

σ ′′(z±
γ , γ )

dz±
γ

dγ
− 1

z±
γ

= 0.
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Since σ ′′(z±
γ , γ ) 4= 0 (since c is the only value of γ for which there is a double saddle

point), we find that if z±
γ are chosen so that z+

γ > z−
γ for γ near c, then z+

γ increases
always as γ increases and z−

γ decreases, and σ ′′
1 (z+

γ , γ ) > 0 and σ ′′
1 (z−

γ , γ ) < 0. In
particular, z+

γ is the saddle point we take for our steepest descent, and z+
γ > z0 when

γ > c since z+
c = z0. For the critical value, we have to see how σ(z+

γ , γ ) behaves as
a function of γ . From (6.28) and the fact σ ′(z±

γ , γ ) = 0, we obtain

dσ(z±
γ , γ )

dγ
= − log z±

γ ,

and so
d

dγ

[
σ(z±

γ , γ ) + γ log z0
]

= log
z0

z±
γ

. (6.29)

Since z+
γ is an increasing function of γ, this shows that σ(z+

γ , γ ) + γ log z0 is a de-
creasing concave function of γ . It follows that for some δ > 0,

σ(z+
γ , γ ) + γ log z0 < σ(z0) + c log z0 − δ (γ − c)

for γ ≥ c + η. Thus for these γ,

ψ(z0)
−1 zn(γ−c)

0 ψ(z+
γ , γ ) ≤ e−δn(γ−c).

Since |ψ(z, γ )| achieves its maximum on the steepest descent contour at zγ and since
the contour is bounded away from zero (this follows from the fact that zγ → α as
γ → ∞), we see that in this case In(x) is at most a constant times ψ(z+

γ , γ ), where
γ = c + n−2/3x . Hence

ψ(z0)
−1 zn1/3x

0 |In(x)| = O(e−δn1/3x )

when n1/3x > ηn. This is an even better estimate than (6.26).
Since we have shown that (6.26) holds if n1/3x > ηn, where η can be as small as

we please, we may assume n1/3x = o(n) when x > 0.
Write

In(x) = 1
2π i

∫
ψ(z) z−n1/3x dz

z2 ,

and use the steepest descent curve (+. It emanates from z0 at angles ±π/3. Clearly it
is bounded away from zero. Choose ε small, and let

((1) =
{
z ∈ (+ : |z − z0| > ε

}
and ((2) =

{
z ∈ (+ : |z − z0| < ε

}

with corresponding I (1)
n (x) and I (2)

n (x). We show that both of these satisfy the uni-
form estimate (6.26) and

lim
n→∞ ψ(z0)

−1 n1/3 I (1)
n (x) = 0
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and
lim

n→∞ ψ(z0)
−1 zn1/3x

0 n1/3 I (2)
n (x) = z−1

0 g Ai(gx).

Consider I (1)
n (x) first. Since 8 σ(z) is strictly decreasing as we move away from

z0 on (, we know that |ψ(z)| < ψ(z0) e−δn on ((1) for some δ > 0. The assertions
follow from this since we are in the case n1/3x = o(n). (This also holds also for x < 0
since x is bounded below.)

Making the variable change z → z0 (1+ξ), we can write, since z = z0 eξ(1+O(ξ))

near z = z0,

I (2)
n (x) = ψ(z0) z−n1/3x

0
1
2
π i

∫

|ξ |<ε/z0

enbz3
0ξ3(1+O(ξ))−n1/3xξ(1+O(ξ)) (

z−1
0 +O(ξ)

)
dξ,

where b = σ ′′′(z0)/6. The path of integration here is the portion of the contour ((2)

satisfying the indicated inequality. It consists of two little arcs emanating from ξ = 0
tangent to the line segments making angles ±π/3 with the positive axis. If ε is small
enough and we replace the integral by the line segments themselves, we introduce an
error of the form O(e−δn) with a different δ since n1/3x = o(n). With the variable
change ξ → n−1/3ξ , we obtain

ψ(z0)
−1 zn1/3x

0 n1/3 I (2)
n (x)

= 1
2π i

∫

|ξ |<n1/3ε
ebz3

0ξ3(1+O(n−1/3ξ))−xξ(1+O(n−1/3ξ))(z−1
0 + O(n−1/3ξ)

)
dξ

+ O(e−δn),

where now the integration is taken over line segments of length of the order n1/3.
On the path of integration, we have 8(ξ3) ≤ −δ|ξ |3 and 8(ξ) ≥ δ|ξ | for some

δ > 0, and so for the above we have an estimate of the form
∫ ∞

0
e−δ(t3−xt)dt + O(e−δn).

