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Abstract: In this paper we obtain general integral formulas for probabilities in the
asymmetric simple exclusion process (ASEP) on the integer lattice Z with nearest neigh-
bor hopping rates p to the right and q = 1 − p to the left. For the most part we consider
an N -particle system but for certain of these formulas we can take the N → ∞ limit.
First we obtain, for the N -particle system, a formula for the probability of a configu-
ration at time t , given the initial configuration. For this we use Bethe Ansatz ideas to
solve the master equation, extending a result of Schütz for the case N = 2. The main
results of the paper, derived from this, are integral formulas for the probability, for given
initial configuration, that the mth left-most particle is at x at time t . In one of these
formulas we can take the N → ∞ limit, and it gives the probability for an infinite
system where the initial configuration is bounded on one side. For the special case of the
totally asymmetric simple exclusion process (TASEP) our formulas reduce to the known
ones.

I Introduction

Since its introduction nearly forty years ago [19], the asymmetric simple exclusion
process (ASEP) has become the “default stochastic model for transport phenomena”
[22]. Recall [8,9] that the ASEP on the integer lattice Z is a continuous time Markov
process ηt , where ηt (x) = 1 if x ∈ Z is occupied at time t , and ηt (x) = 0 if x is
vacant at time t . Particles move on Z according to two rules: (1) A particle at x waits
an exponential time with parameter one, and then chooses y with probability p(x, y);
(2) If y is vacant at that time it moves to y, while if y is occupied it remains at x . The
adjective “simple” refers to the fact that the allowed jumps are only one step to the right,
p(x, x +1) = p, or one step to the left, p(x, x −1) = q = 1− p. The totally asymmetric
simple exclusion process (TASEP) allows jumps only to the right, so that p = 1.

In a major breakthrough, Johansson [6], building on earlier work of Baik, Deift,
and Johansson [3], related a probability in TASEP to a probability in random matrix
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theory. Specifically, if the initial configuration in TASEP is Z
− then the probability

that a particle initially at −m moves at least n steps to the right in time t equals the
probability distribution of the largest eigenvalue in a (unitary) Laguerre random matrix
ensemble. The realization [6,12] that the TASEP is a determinantal process [5,17] has
led to considerable progress in our understanding of the one-dimensional TASEP. (See
[18] for a recent review.)

It is natural to ask to what extent these results for TASEP can be extended to ASEP.
Since we no longer have the determinantal structure that is present in TASEP, random
matrix theory methods, RSK-type bijections, or nonintersecting path techniques are not
applicable (or at least not obviously so) to ASEP.

However, it has been known for some time [1,4] that the generator of ASEP is a
similarity transformation of the quantum spin chain Hamiltonian known as the XXZ
model [20,21]. Since the XXZ Hamiltonian is diagonalizable by the Bethe Ansatz [21],
it is reasonable to expect that these ideas are useful for ASEP. Indeed, Gwa and Spohn
[4] applied Bethe Ansatz methods to the TASEP for a finite number of particles with
periodic boundary conditions (i.e., for particles on a circle) to compute the dynamical
scaling exponent.

Subsequently for TASEP on Z for a finite number of particles, Schütz [16] showed that
the probability that at time t the system is in configuration X = {x1, . . . , xN }, given that
its initial configuration was Y = {y1, . . . , yN }, is expressible as an N × N determinant.
From this determinant representation Rákos and Schütz [13] derived Johansson’s result
relating TASEP to the Laguerre ensemble. The Rákos-Schütz derivation uses the crucial
fact that for TASEP the probability for any particle depends only on the initial positions
for that particle and those to its right, and so it is expressible in terms of probabilities for
finite systems when the initial configuration is Z

−.1 This is clearly no longer the case
for ASEP.

In this paper we obtain general integral formulas for probabilities in ASEP. For the
most part we consider an N -particle system but for certain of these formulas we can
take the N → ∞ limit, so that there are analogous formulas (involving infinite series)
for infinite systems where the initial configuration is

Y = {y1, y2, . . .}, y1 < y2 < · · · → +∞.

To specialize to infinite systems in TASEP with initial configuration Z
− we would

replace Z
− by Y = Z

+ and let q = 1.
Denote by PY (X; t) the probability that a system with initial configuration Y is in

configuration X at time t . Then (Theorem 2.1) for an N -particle system PY (X; t) is
equal to a sum of N ! N -dimensional contour integrals. The integrand was suggested by
the Bethe Ansatz (but there is no Ansatz!). The case N = 2 was established by Schütz
[16] in different notation, and he also proposed that there was a general result such as
this, with some contours.

The main objective of the paper is to obtain probabilities for the individual particles
at time t . To state the formulas we introduce some notation. We set

ε(ξ) = p ξ−1 + q ξ − 1,

1 The determinantal formula can be used to obtain scaling limit results for other initial conditions as well.
See, e.g., [14].
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and define an N -dimensional integrand I (x,Y, ξ), with variable ξ = (ξ1, . . . , ξN ) and
parameter x ∈ Z, by

I (x,Y, ξ) =
∏

i< j

ξ j − ξi

p + qξiξ j − ξi

1 − ξ1 · · · ξN

(1 − ξ1) · · · (1 − ξN )

∏

i

(
ξ

x−yi −1
i eε(ξi )t

)
. (1.1)

The parameter t appears in the last factor but not in the notation.
For the probability for x1(t), the position of the first particle at time t , the sum of N !

