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Abstract: We call a Dyson process any process on ensembles of matrices in which the
entries undergo diffusion. We are interested in the distribution of the eigenvalues (or
singular values) of such matrices. In the original Dyson process it was the ensemble of
n×nHermitian matrices, and the eigenvalues describe n curves. Given setsX1, . . . , Xm
the probability that for each k no curve passes through Xk at time τk is given by the
Fredholm determinant of a certain matrix kernel, the extended Hermite kernel. For this
reason we call this Dyson process the Hermite process. Similarly, when the entries of
a complex matrix undergo diffusion we call the evolution of its singular values the
Laguerre process, for which there is a corresponding extended Laguerre kernel. Scaling
the Hermite process at the edge leads to the Airy process (which was introduced by
Prähofer and Spohn as the limiting stationary process for a polynuclear growth model)
and in the bulk to the sine process; scaling the Laguerre process at the edge leads to the
Bessel process.

In earlier work the authors found a system of ordinary differential equations with
independent variable ξ whose solution determined the probabilities

Pr (A(τ1) < ξ1 + ξ, . . . , A(τm) < ξm + ξ) ,

where τ → A(τ) denotes the top curve of the Airy process. Our first result is a general-
ization and strengthening of this. We assume that each Xk is a finite union of intervals
and find a system of partial differential equations, with the end-points of the intervals
of the Xk as independent variables, whose solution determines the probability that for
each k no curve passes through Xk at time τk . Then we find the analogous systems for
the Hermite process (which is more complicated) and also for the sine process. Finally
we find an analogous system of PDEs for the Bessel process, which is the most difficult.

I. Introduction

We call a Dyson process any process on ensembles of matrices in which the entries
undergo diffusion. In the original Dyson process [3] it was the ensemble of n × n
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Hermitian matrices H , where the independent coefficients of each matrix H indepen-
dently executed Brownian motion subject to a harmonic restoring force. In one dimension
this is the familiar Ornstein-Uhlenbeck (velocity) process. The solution to the forward
(Fokker-Planck) equation generalizes to the matrix case with the result that the prob-
ability density of H at time τ = τ2 corresponding to the initial condition H = H ′ at
τ = τ1 is a normalization constant depending upon n and q times

exp

(
−Tr (H − qH ′)2

1 − q2

)
,

where q = eτ1−τ2 . As Dyson observed, the equilibrium measure as τ2 → ∞ is the
GUE measure of random matrix theory. We refer to this particular Dyson process as the
Hermite process for reasons that will become clear below.

With initial conditions at time τ1 distributed according to the GUE measure, the prob-
ability that at times τk (k = 2, . . . , m),1 H(τk) is in an infinitesimal neighborhood of
Hk is a normalization constant times

exp
(
−Tr H 2

1

) m∏
j=2

exp

(
−Tr (Hj − qj−1Hj−1)

2

1 − q2
j−1

)
dH1 · · · dHm , (1.1)

where qj = eτj−τj+1 . Alternatively, (1.1) can be interpreted as the equilibrium measure
for a chain of m coupled n× n Hermitian matrices Hk .

In random matrix theory, and more generally Dyson processes, one is interested in
the distribution of the eigenvalues (or singular values) of H . It is a classical result of
Gaudin [6] that the distribution functions for the eigenvalues in GUE are expressible in
terms of the Fredholm determinant of an integral kernel called the Hermite kernel. In the
process interpretation, the evolution of the eigenvalues can be thought of as consisting
of n curves parametrized by time. Given τ1 < · · · < τm and subsets Xk of R, the quan-
tity of interest is the probability that for all k no curve passes through Xk at time τk . It
follows from the work of Eynard and Mehta [4] that this probability is also expressible
as the Fredholm determinant of an extended Hermite kernel, an m × m matrix kernel
related to the kernel associated with the random matrix ensemble corresponding to the
equilibrium distribution.2

Here is how it is derived. One first diagonalizes eachHk and then employs the Harish-
Chandra/Itzykson-Zuber integral (see, e.g. [18]) to integrate out the unitary parts. The
result is that the induced measure on eigenvalues has a densityP(λ11, . . . , λ1n; . . . ; λm1,

. . . , λmn) given up to a normalization constant by

m∏
k=1

e
−
(

1
1−q2

k−1
+ q2

k

1−q2
k

)∑n
i=1 λ

2
k,i

m−1∏
k=1

det
(
e

2qk
1−q2

k

λk,i λk+1,j )
�(λ1)�(λm), (1.2)

where q0 = qm = 0 and � denotes Vandermonde determinant.3

In [4] it was shown that for a chain of coupled matrices with probability density of this
type the correlation functions could be expressed as block determinants whose entries

1 We are assuming τ1 < · · · < τm.
2 This was described in a lecture by Kurt Johansson [8], who recently communicated to us a sketch

of his derivation [9]. Matrix kernels, of a different kind, also appear in [1].
3 This expression shows the connection with the theory of determinantal processes, in which proba-

bility densities are defined by products of determinants [5, 7, 12].
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are matrix kernels evaluated at the various points, generalizing Dyson’s expression for
the correlation functions for a single matrix. As with the case of random matrices, one
could then get a Fredholm determinant representation for the probability that for each k
no curve passes through Xk at time τk . In the case at hand the matrix kernel

L(x, y) = (Lij (x, y))
m
i,j=1

is the extended Hermite kernel and has entries

Lij (x, y) =




n−1∑
k=0

ek (τi−τj ) ϕk(x) ϕk(y) if i ≥ j,

−
∞∑
k=n

ek (τi−τj ) ϕk(x) ϕk(y) if i < j.

(1.3)

Here ϕk are the harmonic oscillator functions e−x2/2 pk(x), where the pk are the nor-
malized Hermite polynomials. If K is the operator with matrix kernel (Kij ), where

Kij (x, y) = Lij (x, y) χXj (y),

then the probability that for each k no curve passes through Xk at time τk is equal to
det (I − K). In the special case Xk = (ξk, ∞) this is the probability that the largest
eigenvalue at time τk is at most ξk .

It is natural to consider also the evolution of the singular values of complex matrices.
This is the Dyson process on the space of p × n complex matrices. (We always take
p ≥ n.) The analogue of (1.1) here is [5]

exp
(−Tr A∗

1A1
) m∏
j=2

exp

(
−Tr

(
(Aj − qjAj−1)

∗(Aj − qjAj−1)
)

1 − q2
j

)

×dA1 · · · dAm. (1.4)

After integration over the unitary parts this becomes a normalization constant times

m∏
k=1

e
−
(

1
1−q2

k−1
+ q2

k

1−q2
k

)
n∑
i=1

λki
m−1∏
k=1

det

(
Iα

(
2qk+1

1 − q2
k+1

√
λk,i λk+1,j

))

×�(λ1)�(λm)

n∏
i=1

λ
α/2
1i

n∏
i=1

λ
α/2
mi dλ11 · · · dλmn, (1.5)

where Iα is the modified Bessel function and α = p− n. (The λki are the squares of the
singular values.) This is of the same general form as for the Hermite process, and here
also there is a corresponding matrix kernel, the extended Laguerre kernel. It is given by
the same formulas (1.3) as before, but now ϕk(x) = xα/2e−x/2 pk(x), where the pk are
the Laguerre polynomials Lαk , normalized.

These processes have scaling limits. If we scale the Hermite process at the edge we
obtain the Airy process with corresponding extended Airy kernel [7, 13]

Lij (x, y) =




∫ ∞

0
e−z (τi−τj ) Ai(x + z)Ai(y + z) dz if i ≥ j,

−
∫ 0

−∞
e−z (τi−τj ) Ai(x + z)Ai(y + z) dz if i < j.

(1.6)
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The Airy process consists of infinitely many curves and as before det (I − K) is the
probability that no curve passes through Xk at time τk . In the case of greatest interest
Xk = (ξk, ∞), and then the determinant is equal to the probability

Pr (A(τ1) < ξ1, . . . , A(τm) < ξm) , (1.7)

where A(τ) is the top curve of the Airy process. (This is what has been called the Airy
process in the literature. It is convenient for us to use the different terminology.)

If we scale the Hermite process in the bulk we obtain the sine process with the
associated extended sine kernel

Lij (x, y) =




∫ 1

0
ez

2 (τi−τj ) cos z(x − y) dz if i ≥ j,

−
∫ ∞

1
ez

2 (τi−τj ) cos z(x − y) dz if i < j.

If we scale the Laguerre process at the bottom (the “hard edge”) we obtain the Bessel
process and its associated extended Bessel kernel

Lij (x, y) =




∫ 1

0
ez

2 (τi−τj )/2�α(xz)�α(yz) dz if i ≥ j,

−
∫ ∞

1
ez

2 (τi−τj )/2�α(xz)�α(yz) dz if i < j,

where �α(z) = √
z Jα(z).4

The Airy process A(τ) was introduced by Prähofer and Spohn [13] as the limiting
stationary process for a polynuclear growth model. (See also [7].) It is conjectured that
it is in fact the limiting process for a wide class of random growth models. Thus it is
more significant than the Hermite process. It might be expected that likewise the sine
process (possibly) and the Bessel process (more likely) will prove to be more significant
than the unscaled processes.

For m = 1 the extended Airy kernel reduces to the Airy kernel and it is known [14]
that then (1.7) is expressible in terms of a solution to Painlevé II. It was thus natural
for the authors of [7, 13] to conjecture that the m-dimensional distribution functions
(1.7) are also expressible in terms of a solution to a system of differential equations.
This conjecture was established in two different forms, by the authors in [17] and by
Adler and van Moerbeke for m = 2 in [2].5 Specifically, in [17] we found a system of
ordinary differential equations with independent variable ξ whose solution determined
the probabilities

Pr
(
Aτ1 < ξ1 + ξ, . . . , Aτ1 < ξm + ξ

)
.

The ξk appeared as parameters in the equations.
Our first result is a generalization and strengthening of this. We assume that eachXk

is a finite union of intervals rather than a single interval, and find a total system of par-
tial differential equations, with the end-points of the intervals of the Xk as independent

4 Hints of this kernel for m = 2 appear in [10].
5 In [1] the authors had already considered the Hermite process in the casem = 2, in our terminology,

and found a PDE in τ = τ2 − τ1 and the end-points of X1 and X2 for the probability that at time τi no
curve passes throughXi . In [2] they deduced for the Airy process by a limiting argument a PDE in ξ1, ξ2
and τ = τ1 − τ2 when Xi = (ξi , ∞). These equations and those we find appear to be unrelated.
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variables, whose solution determines det (I − K). (When Xk = (ξk, ∞) it it easy to
recover the system of ODEs found in [17].)