Since n 9 x , this gives the required uniform bound. The limit of the integral, with its
factor 1/2π i, equals z−1

0 g Ai(gx), where

g = (3bz3
0)

−1/3 = z−1
0

( 2
σ ′′′(z0)

)1/3
. (6.30)

That the limit is as stated follows by taking the limit under the integral sign, which is
justified by dominated convergence.

To obtain the scaling of the matrix D P H1 D0, we need only observe that by
(6.25),

n1/3 (D P H1 D0)[n1/3x], [n1/3 y]

= ψ(z0)
−1 zn1/3s+[n1/3x]+[n1/3x]

0 n1/3 In
(
s + n−1/3([n1/3x] + [n1/3 y])

)
.
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It follows from (6.26) and (6.27) that this kernel on (0, ∞) converges in Hilbert-
Schmidt norm to z−1

0 g Ai(g(s + x + y)).
To scale D−1

0 H2 P D−1, we write

z−n1/3s−i− j
0 (P H2)i, j = z−n1/3s−i− j

0
2π i

∫ (1 + αz
1 − αz

)n( z − α

z + α

)m
z−cn−n1/3s−i− j−2 dz.

If we make the substitution z → z−1, this becomes

z−n1/3s−i− j
0

2π i

∫
ψ(z)−1 zn1/3s+i+ j dz.

This is completely analogous to (6.25). To use the analogous argument we mention
only that we use (6.29) with the minus signs to see that both −σ(z−

γ , γ ) − γ log z0
and its derivative are decreasing functions of γ . The steepest descent curve now is
(−. We need not go through the details again. We find that

n1/3 (D−1
0 P H1 D−1)[n1/3x], [n1/3 y]

converges in Hilbert-Schmidt norm to z0 g Ai(g(s + x + y)). Hence

n1/3(D P H1 H2 P D−1)[n1/3x], [n1/3 y]

converges in trace norm to g KAiry(g(s + x), g(x + y)) on L2(0, ∞).
By taking transposes, we see that D−1 P H2 H1 P D−1 has the same scaling limit,

which takes care of the lower right corner of the first operator in (6.22).

6.4.2. The second operator in (6.22)
Next, we have to look at

D P(I − H1 H2)Lx)P D and D−1 P(I − H2 H1)L y)P D−1.

We find, using (6.14),

z2n1/3s+i+ j
0 ((I − H1 H2)Lx))h+i,h+ j

=
( 1

2π i

)2
∫ ∫ (1 + αz

1 − αz

)m( z − α

z + α

)n(1 + αζ

1 − αζ

)n(ζ − α

ζ + α

)m

× z2n1/3s+i+ j
0

z−h−i−1 ζ h+ j−1

zζ − 1
dz dζ (−1)h+ j .

After the substitution of ζ → −ζ−1, this becomes

( 1
2π i

)2
∫ ∫

ψ(z) ψ(ζ )
( z

z0

)−n1/3s−i( ζ

z0

)−n1/3s− j dz dζ

z(z + ζ )
.
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The integrals here are initially taken over circles close to the unit circle, with |z| > |ζ |.
We first deform the ζ -contour to (+ while always having z + ζ nonzero. Then if
we deform the z-contour, we pass through a pole at ζ = −z for every z ∈ (+.
The residue at the pole equals a constant times z−2h−i− j−2, and integrating this over
(+ gives zero. So both integrals may be taken over (+. Since now the denominator
does not vanish at z = ζ = z0, the same sort of argument we already gave shows
that this operator equals a constant times ψ(z0)2 n−1/3 times an operator that scales
to the trace class operator g Ai(g(s + x)) ⊗ g Ai(g(s + y)). In particular, its trace
norm is O(ψ(z0)2 n−1/3). This shows that D P(I − H1 H2)Lx)P D has trace norm
O(n−1/3), and a similar argument applies to D−1 P(I − H2 H1)L y)P D−1.