Then we find the analogous systems for the Hermite process (which is more com-
plicated) and also for the sine process. Finally we find a system of PDEs for the Bessel
process, which was the most difficult. It is possible that we could find a system for
the Laguerre process also, but it would be even more complicated (since Laguerre:Bes-
sel::Hermite:Airy) and probably of less interest.

All of these equations in a sense generalize those for the Hermite, Airy, sine and
Laguerre kernels found in [15], which are the cases when m = 1. Although some of
the ingredients are the same, the equations derived here when m = 1 are not the same,
as those of [15]. For example, the special case of the extended Airy equations for a
semi-infinite interval and m = 1 is the Painlevé II equation whereas in [15] one had to
do a little work to get to Painlevé II from the equations.

We begin with Sect. II, where we revisit the class of probabilities for which the cor-
relation functions were derived in [4] and give a direct derivation of the corresponding
Fredholm determinant representations. The method has similarities to that of [4] (in fact
we adopt much of their notation) and the results are equivalent. But we avoid some
awkward combinatorics. Our derivation is analogous to that of [16] for random matrix
ensembles whereas the method of [4] is more like that in [11].

In Sect. III we use the previous result to derive the extended Hermite kernel. This is
of course not new. But since the derivation does not seem to have seen print before, this
seems a reasonable place to present it.

In the following sections we derive the systems of PDEs for the extended Airy,
Hermite and sine kernels. Presumably the other two could be obtained by scaling the
equations for Hermite, but Airy is simpler and so we do it first. Moreover all the systems
will have the same general form, and doing Airy first will simplify the other derivations.

In Sect. VII we derive the extended Laguerre kernel, and in Sect. VIII establish the
system of PDEs for the extended Bessel kernel.

II. Extended Kernels

For the most part we shall follow the notation in [4]. We assume the probability density
for the eigenvalues λki (i = 1, . . . , n, k = 1, . . . , m) is given up to a normalization
constant by

P(λ11, . . . , λ1n; . . . ; λm1, . . . , λmn)

=
m∏
k=1

e
−

n∑
i=1

Vk(λki )
m−1∏
k=1

det(uk(λk,i , λk+1,j ))�(λ1)�(λm), (2.1)

where Vk and uk are given functions satisfying some general conditions and � denotes
the Vandermonde determinant. (Indices i, j in the determinants run from 1 to n, and here
λ1 resp. λm denotes λ1i resp. λmi .) What we are interested in is the expected value of

m∏
k=1

n∏
i=1

(1 + fk(λki)),
6

so we integrate this times P over all the λki .
6 In our applications fk will be minus the characteristic function of Xk , so the expected value will

equal the probability that λki �∈ Xk for all k and i.
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We apply the general identity
∫

· · ·
∫

det(ϕj (xk))
n
j,k=1 · det(ψj (xk))

n
j,k=1 dµ(x1) · · · dµ(xn)

= n! det
( ∫

ϕj (x)ψk(x) dµ(x)
)n
j,k=1

to the integral over λ11, . . . , λ1n, with the part of the integrand containing these vari-
ables. This includes two determinants, �(λ1) and the factor det (u1(λ1i , λ2j )). The
result is that this n-tuple integral is replaced by the determinant

det

(∫
λi1e

−V (λ1) u1(λ1, λ2j ) (1 + f1(λ1)) dλ1

)
.

Then we use the same identity to rewrite the integral with respect to the λ2i using this
determinant and the factor det (u2(λ2i , λ3j )). And so on. At the end we use the deter-
minant coming from the previous use of the identity and �(λm). The end result is that
the expected value in question is a constant times the determinant of the matrix with i, j
entry

∫
· · ·
∫
λi1λ

j
m e

−
m∑
k=1

Vk(λk)
m−1∏
k=1

uk(λk, λk+1)

m∏
k=1

(1 + fk(λk)) dλ1 · · · dλm. (2.2)

By changing the normalization factor we may replace λi1 by any sequence of poly-

nomials, which we call P1i (λ1), and replace λjm by any sequence of polynomials, which
we call Qmj(λm). We choose them so that after these replacements the integral with all
the fk set equal to zero equals δij . In particular the normalization constant is now equal
to 1.

If we write

e
−

m∑
k=1

Vk(λk)
m−1∏
k=1

uk(λk, λk+1) = E12(λ1, λ2) E23(λ2, λ3) · · ·Em−1,m(λm−1, λm) (2.3)

(there is some choice in the factors on the right), we see that the matrix in question equals
the identity matrix plus the matrix with i, j entry

∫
· · ·
∫
P1i (λ1)

m−1∏
k=1

Ek,k+1(λk, λk+1)

[
m∏
k=1

(1 + fk(λk))− 1

]
Qmj(λm) dλ1 · · · dλm.

The bracketed expression may be written as a sum of products,
∑
r≥1

∑
k1<···<kr

fk1(λ1) · · · fkr (λkr ).

Correspondingly the integral is a sum of integrals. Consider the integral corresponding
to the above-displayed summand. For k > j we define

Ejk(λj , λk) = Ej,j+1(λj , λj+1) ∗ · · · ∗ Ek−1,k(λk−1, λk),
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where the asterisk denotes kernel composition, and set

Pki(λk) =
∫
P1i (λ1) E1k(λ1, λk) dλ1, Qkj (λk) =

∫
Ekm(λk, λm)Qmj (λm) dλm.

By integrating first with respect to the λk with k �= k1, . . . , kr , we see that the corre-
sponding integral is equal to

∫
· · ·
∫
fk1(λk1) Pk1,i (λk1) Ek1,k2(λk1 , λk2)fk2(λk2) · · ·

· · ·Ekr−1,kr (λkr−1 , λkr )fkr (λkr )Qkr ,j (λkr ) dλk1 · · · dλkr .

We deliberately distributed the f factors as we did since if we letAk,� be the operator
with kernelAk�(λk, λ�) = Ek�(λk, λ�)f (λ�) then the above may be written as the single
integral

∫
fk1(λ) Pk1,i (λ)Ak1,k2 · · ·Akr−1,krQkr ,j (λ) dλ.

(If r = 1 we interpret the operator product to be the identity.) Replacing the index k1 by
k and changing notation, we see that the sum of all of these equals

∫ ∑
k

fk(λ) Pk,i(λ)


∑
r≥0

∑
k1,... ,kr

Ak,k1Ak1,k2 · · ·Akr−1,krQkr ,j (λ)


 dλ,

where the inner sum runs over all kr > · · · > k1 > k. (If r = 0 the inner sum is
interpreted to be Qk,j (λ).)

We think of fk(λ) Pk,i(λ) as the kth entry of a row matrix and the inner sum

∑
r≥0

∑
k1,... ,kr

Ak,k1Ak1,k2 · · ·Akr−1,krQkr ,j (λ)

as the kth entry of a column matrix. The integrand is the product of these matrices. If
we use the general fact that det (I + ST ) = det (I + T S) we see that the determinant
of I plus the matrix with the above i, j entry is equal to the determinant of I plus the
operator with matrix kernel having k, � entry

n−1∑
j=0


∑
r≥0

∑
k1,... ,kr

Ak,k1Ak1,k2 · · ·Akr−1,krQkr ,j (λ)


 P�,j (µ)f�(µ),

where in the inner sum kr > · · · > k1 > k.
This is the k, � entry of a certain operator matrix acting from the left on the matrix

with k, � entry

n−1∑
j=0

Qk,j (λ) P�,j (µ)f�(µ).
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That matrix is upper-triangular, all diagonal entries are I , and for k < � the k, � entry
equals

∑
k<k1<···<kr<�

Ak,k1Ak1,k2 · · ·Akr ,�.

Elementary algebra shows (even for non-commuting variablesAk�) that this is the inverse
of the upper-triangular matrix with diagonal entries I and k, � entry −Ak� otherwise.

If we recall that Ak�(λ, µ) = Ek�(λµ) f�(µ) then we see that we have shown the
following: Let H(λ,µ) be the matrix kernel given by

Hk�(λ, µ) =
n−1∑
j=0

Qk,j (λ) P�,j (µ),

let E be the matrix kernel with k, � entry Ek�(λ, µ) (thought of as 0 when k ≥ l), and
let f (µ) = diag (fk(µ)). Then the expected value equals the determinant of

I + (I − Ef )−1Hf = (I − Ef )−1 [I + (H − E)f ].

The factor on the left equals I plus a strictly upper-triangular matrix, so its determi-
nant equals one. Therefore the expected value equals

det [I + (H − E)f ],

and H − E is the extended kernel.

III. The Extended Hermite Kernel

We have times τ1 < · · · < τm and we set qk = eτk−τk+1 , with the conventions τ0 =
−∞, τm+1 = +∞ so that q0 = qm = 0. For the Hermite process the probability density
is given by (1.2) so we are in the case where

Vk(λ) =
(

1

1 − q2
k−1

+ q2
k

1 − q2
k

)
λ2, uk(λ, µ) = exp

{
2qk

1 − q2
k

λµ

}
,

and we want to compute the kernel H − E of Sect. II.
We define the Mehler kernel

K(q; λ,µ) = (π(1 − q2))−1/2 e
− q2

1−q2 λ
2− 1

1−q2 µ
2+ 2q

1−q2 λµ,

which has the representation

K(q; λ,µ) =
∞∑
i=0

qi pi(λ) pi(µ) e
−µ2

, (3.1)

so ∫
K(q; λ,µ) pi(µ) dµ = qi pi(λ). (3.2)

Here pi are the normalized Hermite polynomials.
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We can write the exponent on the left side of (2.3) as

−
m−1∑
k=1

q2
k

1 − q2
k

λ2
k −

m−1∑
k=0

1

1 − q2
k

λ2
k+1,

and so, aside from a normalization constant, the left side of (2.3) is equal to

e−λ
2
1

m−1∏
k=1

K(qk; λk, λk+1).

Thus we may take in (2.3)

E12(λ1, λ2) = e−λ
2
1 K(q1; λ1, λ2),

Ek,k+1(λk, λk+1) = K(qk; λk, λk+1), (k > 1).

It follows from (3.1) that K(q) ∗K(q ′) = K(qq ′) when q, q ′ > 0 and so

E1k(λ, µ) = e−λ
2
K(q1 · · · qk−1; λ,µ).

In particular we deduce from (3.2) that
∫ ∫

pi(λ)E1m(λ, µ) pj (µ) dµdλ = (q1 · · · qm−1)
j

∫
pi(λ) e

−λ2
pj (λ) dλ

= (q1 · · · qm−1)
j δij .

Hence we may take

P1i = pi, Qmj = (q1 · · · qm−1)
−j pj

as the polynomials in the previous discussion. We see that

Pki(µ) =
∫
pi(λ) e

−λ2
K(q1 · · · qk−1; λ,µ) dλ

= (q1 · · · qk−1)
i pi(µ) e

−µ2
, (k > 1),

Qkj (λ) =
∫
K(qk · · · qm−1; λ,µ)Qmj (µ)dµ = (q1 · · · qk−1)

−j pj (λ), (k > 1),

Q1j (λ) =
∫
e−λ

2
K(q1 · · · qm−1; λ,µ)Qmj (µ)dµ = e−λ

2
pj (λ).

It follows that H is the matrix with k, � entry

n−1∑
j=0

(
q1 · · · q�−1

q1 · · · qk−1

)j
pj (λ) pj (µ)

left-multiplied by the matrix diag (e−λ2
1 · · · 1) and right-multiplied by the matrix

diag (1 e−µ2 · · · e−µ2
). Similarly E is the strictly upper-triangular matrix with k, �

entry K(qk · · · q�−1; λ,µ) left-multiplied by the matrix diag (e−λ2
1 · · · 1).
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Thus we have computed H − E. The actual extended Hermite kernel will be a
modification of this. The determinant is unchanged if we multiply H − E on the left
by diag (eλ

2/2 e−λ2/2 · · · e−λ2/2) and on the right by diag (e−µ2/2 eµ
2/2 · · · eµ2/2).

Recalling that ϕi are the harmonic oscillator functions and recalling the definition of the
qk in terms of the τk we see that the expected value in question is equal to

det [I + (Ĥ − Ê)f ],

where

Ĥk�(λ, µ) =
n−1∑
j=0

ej (τk−τ�) ϕj (λ) ϕj (µ),

and Ê is the strictly upper-triangular matrix with k, � entry

e(µ
2−λ2)/2K(eτk−τ� ; λ,µ).

If we observe that by (3.1)

e(µ
2−λ2)/2K(eτk−τ� ; λ,µ) =

∞∑
j=0

ej (τk−τ�) ϕj (λ) ϕj (µ)

when k < � we see that Ĥ − Ê has k, � entry

(Ĥ − Ê)k� =




n−1∑
j=0

ej (τk−τ�) ϕj (λ) ϕj (µ) if k ≥ �,

−
∞∑
j=n

ej (τk−τ�) ϕj (λ) ϕj (µ) if k < �,

which is the extended Hermite kernel (1.3).

IV. PDEs for the Extended Airy Kernel

We consider first the case Xk = (ξk,∞), so that

det (I −K) = Pr (A(τ1) < ξ1, . . . , A(τm) < ξm) .

The derivation is simplest here but it will also give the main ideas for all the derivations.
Observe first that

∂k K = −Lδk, (4.1)

where δk denotes multiplication by the diagonal matrix with all entries zero except for
the kth, which equals δ(y − ξk). It follows that if we let R = K (I −K)−1, then

∂k log det(I −K) = −Tr (I −K)−1 ∂kK = Rkk(ξk, ξk).

The matrix entries on the right will be among the unknowns. To explain the others,
let A(x) denote the m × m diagonal matrix diag (Ai(x)) and χ(x) the diagonal matrix
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diag (χk(x)), where χk = χ(ξk,∞). Then we define the matrix functionsQ(x) and Q̃(x)
by

Q = (I −K)−1A, Q̃ = Aχ (I −K)−1

(where for Q̃ the operators act on the right). These and R(x, y) are functions of the ξk
as well as x and y. We define the matrix functions q, q̃ and r of the ξj only by

qij = Qij (ξi), q̃ij = Q̃ij (ξj ), rij = Rij (ξi, ξj ).
7

Our unknown functions will be these and the matrix functions q ′ and q̃ ′ defined by

q ′
ij = Q′

ij (ξi), q̃ ′
ij = Q̃′

ij (ξj ).

We shall also write rx and ry for the matrices (Rxij (ξi, ξj )) and (Ryij (ξi, ξj )).
The ξk are the independent variables in our equations. We denote by ξ the matrix

diag (ξk) and by dξ the matrix of differentials diag (dξk). With these notations our system
of equations is

dr = −r dξ r + dξ rx + ry dξ, (4.2)

dq = dξ q ′ − r dξ q, (4.3)

dq̃ = q̃ ′ dξ − q̃ dξ r, (4.4)

dq ′ = dξ ξ q − (rx dξ + dξ ry) q + dξ r q ′, (4.5)

dq̃ ′ = q̃ ξ dξ − q̃ (dξ ry + rx dξ)+ q̃ ′ r dξ. (4.6)

One sees that the right sides involve the diagonal entries of rx+ry and the off-diagonal
entries of rx and ry . We shall show below that these are “known” in the sense that they
are expressible algebraically in terms of our unknown functions, so the above is a closed
system of PDEs.

We begin by establishing the assertions about rx and ry .
In the following D = d/dx, we set ρ = (I − K)−1 and δ = ∑

k δk , and τ is the
diagonal matrix diag (τk). We denote by � the matrix with all entries equal to one. For
clarity we sometimes write the kernel of an operator in place of the operator itself.

Lemma 1. We have the commutator relation

[D, R] = −Q(x)� Q̃(y)+ R δ ρ + [τ, R]. (4.7)

Proof. Integrating by parts in (1.6) gives

[D, K]ij = −Ai(x)Ai(y) χj (y)+ Lij (x, ξj ) δ(y − ξj )+ (τi − τj )Kij (x, y).

Equivalently,

[D, K] = −A(x)�A(y) χ(y)+ Lδ + [τ, K].

To obtain [D, R] we replaceK byK−I in the commutators and left- and right-multiply
by ρ. The result is (4.7).8 	


7 At points of discontinuity we always take limits from the right. For example we interpret Rij (x, ξj )
as the limit Rij (x, ξj+).

8 Because of the fact ρ Lχ = R and our interpretation of Rij (x, ξj ) as Rij (x, ξj+) we are able to
write R δ ρ in place of ρ L δ ρ.
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If we take the i, j entry of both sides of (4.7) and set x = ξi, y = ξj we obtain

rx + ry = −q � q̃ + r2 + [τ, r]. (4.8)

Thus all entries of rx + ry are known.
For the off-diagonal entries of rx and ry we need a second commutator identity. Here

M is multiplication by x.

Lemma 2. We have

[D2 −M, ρ] = R δ ρx − Ry δ ρ,

where Ry(x, y) is interpreted as not containing a delta-function summand.

Proof. We use the facts that D2 −M commutes with L and that M commutes with χ .
These give

[D2 −M, K] = [D2 −M, Lχ ] = L [D2 −M, χ ] = L [D2, χ ] = L (δ D +D δ).

Using the commutator identity

[T , (I −K)−1] = (I −K)−1 [T , K] (I −K)−1,

valid for any operators T and K , we deduce

[D2 −M, ρ] = ρ L δ D ρ + ρ LD δ ρ.

The first term on the right equals R δ ρx . The second term equals −Ry δ ρ where Ry is
interpreted as not containing the delta-function summand. This establishes the lemma.
	


Lemma 1 says

Rx + Ry = −Q(x)� Q̃(y)+ Rδρ + [τ, R],

and applying ∂x − ∂y to both sides gives

Rxx − Ryy = −Q′(x)� Q̃(y)+Q(x)� Q̃′(y)+ Rxδρ − Rδρy + [τ, Rx − Ry].

Lemma 2 says

Rxx − Ryy − (x − y)R = Rδρx − Ryδρ.

Equating the two expressions for Rxx − Ryy gives

(x − y)R(x, y) = −Q′(x)� Q̃(y)+Q(x)� Q̃′(y)+ (Rx + Ry)δρ

−Rδ(ρx + ρy)+ [τ, Rx − Ry]. (4.9)

Taking the i, j entries and setting x = ξi , y = ξj give

[ξ, r] + r rx − ry r = −q ′� q̃ + q � q̃ ′ + rx r − r ry + [τ, rx − ry],

or

[τ, rx − ry] = q ′�q̃ − q � q̃ ′ + [r, rx + ry] + [ξ, r]. (4.10)
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The left side has i, j entry (τi − τj ) (rxij − ryij ) and the right side is known.9 Therefore
the off-diagonal entries of rx − ry are known, and therefore so also are the off-diagonal
entries of rx and ry individually.

To be more explicit we define matrices U and V by

U = −q � q̃ + r2 + [τ, r]

and

Vij = (q ′� q̃ − q � q̃ ′)ij + [r, −q � q̃ + [τ, r] − ξ ]ij
τi − τj

when i �= j . Then (4.8) says

rxij + ryij = Uij

and (4.10) gives

rxij − ryij = Vij

when i �= j . It follows that for such i, j we have

dξi rxij + dξj ryij = 1

2
(dξi + dξj )Uij + 1

2
(dξi − dξj )Vij ,

dξi ryij + dξj rxij = 1

2
(dξi + dξj )Uij − 1

2
(dξi − dξj )Vij .

The same hold when i = j if we interpret the second terms to be zero then. More
succinctly,

dξ rx + ry dξ = 1

2
{dξ, U} + 1

2
[dξ, V ], dξ ry + rx dξ = 1

2
{dξ, U} − 1

2
[dξ, V ],

where the curly brackets indicate anticommutator. These give the explicit representations
for the terms involving rx and ry in the equations.

With our assertions concerning rx and ry established we proceed to derive the equa-
tions. It follows from the general identity

∂k (I −K)−1 = (I −K)−1 ∂kK (I −K)−1,

relation (4.1) and the remark in footnote 7 that

∂k ρ = −R δk ρ. (4.11)

From this we obtain (since ∂k R = ∂k ρ)

∂k rij = ∂k (Rij (ξi, ξj )) = (∂k Rij )(ξi, ξj )+ Rxij (ξi, ξj ) δik + Ryij (ξi, ξj ) δjk

= −rik rkj + Rxij (ξi, ξj ) δik + Ryij (ξi, ξj ) δjk.

Multiplying by dξk and summing over k give (4.2).
Using (4.11) applied to A we obtain

∂k qij = Q′
ij (ξi) δik − (R δk Q)ij (ξi) = Q′

ij (ξi) δik − rik qkj . (4.12)
9 Here rxij is notational shorthand for (rx)ij and ryij for (ry)ij .
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Now multiplying by dξk and summing over k give (4.3).
It follows from (4.11) that ∂k ρx = −Rx δk ρ. Applying this to A gives ∂k Q′ =

−Rx δk Q, whose i, j entry evaluated at x = ξi equals −rxik qkj . Hence

∂k q
′
ij = ∂k Q

′
ij (ξi) = −rxik qkj + δik Q

′′
ij (ξi). (4.13)

Now we use Lemma 2 again. Applying both sides to A and using the fact that (D2 −
M)A = 0 we obtain

Q′′(x)− x Q(x) = R δQ′ − Ry δ Q. (4.14)

Taking the i, j entry and evaluating at x = ξi gives

Q′′
ij (ξi)− ξi qij = (rq ′ − ry q)ij .