6.4.3. The last operator in (6.22)
Finally, we consider the vectors Pai and Pb′

j and look at their constituents PT1e,
PT2e, H1 H2e, and H2 H1e. We show that

‖D PT1e‖ = O(n−1/6) and |D−1 PT2e‖ = O(n−1/6),

‖DH1 H2e‖ = O(n−2/3) and ‖D−1 H2 H1e‖ = O(n−2/3).

For the first, we have

(T1e)h+i = 1
2
π i

∫
ψ(z) z−n1/3s−i−1 dz = In

(
s + n−1/3(i − 1)

)
,

and from (6.26) and (6.27) we deduce now that the function

n1/3(D PT1e)[n1/3x]

converges in L2(0, ∞). In particular, its norm is O(1). But then
∥∥{

(D PT1e)
}

i

∥∥
&2 = n1/6 ∥∥(D PT1e)[n1/3x]

∥∥
L2 = O(n−1/6).

Similarly, ‖D−1 PT2e‖ = O(n−1/6).
For DH1 H2e, we have from (6.21),

zn1/3s+i
0 (H1 H2e)h+i

=
( 1

2π i

)2
∫ ∫ (1 + αz

1 − αz

)m( z − α

z + α

)n(1 + αζ

1 − αζ

)n(ζ − α

ζ + α

)m

× z−h−i−1 zn1/3s+i
0 ζ−1 dz dζ

zζ − 1
,

and with the substitution ζ → ζ−1, this becomes
( 1

2π i

)2
∫ ∫

ψ(z)
(ζ + α

ζ − α

)n(1 − αζ

1 + αζ

)m
z−n1/3s−i−1 zn1/3s+i

0
dz dζ

z − ζ
. (6.31)
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As before, the integrals here are initially taken over circles close to the unit circle,
with |z| > |ζ |. Now we want to deform the z-contour to (+ and the ζ -contour to
its steepest descent contour C , a curve passing through the saddle points ±iβ−1 and
closing at −α and α−1.

To do this, we show first that, except for z0, all points of (+ satisfy |z| > z0. This
follows if we can show that on the circle z = z0 eiθ the absolute minimum of

log
∣∣∣
(1 + αz

1 − αz

)τ( z − α

z + α

)∣∣∣ (6.32)

occurs at θ = 0.
(
For then |ψ(z)| is larger than ψ(z0) everywhere on the circle except

for z = z0, so no other point on the circle could be on (+. Locally, (+ is outside the
circle, and so it has to be everywhere outside.

)
Using

d
dθ

= iz
d
dz

,

we find that the derivative with respect to θ of (6.32) equals −2α times the imaginary
part of

τ

z−1 − α2z
+ 1

z − α2z−1 = (τ − α2)z + (1 − τα2)z−1

(z−1 − α2z) (z − α2z−1)
.

This vanishes exactly when the imaginary part of
(
(τ − α2)z + (1 − α2)z−1) (z̄−1 − α2 z̄) (z̄ − α2 z̄−1)

does. This is a trigonometric polynomial in θ of degree 3. It is an odd function of θ

and so is of the form sin θ times a polynomial of degree two in cos θ . Since it has
at least a double zero at θ = 0 (by the choice of c and z0), the polynomial must
have a factor cos θ − 1. Since it is an odd function of z, it must also have a double
zero at θ = π , so there must also be a factor cos θ + 1. Thus it must be equal to
a constant times sin θ (cos2 θ − 1). In particular, there can be no other zeros. Thus
(6.32), which we know has a local minimum on the circle at z = z0, must have its
absolute minimum there (and its absolute maximum at z = −z0). Thus, as claimed,
all points of (+ except for z0 satisfy |z| > z0.

In particular, all points of (+ satisfy |z| ≥ z0. Since z0 > α, we can first take the
integrals in (6.31) over the circles |z| = z0 and |ζ | = α + ε with ε small and positive.
Then we can deform the z-contour to (+ without crossing the circle |ζ | = α + ε.
Next, we want to deform the ζ -contour to C . This curve closes on the right at α−1,
and so since z0 < α−1, it intersects (+ at two points, z′ and z′′, say. (In principle there
could be finitely many other points; the following argument could be easily modified
in this case.) Hence upon deforming the ζ -contour to C , we pass through a pole for
those z on the arc of (+ passing through z = z0 with end points z′ and z′′. For each
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z on this arc, the residue at ζ = z equals z−h−i−1 zn1/3s+i
0 , and then integrating with

respect to z gives

zn1/3s
0 (h + i)−1

[ zi
0

z′′ h+i − zi
0

z′ h+i

]
.