Substituting this into (4.13) we obtain

∂k q
′
ij = −rxik qkj + δik [ξi qij + (rq ′ − ry q)ij ].

Multiplying by dξk and summing over k give (4.5).
To obtain the other equations, we point out that identities such as these occur in dual

pairs. Observe that the function χj (y) ρjk(y, x) is equal to χk(x) times ρ̃kj (x, y), where
ρ̃ is the resolvent kernel for the matrix kernel with i, j entry Lji(x, y) χj (y). Hence
Q̃jk(x) is equal toχk(x) times theQkj (x) associated withLji . The upshot is that for any
formula involving q or q̃ there is another. We replace q by q̃ t and q̃ with qt . (If a formula
involves r we replace it by rt and subscripts x and y appearing in r are interchanged.)
In this way Eqs. (4.4) and (4.6) are consequences of (4.3) and (4.5).

Let us derive the system of equations found in [17]. We introduce the differential
operator D = ∑

k ∂k . The system of equations is

D2 q = ξ q + 2 q � q̃ q − 2 [τ, r] q, (4.15)

D2 q̃ = q̃ ξ + 2 q̃ q � q̃ − 2 q̃ [τ, r], (4.16)

D r = −q � q̃ + [τ, r]. (4.17)

This can in fact be thought of as a system of ODEs since if we replace ξ1, · · · , ξm
by ξ1 + ξ, · · · , ξm + ξ then D = d/dξ and the ξj are parameters in the equations.

Equation (4.17) follows upon summing over k the coefficients of the dξk in (4.2) and
using (4.8). Similarly (4.3) gives D q = q ′ − r q, so

D 2 q = D q ′ + (q � q̃ − [τ, r]) q − r (q ′ − r q). (4.18)

Finally, (4.5) gives

D q ′ = −(rx + ry) q + ξ q + r q ′.

Substituting this into (4.18) and using (4.8) again give (4.15). We derive (4.16) similarly.
When m = 1 (4.15) is the Painlevé II equation q ′′ = ξq + 2 q3.
We now consider the more general case where each Xk is a finite union of intervals,

Xk = (ξk1, ξk2) ∪ (ξk3, ξk4) ∪ · · · .
We write ∂kw for ∂/∂ξkw. We have

∂kw K = (−1)wL δkw(y), (4.19)
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where δkw(y) is them×m diagonal matrix all of whose entries are 0 except for the kth,
which equals δ(y − ξkw). It follows that

∂kw log det(I −K) = −Tr (I −K)−1 ∂kwK = (−1)w+1Rkk(ξkw, ξkw).

The various ξkw are the independent variables. (We shall systematically use u, v and
w as indices to order the end-points of the intervals ofXi, Xj andXk , respectively.) We
now define the matrix functions r, q, q̃, q ′ and q̃ ′ of the ξkw by

riu, jv = Rij (ξiu, ξjv), qiu, j = Qij (ξiu), q̃i, jv = Q̃ij (ξjv),

and

q ′
iu, j = Q′

ij (ξiu), q̃ ′
i, jv = Q̃′

ij (ξjv).
10

These will be the unknown functions in our PDEs. We also define rx and ry by

rx, iu, jv = Rxij (ξiu, ξjv), ry, iu, jv = Ryij (ξiu, ξjv).

Observe that r, rx and ry are square matrices with rows and columns indexed by the
end-points kw of theXk while q, q ′, q̃ and q̃ ′ are rectangular matrices. Further notation
is

ξ = diag (ξkw), dξ = diag ((−1)w+1 dξkw),

d̂ξ = diag (dξkw), δ =
∑
k,w

(−1)w+1 δkw. (4.20)

These are all square matrices but ξ, dξ and d̂ξ are indexed by the end-points of the Xk
while δ is m×m.

With these notations our system of equations is

dr = −r dξ r + d̂ξ rx + ry d̂ξ, (4.21)

dq = d̂ξ q ′ − r dξ q, (4.22)

dq̃ = q̃ ′ d̂ξ − q̃ dξ r, (4.23)

dq ′ = d̂ξ ξ q − ( rx dξ + dξ ry) q + dξ r q ′, (4.24)

dq̃ ′ = q̃ ξ d̂ξ − q̃ (dξ ry + rx dξ)+ q̃ ′ r dξ. (4.25)

As before the right sides involve the diagonal entries of rx + ry and the off-diagonal
entries of rx and ry , and we must show that these are known.

It is easy to see that Lemmas 1 and 2 still hold with the new definition of δ. Lemma
1 gives

rx, iu, jv + ry, iu, jv = −
∑
k,�

qiu, k q̃�, jv +
∑
k,w

(−1)wriu, kw rkw, jv + (τi − τj ) riu, jv.

In matrix terms,

rx + ry = −q � q̃ − r s r + [τ, r],

where s = diag ((−1)w+1). Thus rx + ry is known.
10 At points of discontinuity we always take limits from inside Xk .
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What remains is to show that rx,iu, jv and ry,iu, jv are known when iu �= jv.
From (4.9) we have, using (4.7) again,

(x − y)R(x, y) = −Q′(x)� Q̃(y)+Q(x)� Q̃′(y)+ (Rx + Ry)δρ

−Rδ(ρx + ρy)+ [τ, Rx − Ry],

so

[M, R] = −Q′(x)� Q̃(y)+Q(x)� Q̃′(y)−Q(x)� Q̃δρ(y)+ RδQ(x)� Q̃(y)

+[τ, R] δρ − Rδ [τ, R] + [τ, Rx − Ry].

It follows, as before, that rx, iu, jv−ry, iu, jv is known when i �= j and so also are rx, iu, jv
and ry, iu, jv individually. It remains to determine these when i = j but u �= v.

To do this we use the identity [DM, R] = D [M, R] + [D, R]M to compute

[DM, R] = −Q′′(x)� Q̃(y)+Q′(x)� Q̃′(y)
−Q′(x)� Q̃δρ(y)+ RxδQ(x)� Q̃(y)

+[τ, Rx] δρ − Rxδ [τ, R] + [τ, Rxx − Rxy]

−yQ(x)� Q̃(y)+ yRδρ + y[τ, R].

Next we use (4.14), which is the same here. This gives an expression for Q′′(x) which
we substitute into the first term above to obtain

[DM, R] = −(x + y)Q(x)� Q̃(y)+Q′(x)� Q̃′(y)
−Q′(x)� Q̃δρ(y)+ (Rx + Ry)δQ(x)� Q̃(y)

+R δQ′(x)� Q̃(y)+ [τ, Rx] δρ − Rxδ [τ, R]

+[τ, Rxx − Rxy] + yRδρ + y[τ, R].

The left side equals xRx + yRy + R and its i, i entry evaluated at (ξiu, ξiv) equals
ξiu rx, iu, iv + ξiv ry, iu, iv + riu,iv . If we can compute this sum then we know rx, iu, iv
and ry, iu, iv individually since we know rx, iu, iv + ry, iu, iv and ξiu �= ξiv . To see that
the corresponding right side is computable observe that the term arising from Rx + Ry
is known because of Lemma 1, and the diagonal entries of [τ, Rxx − Rxy] are zero.
Everything else is easily seen to be computable except possibly the terms arising from
the sum [τ, Rx] δρ − Rxδ [τ, R]. Its i, i entry equals two times

τi
∑
k,w

(−1)wRxik(x, ξkw)Rki(ξkw, y)−
∑
k,w

(−1)wRxik(x, ξkw) τk Rki(ξkw, y).

The two summands corresponding to k = i cancel. The remaining terms evaluated at
(ξiu, ξiv) involve rkw, iv and rx, iu, kw with k �= i, all of which are known.

This completes the demonstration that all terms on the right sides of our equations
are known. This was the hard part. With (4.11) replaced by

∂kw ρ = (−1)w R δkw ρ,

the derivation of the equations proceeds exactly as before, and need not be repeated.



Differential Equations for Dyson Processes 23

Remark 1. One might wonder whether the systems of Eqs. (4.2)–(4.6) and (4.21)–(4.25)
are integrable in the sense that one can derive from the equations themselves that the
differentials of the right sides are zero. Because of the complicated expressions for rx
and ry we have not attempted to show this in general. For Eqs. (4.2)–(4.6), where we
have relatively simple expressions for the right sides, we verified that this is so when
m = 2 or 3.

Remark 2. We point out how little the equations depend on the operator L, as long as
we still define K = Lχ with χ = diag (χXk ). Equation (4.21) holds for any integral
operator L. So does (4.22) if q is defined as before in terms ofQ = (I −K)−1ϕ, where
ϕ can be any function whatsoever. Similarly for q̃ and (4.23). Similarly also for the
right-hand sides of (4.24) and (4.25) except for the first terms d̂ξ ξ q and q̃ ξ d̂ξ . What
does depend on the specifics of L are the following:

(i) The expressions for rx and ry in terms of the unknowns. We do not see these
explicitly in the equations. This is where the choice of ϕ arises.

(ii) The first terms on the right sides of (4.24) and (4.25), which arise from the com-
putation of Q′′. (See (4.14).) All our systems will have the same form as these,
most of the equations being universal, i.e., independent of the specific L or ϕ.11 In
most cases there will be two functions such as ϕ. That will add to the number of
equations but not their complexity. The main difficulty in all cases will be (i).

V. PDEs for the Extended Hermite Kernel

We modify (1.3) by setting

Lij (x, y) =




n−1∑
k=0

e(k−n) (τi−τj ) ϕk(x) ϕk(y) if i ≥ j,

−
∞∑
k=n

e(k−n) (τi−τj ) ϕk(x) ϕk(y) if i < j.

The extra factors e−n (τi−τj ) do not change the determinant.
Again we consider first the case where Xk = (ξk,∞). We define R and ρ as before,

and again

∂k log det(I −K) = Rkk(ξk, ξk).

Now we shall have more unknown functions. We set

ϕ = (2n)1/4 ϕn, ψ = (2n)1/4 ϕn−1,

and define

Q = ρ ϕ, P = ρ ψ, Q̃ = ϕχ ρ, P̃ = ψχ ρ.

Our unknowns will be, in addition to rij = Rij (ξi, ξj ), the matrix functions q, q̃, p
and p̃ given by

qij = Qij (ξi), q̃ij = Q̃ij (ξj ), pij = Pij (ξi), p̃ij = P̃ij (ξj ),

11 This splitting into universal and nonuniversal equations was also a feature of [15].



24 C.A. Tracy, H. Widom

and

q ′
ij = Q′

ij (ξi), q̃ ′
ij = Q̃ij (ξj ), p′

ij = P ′
ij (ξi), p̃′

ij = P̃ ′
ij (ξj ).

Again ξ denotes the matrix diag (ξk) and dξ denotes diag (dξk).
With these notations our system of equations is

dr = −r dξ r + dξ rx + ry dξ, (5.1)

dq = dξ q ′ − r dξ q, (5.2)

dq̃ = q̃ ′ dξ − q̃ dξ r, (5.3)

dq ′ = dξ (ξ2 − 2n− 1) q − (rx dξ + dξ ry) q + dξ r q ′, (5.4)

dq̃ ′ = q̃ (ξ2 − 2n− 1) dξ − q̃ (dξ ry + rx dξ)+ q̃ ′ r dξ, (5.5)

dp = dξ p′ − r dξ p, (5.6)

dp̃ = p̃′ dξ − p̃ dξ r, (5.7)

dp′ = dξ (ξ2 − 2n+ 1) p − (rx dξ + dξ ry) p + dξ r p′, (5.8)

dp̃′ = p̃ (ξ2 − 2n+ 1) dξ − p̃ (dξ ry + rx dξ)+ p̃′ r dξ. (5.9)

By Remark 2 and duality (each equation for q or p giving rise to one for q̃ or p̃) all
we have to show is that the diagonal entries of rx + ry and the off-diagonal entries of
rx and ry are known (i.e., expressible in terms of the unknowns) and to derive (5.4) and
(5.8).

We begin by finding a substitute for Lemma 1. We write D± for D ±M .

Lemma 3. We have

D+Lij − eτi−τj LijD+ = −ψ(x) ϕ(y),
eτi−τj D−Lij − LijD

− = −ϕ(x)ψ(y). (5.10)

Proof. Let J be the operator on L2(R) with kernel

J (x, y) =
n−1∑
k=0

σk ϕk(x) ϕk(y),

and set ak = √
k/2. We have the formulas

xϕk = ak+1 ϕk+1 + ak ϕk−1, ϕ′
k = −ak+1 ϕk+1 + ak ϕk−1.

Therefore

(x + ∂x) J (x, y) = 2
n−1∑
k=0

σk ak ϕk−1(x) ϕk(y),

(y − ∂y) J (x, y) = 2
n−1∑
k=0

σk ak+1 ϕk(x) ϕk+1(y).

This gives

[ (x + ∂x)− σ (y − ∂y) ] J (x, y) = −2 σn an ϕn−1(x) ϕn(y).
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If we take σ = eτi−τj and multiply by e−n (τi−τj ) we obtain the first identity of (5.10)
when i ≥ j . If σ < 1 and one takes n → ∞ in the last identity for J one gets zero for the
right sides. It follows that replacing

∑n−1
k=0 by −∑∞

k=n in its definition does not change
the right side. Thus we obtain the identity for i < j as well. The second identity of (5.10)
is obtained from the first by taking adjoints and using the fact that Lij is self-adjoint.
	


We can now find the analogue (actually, analogues) of Lemma 1. Observe that since
τ = diag (τi) we have eτ = diag (eτi ).

Lemma 4. We have

e−τD+ R − R e−τD+ = −P(x) e−τ � Q̃(y)+ Rδe−τ ρ, (5.11)

eτD− R − R eτD− = −Q(x) eτ � P̃ (y)+ Rδeτρ, (5.12)

Proof. If we multiply the relations (5.10) on the right by χ and use the fact [D±, χ ] = δ

we obtain

e−τD+K −K e−τD+ = −e−τ ψ(x)�χ(y) ϕ(y)+ Lδe−τ ,
eτD−K −K eτ D− = −eτ ϕ(x)�χ(y)ψ(y)+ Lδeτ .

We replace K on the left by K − I and left- and right-multiply by ρ, and the result
follows. (We used the fact that e±τ commutes with the matrix functions ϕ and ψ .) 	


If we take i, j entries in (5.11) and (5.12) and set x = ξi, y = ξj we obtain

e−τ rx + ry e
−τ = −e−τ ξ r + r e−τ ξ − pe−τ � q̃ + r e−τ r,

eτ rx + ry e
τ = eτ ξ r − r eτ ξ − qeτ � p̃ + r eτ r. (5.13)

The right sides here are known. If we add and subtract these identities and take i, j
entries we obtain

2 (cosh τi rxij + cosh τj ryij ) = · · · , (5.14)

2 (sinh τi rxij + sinh τj ryij ) = · · · , (5.15)

where the dots on the right represent known quantities. The first relation with j = i

gives rxii + ryii . If the two relations are thought of as a system of equations for rxij and
ryij the determinant of the system is nonzero when i �= j . Therefore we can solve for
rxij and ryij individually then.

What remains is to derive (5.4) and (5.8). For this we need the analogue of Lemma 2.

Lemma 5. We have

[D2 −M2, ρ] = R δ ρx − Ry δ ρ, (5.16)

where Ry(x, y) is interpreted as not containing a delta-function summand.

The proof is analogous to that of Lemma 2. Here we use the fact thatD2 −M2 com-
mutes with L, a consequence of the fact that each ϕk is an eigenfunction of D2 −M2.

Since ϕ is an eigenfunction of D2 −M2 with eigenvalue −2n− 1 and ψ an eigen-
function with eigenvalue −2n+ 1 applying both sides of (5.16) to ϕ and to ψ gives

Q′′ − x2Q+ (2n+ 1)Q = RδQ′ − RyδQ, (5.17)

P ′′ − x2 P + (2n− 1) P = RδP ′ − RyδP. (5.18)
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We have (4.13) here just as before. Taking the i, j entry in (5.17) and evaluating at
x = ξi gives

Q′′
ij (ξi)− (ξ2

i − 2n− 1) qij = (r q ′ − ry q)ij .

Substituting this into (4.13) we obtain

∂k q
′
ij = −rxik qkj + δik [(ξ2

i − 2n− 1) qij + (r q ′ − ry q)ij ],

which is (5.4). Equation (5.8) is established in exactly the same way using (5.18).
We can also derive a system analogous to Eqs. (4.15)–(4.17):

D2 q = (ξ2 − 2n− 1) q − 2 D r · q, (5.19)

D2 q̃ = q̃ (ξ2 − 2n− 1)− 2 q̃ · D r, (5.20)

D2 p = (ξ2 − 2n+ 1) p − 2 D r · p, (5.21)

D2 p̃ = p̃ (ξ2 − 2n+ 1)− 2 p̃ · D r, (5.22)

D r = −r2 + rx + ry. (5.23)

These equations are not as simple as (4.15)–(4.17) since the expressions for the entries
of rx+ry are messy. The last equation we already know. The other equations are derived
as for Airy: Summing the coefficients of dξk in (5.2) gives D q = q ′ − r q, so

D 2 q = D q ′ − D r · q − r (q ′ − r q). (5.24)

Similarly (5.4) gives

D q ′ = (ξ2 − 2n− 1) q + r q ′ − (rx + ry) q.

Substituting this into (5.24) and using (5.23) again give (5.19). We derive (5.21) similarly,
and (5.20) and (5.22) are obtained by duality.

In casem = 1 (5.13) gives rx + ry = r2 −pq, and our system of equations becomes

r ′ = −pq, q ′′ = (ξ2 − 2n− 1) q + 2 q2 p, p′′ = (ξ2 − 2n+ 1) p + 2p2 q.

From the last two we find (pq ′ −qp′)′ = pq ′′ −qp′′ = −2pq, and by the first equation
this is 2r ′. Thus pq ′ − qp′ = 2r . Using this, and successively computing r ′′, r ′′′ and
r ′′′′ using the differentiation formulas, we arrive at

r ′′′′ = 4(ξ2 − 2n)r ′′ + 4ξr ′ − 12r ′r ′′ − 4r = (4(ξ2 − 2n)r ′)′ − 4(ξr)′ − 6(r ′ 2)′,

and so

r ′′′ = 4(ξ2 − 2n)r ′ − 4ξr − 6r ′ 2.

This is the third-order equation found in [15] which integrates to Painlevé IV.
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We turn to the more general case where each Xk is a finite union of intervals, and
will again use the notations (4.20). The equations are

dr = −r dξ r + d̂ξ rx + ry d̂ξ, (5.25)

dq = d̂ξ q ′ − r dξ q, (5.26)

dq̃ = q̃ ′ d̂ξ − q̃ dξ r, (5.27)

dq ′ = d̂ξ (ξ2 − 2n− 1) q − (rx dξ + dξ ry) q + dξ r q ′, (5.28)

dq̃ ′ = q̃ (ξ2 − 2n− 1) d̂ξ − q̃ (dξ ry + rx dξ)+ q̃ ′ r dξ, (5.29)

dp = d̂ξ p′ − r dξ p, (5.30)

dp̃ = p̃′ d̂ξ − p̃ dξ r, (5.31)

dp′ = d̂ξ (ξ2 − 2n+ 1) p − (rx dξ + dξ ry) p + dξ r p′, (5.32)

dp̃′ = p̃ (ξ2 − 2n+ 1) d̂ξ − p̃ (dξ ry + rx dξ)+ p̃′ r dξ. (5.33)

Nothing is new here except to establish that the terms involving rx and ry on the
right are known. As usual those that occur are the diagonal entries of rx + ry and the
off-diagonal entries of rx and ry . In our case the terms rxij and ryij in (5.14) and (5.15)
are replaced by rx, iu, jv and ry, iu, jv and the relations show that these are known when
i �= j and that the rx, iu, iv + ry, iu, iv are known. It remains to show that rx, iu, iv and
ry, iu, iv are known when u �= v.

From (5.12), which says

[eτD−, R] = −Q(x) eτ � P̃ (y)+ Rδeτρ,

we deduce

[(eτD−)2, R] = eτD− (−Q(x) eτ � P̃ (y)+ Rδeτρ)

+(−Q(x) eτ � P̃ (y)+ Rδeτρ) eτD−.

We useS ≡ T for matrix functionsS andT to denote that the differencesSiu,iv(ξiu, ξiv)−
Tiu,iv(ξiu, ξiv) are known. If we keep in mind that q, q ′, p̃ and p̃′ are among our
unknowns, we see that it follows from the above, after multiplying by e−2τ , that

[D2 − 2MD, R] ≡ Rxδe
τρe−τ − Rδeτρye

−τ .

If we subtract this from (5.16) we obtain (since [M2, R] is known)

2[MD, R] ≡ (Rδρx − Rxδe
τρe−τ )+ (Rδeτρye

−τ − Ryδρ). (5.34)

Consider the first term on the right. Its iu, iv entry evaluated at (ξiu, ξiv) equals

∑
kw

riu, kw(−1)w+1rx, kw, iv −
∑
kw

rx,iu, kw(−1)w+1eτk r kw, iv e
−τi .