We claim that ψ(z0)−1 (which is the factor contained in D) times this vector is expo-
nentially small, that is, O(e−δn) for some δ > 0.

Because all points of (+ except z0 satisfy |z| > z0, the vectors {(z0/z′′)i } and
{(z0/z′)i } belong to &2(Z+). So we need only show that ψ(z0) −1|z′|−h is exponen-
tially small (and the same for z′′). In fact, on the part of C in the right half-plane,

∣∣∣
( z + α

z − α

)(1 − αz
1 + αz

)τ ∣∣∣

is at most 1 and is strictly less than 1 outside a neighborhood of the critical points ±iβ.
This shows that |z′|−c ≤ (1 − δ) |ψ(z′)|1/n for some δ > 0. Since |ψ(z)| < |ψ(z0)|
on (+, this shows that |z′|−c ≤ (1 − δ) |ψ(z0)|1/n , and it follows that ψ(z0)−1 |z′|−h

is exponentially small.
We can now say that, with error ψ(z0)2 times an exponentially small quantity,

the square of the norm of the vector (6.31) equals a quadruple integral in which every
term in the integrand except z−h−i−1 zi

0 has an analogous term with variables z′, ζ ′,
and the z−h−i−1 zi

0-term becomes (zz′)−h/(zz′ − z2
0). For the z- and z′-integrals we

integrate over (+, and for the ζ - and ζ ′-integrals we integrate over C . (Here we use
again the fact that |z|, |z′| > z0, so we can sum under the integral signs.) The (ζ, ζ ′)-
integrals contribute O(n−1), while the (z, z′)-integrals contribute O(ψ(z0)2 n−1/3).
Thus ‖D P H1 H2e‖2 = O(n−4/3).∗

For H2 H1e we interchange m and n and make the variable change z → z−1 but
not the variable change ζ → ζ−1. Thus

z−n1/3s−i
0 (H2 H1e)h+i

=
( 1

2π i

)2
∫ ∫

ψ(z)−1
(1 + αζ

1 − αζ

)n(ζ − α

ζ + α

)m
zn1/3s+i z−n1/3s−i

0
dz dζ

ζ − z
.

Here originally we must have |ζ | > |z| on the contours, and we want to deform them
so that the z-contour becomes (− and the ζ -contour becomes what we again call C .
Now in the deformation, we pass through a pole in the ζ -integration for those z on an
arc of (− passing through z = z0 with end points that we again call z′ and z′′. The

∗This was under the basic assumption α2 < τ < α−2. Otherwise, the ζ - and ζ ′-integrals are only O(1), with
the result that ‖DH1 H2e‖ is only O(n−1/6), and the same holds for ‖D−1 H2 H1e‖. These are still good enough
since o(1) is all that is needed.
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residue equals zh+i z−n1/3s−i
0 , and integration with respect to z gives

z−n1/3s
0 (h + i + 1)−1

[ z′′ h+i+1

zi
0

− z′ h+i+1

zi
0

]
.

This is completely analogous to what went before. Now |z′|, |z′′| < z0 and ψ(z0) |z′|h
is exponentially small. We continue as with H1 H2e and find that ‖D−1 P H2 H1e‖2 =
O(n−4/3).

If we go back to the forms of the ai and b′
j described earlier, we see that the

vectors that arise after multiplying by the diagonal matrices D and D−1 are exactly
the four whose norms we just estimated.

6.5. Recapitulation
We have shown that the matrix (6.22) acting on &2(Z+) scales in trace norm to the
kernel




g KAiry(g(s + x), g(x + y)) 0

0 g KAiry(g(s + x), g(x + y))





acting on L2(0, ∞). It follows that its Fredholm determinant converges to F(gs)2. In
view of (5.1) and (6.10), this establishes that for fixed s,

lim
n→∞ Pσ (L ≤ c n + n1/3s) = F2(gs),

where c is determined by (6.23) and (6.24) and g by (6.30). This gives the statement
of the main theorem, where the constants c1(α, τ ) and c2(α, τ ) of the introduction
are, respectively, c and g−1.