The terms of both sums corresponding to k �= i are known. So remaining as unknown
is the sum ∑

w

(−1)w+1(riu, iw rx, iw, iv − rx,iu, iw r iw, iv).
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Analogously the second term on the right of (5.34) is a known quantity plus
∑
w

(−1)w+1(riu, iw ry, iw, iv − ry,iu, iw r iw, iv).

Adding this to the last sum gives
∑
kw

(−1)w+1[riu, iw (rx, iw, iv + ry, iw, iv)− (rx, iu, iw + ry,iu, iw) r iw, iv)].

But this is known since, as we saw at the beginning, the rx, iu, iv + ry,iu, iv are known.
We have shown that [MD, R] ≡ a known matrix function. Its iu, jv entry evaluated

at (ξiu, ξiv) equals

ξiu rx, iu, jv + ξiv ry, iu, jv + ry, iu, jv,

so ξiu rx, iu, jv + ξiv ry, iu, jv is known. But so is rx, iu, jv + ry, iu, jv . Therefore rx, iu, jv
and ry, iu, jv are both known when u �= v.

VI. PDEs for the Extended sine Kernel

If we make the substitutions τi → τi/2n, x → x/
√

2n, y → y/
√

2n in the extended
Hermite kernel (1.3) and let n → ∞ we obtain the extended sine kernel

Lij (x, y) =




∫ 1

0
ez

2 (τi−τj ) cos z(x − y) dz if i ≥ j,

−
∫ ∞

1
ez

2 (τi−τj ) cos z(x − y) dz if i < j.

Here we set

ϕ(x) = sin x, ψ(x) = cos x,

and then the other definitions are exactly as in Hermite with the above replacements.
The unknowns now will be only r, q, q̃, p and p̃ and the equations for general Xk are

dr = −r dξ r + d̂ξ rx + ry d̂ξ, (6.1)

dq = d̂ξ (p + rsq)− r dξ q, (6.2)

dq̃ = (p̃ + q̃sr) d̂ξ − q̃ dξ r, (6.3)

dp = d̂ξ (−q + rsp)− r dξ p, (6.4)

dp̃ = (−q̃ + p̃sr) d̂ξ − p̃ dξ r. (6.5)

(Recall that s = diag ((−1)w+1) .)
We know that Eq. (6.1) is completely general, as are the equations

dq = d̂ξ q ′ − r dξ q,

dq̃ = q̃ ′ d̂ξ − q̃ dξ r,

dp = d̂ξ p′ − r dξ p,

dp̃ = p̃′ d̂ξ − p̃ dξ r.
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To derive (6.2)–(6.5) from these we establish the formulas

q ′ = p + rsq, p′ = −q + rsp, q̃ ′ = p̃ + q̃sr, p̃′ = −q̃ + p̃sr. (6.6)

We have [D, L] = 0, whence [D, K] = Lδ, whence

Rx + Ry = [D, ρ] = R δ ρ. (6.7)

Applying (6.7) on the left to ϕ and ψ , using ϕ′ = ψ, ψ ′ = −ϕ, we obtain

Q′(x)− P(x) = (Rδ Q)(x), P ′(x)+Q(x) = (Rδ P )(x).

Since q ′
iu, j = Q′

ij (ξiu) and p′
iu, j = P ′

ij (ξiu), the first two relations of (6.6) follow, and
the others are analogous.

So Eqs. (6.1)–(6.5) hold, and it remains to deal with the entries of rx and ry appearing
on the right side of (6.1). We have to show that the diagonal entries of rx + ry are known
and that rx, iu, jv and ry, iu, jv are known when iu �= jv.

It follows from (6.7) that rx + ry = rsr , and so all entries of the sum are known.
Next, for i ≥ j we have

2 (τi − τj ) Lxij = −2 (τi − τj )

∫ 1

0
ez

2 (τi−τj ) z sin z(x − y) dz

= −eτi−τj sin(x − y)+ (x − y)Lij .

The same holds when i < j . Since [τD, L]ij = τi Lxij + τj Lyij and Ly = −Lx , this
gives

2 [τD, L] = −eτ ⊗ e−τ sin(x − y) + [M, L],

where eτ ⊗ e−τ is the matrix with i, j entry eτi−τj . (This is not a tensor product.) Hence

2 [τD, K] = −eτ ⊗ e−τ sin(x − y) χ(y)+ [M, K] + 2Kδτ.

Replacing K by K − I in the commutators and applying ρ left and right give

2 [τD, R] = P(x) eτ ⊗ e−τ Q̃(y)−Q(x) eτ ⊗ e−τ P̃ (y)+ [M, R] + 2Rδτρ.

The i, j entry of the left side evaluated at (ξiu, ξjv) equals twice τi rx, iu, jv+τj ry, iu, jv ,
so these are known. We deduce, since rx, iu, jv + ry, iu, jv is known, that rx, iu, jv and
ry, iu, jv are both known when i �= j . Just as before, the trickier part is to show that
rx, iu, iv and ry, iu, iv are known when u �= v.

We compute

[DM, R] = [D, R]M +D [M, R]

= Rδρ y + 2 (∂x [τD, R] − Rxδτρ)

−P ′(x) eτ ⊗ e−τ Q̃(y)+Q′(x) eτ ⊗ e−τ P̃ (y). (6.8)

The i, i entry of [τD, R] evaluated at (ξiu, ξjv) equals τi (Rx + Ry)(ξiu, ξiv). Hence,
since ∂x (Rx +Ry) = Rxδρ by (6.7), the i, i entry of ∂x [τD, R] evaluated at (ξiu, ξjv)
equals τi (Rxδρ)ii(ξiu, ξiv). It follows that i, i entry of ∂x [τD, R] − Rxδτρ evaluated
at (ξiu, ξjv) equals

∑
kw

(−1)w+1(τi − τk) rx, iu, kw rkw, iv.
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Since we need only sum over k �= i all these terms are known. So are the other terms of
(6.8) evaluated at (ξiu, ξjv).

We have shown that the i, i entry of [DM, R] evaluated at (ξiu, ξjv) is known. This
equals riu, iv+ξiu rx, iu, jv+ξiv ry, iu, jv . Thus ξiu rx, iu, jv+ξiv ry, iu, jv is known. Since
rx, iu, jv + ry, iu, jv is known and ξiu �= ξiv so also are rx, iu, jv and ry, iu, jv known.

Let us see what these give in the case m = 1 for a single interval (−t, t). Here
ξ1 = −t, ξ2 = t . If we use the fact that K(−x, −y) = K(x, y) and the evenness of
cosine and the oddness of sine we get q2 = −q1, p2 = p1 and if we use the fact that
R(x, y) = R(y, x) for x, y ∈ (−t, t) we get rij = rji .

We use the notations r = r11, r̄ = r12. If we observe that d/dt = ∂2 − ∂1 then (6.6)
gives

dq1

dt
= −p1 − 2 r̄ q1,

dp1

dt
= q1 + 2 r̄ p1,

and (6.1) gives

dr

dt
= r2 + r̄2 − rx − ry,

and the trivial relation dr̄/dt = −r̄x + r̄y . The general relation rx + ry = rsr gives in
the present notation rx + ry = r2 − r̄2, and so

dr

dt
= 2 r̄2.

Finally (6.8) gives

r̄ − t r̄x + t r̄y = −P ′
1(−t)Q2(t)+Q′

1(−t) P2(t) = − d

dt
(Q1(−t) P1(−t)).

Thus

d

dt
(t r̄) = − d

dt
(q1 p1),

which gives

r̄ = −q1 p1

t
.

VII. The Laguerre Process

The Dyson process τ → A(τ) on the space of p × n complex matrices (we assume
p ≥ n) is specified by its finite-dimensional distribution functions. The probability
measure on Ak = A(τk) (k = 1, . . . , m) is a normalization constant times (1.4), which
may be written

m∏
j=1

exp

(
−
(

1

1 − q2
j

+
q2
j+1

1 − q2
j+1

)
Tr A∗

jAj

)

×
m∏
j=2

exp

(
qj

1 − q2
j

Tr (A∗
jAj−1 + hc)

)
dA1 · · · dAm. (7.1)
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(Here “hc” is an abbreviation for “Hermitian conjugate”.) We show how to derive (1.5)
from this.

Any complex matrixp×n complex matrixA can, by the singular value decomposition
(SVD) theorem, be written as

A = UDV ∗,

where U is a p×p unitary matrix, V is an n×n unitary matrix andD is a p×nmatrix
all of whose entries are zero except for the diagonal consisting of the singular values of
A. Thus we write each Aj as

Aj = UjDjV
∗
j

with the goal of eventually integrating over the unitaries Uj and Vj . Of course,

Tr (A∗
jAj ) = Tr (D∗

jDj ) =
n∑
j=1

λj ,

where λj = d2
jj .

Let us examine one term

Tr
(
A∗
jAj−1 + hc

)

appearing in the exponential of the second product in (7.1). Using the SVD representation
we have terms

Tr
(
Vj D

∗
j U

∗
j Uj−1Dj−1 V

∗
j−1 + hc

)
.

The integrals over the unitary group (Haar measure) are both left- and right-invariant.
Thus in the Vj−1 integration we let

V ∗
j−1 → V ∗

j−1V
∗
j

so that the trace term becomes

Tr
(
D∗
j U

∗
j Uj−1Dj−1 V

∗
j−1 + hc

)
.

In the Uj−1 integration we let Uj−1 → UjUj−1 and the trace becomes

Tr
(
D∗
j Uj−1Dj−1 V

∗
j−1 + hc

)
.

Thus, we have integrals of the form

∫ ∫
exp

(
qj

1 − q2
j

Tr (D∗
j Uj−1Dj−1 V

∗
j−1 + hc)

)
dµ(Vj−1) dµ(Uj−1).

Let S denote an n × p complex matrix, T a p × n complex matrix and U (resp.
V ) elements of the unitary group of p × p (resp. n × n) matrices. We assume p ≥ n
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and set α = p − n. We let si resp. ti denote the eigenvalues of SS∗ resp. T ∗T . The
Harish-Chandra/Itzykson-Zuber integral for rectangular matrices (see, e.g., [18]) is

∫ ∫
exp

(
c Tr (SUT V ∗ + hc)

)
dµ(U) dµ(V ) = Cp,n,c

�(a)�(b)

det
(
Iα(2c

√
aibj )

)
∏n
i=1(si ti )

α/2
.

Here c can be any constant, α = p − n, Iα is the modified Bessel function and Cp.n,c
is a known constant.

When the qj = 0 the measure (7.1) must reduce, after integration over the unitary
parts, to the well-known Laguerre measure. It follows that (7.1) becomes after integration
over the unitary parts a normalization constant times

m∏
k=1

e
−
(

1
1−q2

k−1
+ q2

k

1−q2
k

)
n∑
i=1

λki
m−1∏
k=1

det

(
Iα

(
2qk+1

1 − q2
k+1

√
λi, k λj,k+1

))

×�(λ1)�(λm)

n∏
i=1

λ
α/2
1i

n∏
i=1

λ
α/2
mi dλ11 · · · dλmn,

which is (1.5).
We shall now compute the extended kernel using the method of Sect. II. This density

is not quite of the form (2.1) because of the last factors in the integrand here. Conse-
quently in (2.2) there are extra factors λα/2i and λα/2m , and so in the discussion that follows
P1i (λ) and Qmi(λ) are no longer polynomials of degree i but λα/2 times polynomials
of degree i.

We have now

Vk(λ) =
(

1

1 − q2
k−1

+ q2
k

1 − q2
k

)
λ, uk(λ, µ) = Iα

(
2qk

1 − q2
k

√
λµ

)
.

We introduce the Hille-Hardy kernel (the analogue of the Mehler kernel)

K(q; λ,µ) = q−α

1 − q2 e
− q2

1−q2 λ− 1
1−q2 µ

(µ
λ

)α/2
Iα

(
2q

1 − q2

√
λµ

)

which has the representation

K(q; λ,µ) =
∞∑
i=0

q2i pαi (λ) p
α
i (µ)µ

αe−µ,

where pαi are the Laguerre polynomials Lαi , normalized. It follows that
∫ ∞

0
K(q; λ,µ) pαi (µ) dµ = q2i pαi (λ) (7.2)

and so again K(q) ∗K(q ′) = K(qq ′).
Now we may take in (2.3),

E12(λ1, λ2) = e−λ1 (λ1/λ2)
α/2K(q1; λ1, λ2),

Ek,k+1(λk, λk+1) = (λk/λk+1)
α/2K(qk; λk, λk+1), (k > 1),
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and so

E1k(λ, µ) = e−λ (λ/µ)α/2K(q1 · · · qk−1; λ,µ).
We deduce from (7.2) that∫ ∫

λα/2 pαi (λ)E1m(λ, µ)µ
α/2 pαj (µ) dµdλ

= (q1 · · · qm−1)
2j
∫
λα pαi (λ) e

−λ pαj (λ) dλ = (q1 · · · qm−1)
2j δij .

Hence we may take

P1i (λ1) = λ
α/2
1 pαi (λ1), Qmj (λm) = (q1 · · · qm−1)

−2j λ
α/2
m pαj (λm).

We see that

Pki(µ) =
∫
λα/2 P1i (λ) e

−λ (λ/µ)α/2K(q1 · · · qk−1; λ,µ) dλ
= (q1 · · · qk−1)

2i pαi (µ)µ
α/2 e−µ, (k > 1),

Qkj (λ) =
∫
(λ/µ)α/2K(qk · · · qm−1; λ,µ)Qmj (µ)µ

α/2 dµ

= (q1 · · · qk−1)
−2j λα/2 pαj (λ), (k > 1),

Q1j (λ) =
∫
e−λ(λ/µ)α/2K(q1 · · · qm−1; λ,µ)Qmj (µ)dµ = e−λ λα/2 pαj (λ).

It follows that H is the matrix with k, � entry

n−1∑
j=0

(
q1 · · · q�−1

q1 · · · qk−1

)2j

pj (λ) pj (µ)

left-multiplied by the matrix diag (λα/2e−λ λα/2 · · · λα/2) and right-multiplied by
the matrix diag (µα/2 µα/2e−µ · · · µα/2e−µ). Similarly E is the strictly upper-trian-
gular matrix with k, � entry (λ/µ)α/2K(qk · · · q�−1; λ,µ) left-multiplied by the ma-
trix diag (λα/2e−λ λα/2 · · · λα/2). Now we use the fact that the determinant is un-
changed if we multiply on the left by diag (eλ/2 e−λ/2 · · · e−λ/2) and on the right by
diag (e−µ/2 eµ/2 · · · eµ/2).

In this way we find the analogue of the kernel which was denoted by Ĥ − Ê in
Sect. III. It is now given by (1.3) but with coefficients e2k (τi−τj ) and with ϕk(x) equal
to xα/2 e−x/2 pαk (x). This is the extended Laguerre kernel.

VIII. PDEs for the Extended Bessel Kernel

If we make the substitutions τi → τi/2n, x → x2/4n, y → y2/4n in the extended
Laguerre kernel and then let n → ∞ we obtain the extended Bessel kernel

Lij (x, y) =




∫ 1

0
ez

2 (τi−τj )/2�α(xz)�α(yz) dz if i ≥ j,

−
∫ ∞

1
ez

2 (τi−τj )/2�α(xz)�α(yz) dz if i < j,
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where

�α(z) = √
z Jα(z).

Let us immediately explain the difficulty. In the previous cases we were able to find
one commutator for L involvingD and another involvingD2, the latter arising from the
differential operator whose eigenfunctions appear in the integrand or summand of the
expression for the kernel. (For the extended Airy kernel these were given in Lemmas 1
and 2.) These enabled us to express rx and ry in terms of the unknown functions.

Here there does not seem to be a commutator involving the first power of D. We
are able to find two relations involving the first power of D, but each involves both
a commutator and an anticommutator. Fortunately we are able to deduce from these
relations three commutator relations involving D2, and these relations will enable us to
show that the derivatives of rx and ry are expressible in terms of rx and ry and the other
unknown functions. The upshot is that we are able to find a system of PDEs in which rx
and ry are now among the unknowns. Although the system of equations seems no more
complicated than those we have already derived (just larger) it is actually much more
so because of the expressions for the derivatives of rx and ry in terms of the unknown
functions.

To state the equations, we define ϕ and ψ by

ϕ = �α, ψ = �α+1.

From these we define q in the usual way. But now we set

P = (I −K)−1Mψ, P̃ = Mψχ (I −K)−1,

and from these we define p and p̃ in the usual way. (The reason we do this is that even-
tually it is these p and p̃ which will arise in the expressions for the derivatives of rx and
ry .) With these notations our system of equations, in the general case where each Xk is
a finite union of intervals, is

dr = −r dξ r + d̂ξ rx + ry d̂ξ, (7.1)

drx = −rx dξ r + d̂ξ rxx + rxy d̂ξ, (7.2)

dry = −r dξ ry + d̂ξ rxy + ryy d̂ξ, (7.3)

dq = d̂ξ q ′ − r dξ q, (7.4)

dq̃ = q̃ ′ d̂ξ − q̃ dξ r, (7.5)

dq ′ = d̂ξ ((α2 − 1
4 ) ξ

−2 q − q)− (rx dξ + dξ ry) q + dξ r q ′, (7.6)

dq̃ ′ = ((α2 − 1
4 ) q̃ ξ

−2 − q̃) d̂ξ − q̃ (dξ ry + rx dξ)+ q̃ ′ r dξ, (7.7)

dp = d̂ξ p′ − r dξ p, (7.8)

dp̃ = p̃′ d̂ξ − p̃ dξ r, (7.9)

dp′ = d̂ξ ((α2 − 1
4 ) ξ

−2 p + 2q − p)− (rx dξ + dξ ry) p + dξ r p′, (7.10)

dp̃′ = ((α2 − 1
4 ) p̃ ξ

−2 + 2q̃ − p̃) d̂ξ − p̃ (dξ ry + rx dξ)+ p̃′ r dξ. (7.11)

Equations (7.2) and (7.1) are obtained in the same way as (4.21). We have
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∂kwrx,iu,jv = ∂kwRxij (ξiu, ξjv) = (−1)w Rxik(ξiu, ξkw)Rkj (ξkw, ξjv)

+Rxxij (ξiu, ξjv)δiu,kw + Rxyij (ξiu, ξjv)δjv,kw.

This gives (7.2) and (7.3) is analogous.
So all the equations are universal except for (7.6) and (7.10) and their duals. What

we have to do is show that the diagonal entries of rxx + rxy and rxy + ryy , and the
off-diagonal entries of rxx, rxy and ryy are all known, and to establish Eqs. (7.6) and
(7.10).

To begin, we denote by L± the kernels where �α(xz)�α(yz) in the integrand is
replaced by

�α(xz)�α(yz)±�α+1(xz)�α+1(yz).

When α = −1/2, L+ is essentially the extended sine kernel and some of the for-
mulas we derive here will specialize to those obtained in Sect. VI. We use the notations
β = 1

2 + α and

ζ(x, y) = ϕ(x)ψ(y)− ψ(x)ϕ(y), η(x, y) = ϕ(x)ψ(y)+ ψ(x) ϕ(y),

� = (e(τi−τj )/2).

After integration by parts and some computation using the differentiation formulas

�′
α(z) = −�α+1(z)+ β z−1�α(z), �′

α+1(z) = �α(z)− β z−1�α+1(z)

we find that

L+
x = 1

τi − τj
� ζ(x, y)+ β

x
L− + 1

τi − τj
(x − y)L+,

L+
y = − 1

τi − τj
� ζ(x, y)+ β

y
L− + 1

τi − τj
(y − x)L+,

L−
x = − 1

τi − τj
� η(x, y)+ β

x
L+ + 1

τi − τj
(x + y)L−,

L−
y = − 1

τi − τj
� η(x, y)+ β

y
L+ + 1

τi − τj
(x + y)L−.

Here the i, j entries of the matrices L± and � are to be understood.
If we add the first two identities and subtract the last two we obtain the commutator-

anticommutator pair

[D,L+] = β{M−1, L−}, {D,L−} = β[M−1, L+]. (7.12)

To obtain another pair, first multiply the first two identities by τi − τj and subtract,
getting

(τi − τj ) (L
+
x − L+

y ) = 2�ζ(x, y)+
(
β

x
− β

y

)
(τi − τj ) L

− + 2(x − y)L+.
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Using the first two identities again we can write the left side as

τi L
+
x + τj L

+
y − τi

(
− 1

τi − τj
� ζ(x, y)+ β

y
L− + 1

τi − τj
(y − x)L+

)

−τj
(

1

τi − τj
� ζ(x, y)+ β

x
L− + 1

τi − τj
(x − y)L+

)

= τi L
+
x + τj L

+
y −

(
β

y
τi + β

x
τj

)
L− + (x − y)L+ +�ζ(x, y).