6.6. Computation of σ ′′′(z0)

Think of c and z0 as functions of τ , which they are. We have

σ ′′(z) = 4αz
[ α2τ

(1 − α2z2)2 − 1
(z2 − α2)2

]
+ c

z2 .

Differentiating the identity 0 = σ ′′(z0) with respect to τ and using the above gives

0 = σ ′′′(z0) z′
0 + 4α3 z0

(1 − α2z2
0)

2
+ c′

z2
0
, (6.33)

where z′
0 and c′ denote dz0/dτ and dc/dτ , respectively.

From (6.23) and (6.24) we find that c is given in terms of z0 by the relation

c = 4 α (1 − α4) z3
0

(1 + α2z2
0) (z2

0 − α2)2
.
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We compute that

dc
dz0

= −4
α (1 − α4) z2

0 (z2
0 + 3α2 + 3α2z4

0 + α4z2
0)

(1 + α2z2
0)

2 (z2
0 − α2)3

. (6.34)

From (6.23), τ is given in terms of z0 by

τ = (1 − α2z2
0)

2 (α2 + z2
0)

(1 + α2z2
0) (z2

0 − α2)2
.

We compute that

dτ

dz0
= −2 (1 − α4) z0 (1 − α2z2

0) (α4z2
0 + 3α2z4

0 + 3α2 + z2
0)

(z2
0 − α2)3 (1 + α2z2

0)
2

. (6.35)

We first solve (6.33) for σ ′′′(z0) in terms of z′
0 and c′ (and z0). Then we use (6.34) and

(6.35) and the relations z′
0 = (dτ/dz0)−1 and c′ = (dc/dz0) z′

0. We find that

σ ′′′(z0) = 4
α (1 − α4) [(1 + α4) z2

0 + 3α2 (1 + z4
0)]

(1 − α4z4
0) (z2

0 − α2)3
.

This is positive since 0 < α < 1 and α < z0 < α−1.

7. Poisson limit of the shifted Schur measure
For Schur measure there are two interesting limiting cases: the exponential limit and
the Poisson limit. The exponential limit of shifted Schur measure is supported on
standard shifted tableaux, and hence it is expressible in terms of f λ

s
(
recall (2.2)

)
.

The Poisson limit of shifted Schur measure yields a natural interpretation of the max-
imizing rule as a symmetry condition of the process.∗ Namely, if one sets

m = n, α = t
n

and takes n → ∞, the percolation-type model described in §3 becomes the following.
Consider two Poisson processes of rate t2, both in the (same) square [0, 1] × [0, 1].
Hence one can imagine two types of points, marked and unmarked, in the square. Now
with probability one, no two points, whether marked or unmarked, have the same x
or y coordinates, and hence the strictly increasing conditions (2) and (3) of §3 for the
rule of the maximizing path are not necessary. Therefore we do not need to distinguish
the unmarked and marked points. Since the union of two Poisson processes has the
rate 2t2, the resulting process is as follows. In the square [0, 1]×[0, 1], select Poisson
points of rate 2t2. Then take the longest path, starting from the lower right corner

∗The following remarks are due to the referee.
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(1, 0), that follows an up/left path, turns in direction once and only once, and follows
an up/right path ending at the upper right corner (1, 1).

It is clear that this length is also equal to the following symmetric version. Take a
realization of the Poisson process. Take the mirror image of the points about the left
side. Adjoin the mirror image on the left and the original points on the right. Hence the
resulting rectangle has sides of lengths 2 and 1, and there are twice as many points
of the original configuration that are symmetric about the center vertical line. The
(usual) longest up/right path from the left lower corner to the right upper corner is
precisely the longest maximizing path from the lower right corner to the upper right
corner in the above description.

The (formal) limit m = n → ∞ with α = t/n (t fixed) in the main theorem of
§1 is

lim P
( L − 4t
(2t)1/3 < s

)
= F2(s). (7.1)

The consequence is that the vertically symmetric Poisson process has the same fluc-
tuation as the usual Poisson process with no symmetry condition. Also, the scaling in
the above result is consistent with this intuition. There are Poisson points of rate 4t2

(double of 2t2) in the square of sides 2 and 1. For such the case the limit (7.1) is also
valid for the case of no symmetry condition.

Acknowledgments. The authors thank Richard Stanley and Sergey Fomin for useful
early discussions concerning the RSK correspondence and the referee for the remarks
of §7.
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