Thus

τi L
+
x + τj L

+
y =

(
β

x
τi + β

y
τj

)
L− + (x − y)L+ +�ζ(x, y).

In other words

[τD −M, L+] = β{M−1τ, L−} +�ζ(x, y).

Next multiply the last two identities by τi − τj and add, getting

(τi − τj ) (L
−
x + L−

y ) = −2�η(x, y)+
(
β

x
+ β

y

)
(τi − τj ) L

+ + 2(x + y)L−.

The left side may be rewritten

τi L
−
x − τj L

−
y + τi

(
− 1

τi − τj
� η(x, y)+ β

y
L+ + 1

τi − τj
(x + y)L−

)

−τj
(

− 1

τi − τj
� η(x, y)+ β

x
L+ + 1

τi − τj
(x + y)L−

)

= τi L
−
x − τj L

−
y +

(
β

y
τi − β

x
τj

)
L+ + (x + y)L− −�η(x, y).

Thus

τi L
−
x − τj L

−
y =

(
β

x
τi − β

y
τj

)
L+ + (x + y)L− −�η(x, y).

In other words

{τD −M, L−} = β[M−1τ, L+] −�η(x, y).

Thus we have our second commutator-anticommutator pair

[τD −M, L+] = β{M−1τ, L−} +� ζ(x, y), (7.13)

{τD −M, L−} = β[M−1τ, L+] −� η(x, y). (7.14)
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Now we have the following.

Lemma. Suppose A and B are such that

[A, L+] = {B, L−} + F, {A, L−} = [B, L+] +G.

Then

[A2 − B2, L+] = [[A, B], L−] + {A, F } + {B, G},

[A2 − B2, L−] = [[A, B], L+] + [A, G] + [B, F ].

Proof. We have

[A2, L+] = {A, [A, L+]} = {A, {B, L−}} + {A, F }.
By the general identity

{A, {B,C}} = [[A,B], C] + {B, {A,C}},
the first term on the right side above may be written

[[A,B], L−] + {B, {A,L−}} = [[A,B], L−] + {B, [B, L+]} + {B, G}
= [[A,B], L−] + [B2, L+] + {B, G}.

This establishes the first stated identity.

For the second we write

[A2, L−] = [A, {A, L−}] = [A, [B, L+]] + [A, G].

By the general identity

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0,

the first term on the right side above may be written

−[B, [L+, A]] − [L+, [A, B]] = [B, {B, L−}] + [B, F ] − [L+, [A, B]]

= [B2, L−] + [[A, B], L+] + [B, F ].

This gives the second identity.
We have obtained in (7.12) and (7.13)–(7.14) two quadruples (A1, B1, F1, G1) and

(A2, B2, F2, G2) satisfying the hypothesis of the lemma. Each gives commutator rela-
tions involving L+ and L−. However (A1 +A2, B1 +B2, F1 +F2, G1 +G2)will also
satisfy the hypothesis of the lemma and so gives commutator relations involvingL+ and
L−. If we subtract from these the relations resulting from the other two we obtain

[AA′ + A′A− BB ′ − B ′B, L+] = [[A, B ′] + [A′, B], L−] + {A, F ′}
+{A′, F } + {B, G′} + {B ′, G},

[AA′ + A′A− BB ′ − B ′B, L−] = [[A, B ′] + [A′, B], L+] + [A, G′]
+[A′, G] + [B, F ′] + [B ′, F ].
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So in the end we will obtain three pairs of commutator relations involving L+ and
L−. If we add the identities in each pair and divide by 2 we obtain three commutator
identities for L. For the explicit computations we have to keep in mind that all matrices
and operators commute with ϕ and ψ , and D and M commute with τ and �. We write
down the results, sparing the reader the details:

[D2 + β (1 − β)M−2, L] = 0,

2[τD2 −MD + β(1 − β)τ M−2, L]

= �
(
ϕ ⊗ ψ (D − β M−1)− (D + β M−1) ψ ⊗ ϕ

)
,

[(τ D −M)2 + β (1 − β) τ 2M−2, L]

= �ϕ ⊗ ψ (τ D −M − β τ M−1)− (τ D −M + β τ M−1)�ψ ⊗ ϕ.

The differentiation formula for �α+1 is in our notation (D + β M−1) ψ = ϕ. Also, an
operator acts on ϕ ⊗ ψ from the right by applying its transpose to ψ . Using these facts
we see that the last two identities simplify to

[τD2 −MD + β(1 − β)τ M−2, L] = −2�ϕ ⊗ ϕ,

[(τ D −M)2 + β (1 − β) τ 2M−2, L] = −2�τ ϕ ⊗ ϕ −�(ϕ ⊗Mψ −Mψ ⊗ ϕ).

The commutator identities forL lead as before to commutator identities forK = Lχ .
They are

[D2 + β (1 − β)M−2, K] = L (δD +Dδ),

[τD2 −MD + β(1 − β)τ M−2, K] = −2�ϕ ⊗ ϕχ + L (τ (δD +Dδ)−Mδ) ,

[(τ D −M)2 + β (1 − β) τ 2M−2, K] = −2�τ ϕ ⊗ ϕχ

−�(ϕ ⊗Mψχ −Mψ ⊗ ϕχ)

+L
(
τ 2 (δD +Dδ)− 2τ Mδ

)
.

We are ready to apply ρ = (I −K)−1 to both sides. The only functions that appear
on the right sides are ϕ and Mψ , which is why we define

Q = (I −K)−1ϕ, Q̃ = ϕ χ (I −K)−1,

P = (I −K)−1Mψ, P̃ = Mψ χ (I −K)−1.

Then we deduce

[D2 + β (1 − β)M−2, R] = R δ ρx − Ry δ ρ,

[τD2 −MD + β(1 − β)τ M−2, R] = −2Q(x)� Q̃(y)+ R τδ ρx

−Ry τδ ρ − R ξ ρ,

[(τ D −M)2 + β(1 − β)τ 2M−2, R] = −2Q(x)�τ Q̃(y)−Q(x)� P̃ (y)

+P(x)� Q̃(y)+ R τ 2δ ρx

−Ry τ 2δ ρ − R τξ ρ. (7.15)

We now show that the diagonal entries of rxx+rxy and rxy+ryy , and the off-diagonal
entries of rxx, rxy and ryy can all be expressed in terms of the unknowns.
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We use the symbol ≡ here to mean that the difference of the quantities on its left and
right is expressible in terms ofQ, P, Q̃, P̃ andR, but no derivatives of these functions.
The three commutator identities above yield in this notation the relations

Rxx − Ryy ≡ Rδρx − Ryδρ, (7.16)

τi Rxx − τj Ryy ≡ x Rx + y Ry + R τδ ρx − Ry τδ ρ, (7.17)

τ 2
i Rxx − τ 2

j Ryy ≡ 2 τ x Rx + 2 y Ry τ + R τ 2δ ρx − Ry τ
2δ ρ. (7.18)

Consider first the case i �= j . It follows from any pair of the above equations (every-
thing now is to be evaluated at (ξiu, ξjv)) that both Rxx and Ryy are known. If we call
the right sides above A, B and C then

∣∣∣∣∣∣
1 1 A

τi τj B

τ 2
i τ

2
j C

∣∣∣∣∣∣ ≡ 0.

If we differentiate with respect to x we deduce that the sum of all terms involving Rxy is
known. (Since our unknowns involved up to one derivative, this is why in our definition
of ≡ we required that no derivatives were involved in the difference.) This sum is

−τiτj (τj − τi) RxyδR − (τ 2
j − τ 2

i ) (yRxy − RxyτδR)

+(τj − τi) (2τj y Rxy − Rxyτ
2δR).

Dividing this by τj − τi , evaluating at (ξiu, ξjv) and expanding we obtain

∑
k,w

(−1)w(τi − τk) (τj − τk) rkw,jv rxy,iu,kw + (τj − τi) ξjv rxy,iu,jv.

The terms involving k = i vanish, so equating the above with the known quantity it is
equal to gives a system of equations (with iu fixed) for the rxy,iu,kw with k �= i. The
jv, kw entry of the matrix for the system is

(−1)w (τi − τk) (τj − τk) rkw,jv + (τj − τi) ξjv δjv,kw.

The determinant of this matrix is a polynomial in the entries of r and ξ . (We think of
the τj as fixed.) In the expansion of the determinant one summand is

∏
jv(τj − τi) ξjv .

Every other summand will contain at least one rkw,jv factor. If we look at the series
expansions for these other summands valid for small ξjv (coming from the series for the
Bessel functions and the Neumann series for the resolvent), every term will be a product
of powers of the ξjv and have as coefficient a negative integral power of �(α) times
a rational function of α. It follows that in the series expansion of the determinant the
coefficient of

∏
jv ξjv is nonzero. Thus the determinant cannot be identically zero.

We have shown that if i �= j then rxy,iu,jv is expressible in terms of the unknown
functions. It remains to consider the cases where i = j , and we always evaluate at
(ξiu, ξiv). In this case (7.16) shows thatRxx −Ryy is known. Subtracting τi times (7.16)
from (7.17) gives

0 ≡ x Rx + y Ry + RτδRx − RyτδR − τi(RδRx − RyδR).
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All terms here involving δ are sums over k. The terms involving k �= i, even after taking
∂x or ∂y , are known, as we have shown. Those involving k = i cancel, just as before.
Hence applying ∂x and ∂y to the above and evaluating at (ξiu, ξiv) shows that

ξiu rxx,iu,iv + ξiv rxy,iu,iv and ξiu rxy,iu,iv + ξiv ryy,iu,iv

are known. Taking v = u shows that both rxx,iu,iu + rxy,iu,iu and rxy,iu,iu + ryy,iu,iu
are known. If u �= v, using the fact that ryy,iu,iv − rxx,iu,iv is known, we see also that
rxx,iu,iv and rxy,iu,iv are individually known.

All that we have left to show are (7.6) and (7.10). For these we use (7.15) (the analogue
here of Lemma 2) and the facts

(D2 + β (1 − β)M−2) ϕ = −ϕ, (D2 + β (1 − β)M−2)Mψ = 2ϕ −Mψ,

which follow from the differentiation formulas. (The first is just the differential equa-
tion satisfied by �α; the second is a miracle.) We use these to compute Q′′

iu,j (ξiu) and
P ′′
iu,j (ξiu) as for previous equations. Thus, for example, to obtain (7.6) we replace the

term d̂ξ (ξ2 − 2n− 1)q in (5.28) by d̂ξ (−β (1 − β) ξ−2 q − q) and to obtain (7.10) we
replace the term d̂ξ (ξ2 − 2n+ 1)p in (5.32) by d̂ξ (−β (1 − β) ξ−2 p+ 2q − p).Any
reader who has come this far can easily supply the details.
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