integrals given in Theorem 2.1 miraculously collapses into one integral. When p �= 0
the first product in (1.1) is analytic when all the ξi lie inside some circle Cr with center
zero and radius r . We also assume that r < 1. We show that for p �= 0 and such r , we
have (Theorem 3.1)

P(x1(t) = x) = pN (N−1)/2
∫

Cr

· · ·
∫

Cr

I (x,Y, ξ) dξ1 · · · dξN . (1.2)

In order to take the N → ∞ limit we need integrals over large contours rather
than small ones. This is because of the factors ξ−yi

i in the integrand (1.1). Given a set
S ⊂ {1, . . . , N } we denote by I (x,YS, ξ) the integrand analogous to I (x,Y, ξ), where
only the variables ξi with i ∈ S occur. Then when q �= 0 we have (Theorem 3.2)

P(x1(t) = x) =
∑

S

cS

∫

CR

· · ·
∫

CR

I (x,YS, ξ) d |S|ξ, (1.3)

where R > 1 is so large that all the poles of the first product in the integrand lie inside
CR . The sum runs over all nonempty subsets S of {1, . . . , N } and cS are certain constants
involving S and powers of p and q.

Once we have this we are able to compute the expected value E(x1(t)) and to take
the N → ∞ limit in (1.3). If Y = {y1, y2, . . .} with y1 < y2 < · · · → +∞ then on the
right side of (1.3) we simply take the sum over all finite sets S ⊂ Z

+, the resulting series
being convergent.

These results are contained in Sect. III. In Sect. IV we derive the analogue of (1.2)
for the second-left particle.

The main results of the paper are in Sect. V where we obtain the analogues of (1.2)
and (1.3) for the general particle. The analogue of (1.2) has the form

P(xm(t) = x) =
∑

|S|>N−m

cS,m,N

∫

Cr

· · ·
∫

Cr

I (x,YS, ξ) d |S|ξ, (1.4)

where we sum over all subsets S of {1, . . . , N } with cardinality at least N − m + 1, and
cS,m,N is another explicitly given constant. (See Theorem 5.1) The analogue of (1.3) is

P(xm(t) = x) =
∑

|S|≥m

cS,m

∫

CR

· · ·
∫

CR

I (x,YS, ξ) d |S|ξ, (1.5)

where we sum over all subsets S of {1, . . . , N } with cardinality at least m, and cS,m
is yet another explicitly given constant. (See Theorem 5.2) Notice that in the latter
representation the coefficients are independent of N , and this allows us to take the N →
∞ limit and so obtain probabilities for infinite systems. When the initial configuration
is Z

+ the sum over sets in (1.5) may be simplified to a sum over integers. (The corollary
to Theorem 5.2.)
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Of course (1.2) and (1.3) and the second-particle formula are special cases of these,
but we give their proofs first, so that we can introduce the new ingredients gently.

The deduction of these formulas from Theorem 2.1 requires two algebraic identities
which were discovered by computer computation of special cases. The first is

∑

σ∈SN

sgn σ

⎛

⎝
∏

i< j

(p + qξσ(i)ξσ( j) − ξσ(i))

× ξσ(2) ξ
2
σ(3) ξ

3
σ(4) · · · ξ N−1

σ(N )

(1 − ξσ(1)ξσ(2)ξσ(3) · · · ξσ(N )) · · · (1 − ξσ(N−1)ξσ(N ))(1 − ξσ(N ))

⎞

⎠

= pN (N−1)/2

∏
i< j (ξ j − ξi )∏

j (1 − ξ j )
, (1.6)

where the sum is over all permutations σ in the symmetric group SN . We also use an
equivalent version of this identity,

∑

σ∈SN

sgn σ

⎛

⎝
∏

i< j

(
p + qξσ(i)ξσ( j) − ξσ(i)

)

× 1

(ξσ(1) − 1)(ξσ(1)ξσ(2) − 1) · · · (ξσ(1)ξσ(2) · · · ξσ(N ) − 1)

⎞

⎠

= q N (N−1)/2

∏
i< j (ξ j − ξi )∏

j (ξ j − 1)
, (1.7)

obtained from (1.6) by interchanging p and q and letting ξi → 1/ξN−i+1.
For the second identity we introduce the notation

[N ] = pN − q N

p − q
,

and then

[N ]! = [N ] [N − 1] · · · [1] ,
[

N

m

]
= [N ]!

[m]! [N − m]! , (1.8)

where we set [0]! = 1. (Note that
[

N
m

]
is qm (N−m) times a q-binomial coefficient with

q equal to our p/q. Hence the notation.) The identity is

∑

|S|=m

∏

i∈S
j∈Sc

p + qξiξ j − ξi

ξ j − ξi
·
(

1 −
∏

j∈Sc

ξ j

)
= qm

[
N − 1

m

] (
1 −

N∏

j=1

ξ j

)
(1.9)

for N ≥ m + 1. The sum runs over all subsets S of {1, . . . , N } with cardinality m, and
Sc denotes the complement of S in {1, . . . , N }.

The proofs of these identities will be given in the last section.
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II. Solution of the Master Equation

We denote by Y = {y1, . . . , yN } with y1 < · · · < yN the initial configuration of the
process and write X = {x1, . . . , xN } ∈ Z

N . When x1 < · · · < xN then X represents
a possible configuration of the system at a later time t . We denote by PY (X; t) the
probability that the system is in configuration X at time t , given that it was initially in
configuration Y .

Given X = {x1, . . . , xN } ∈ Z
N we set

X+
i ={x1, . . . , xi−1, xi + 1, xi+1, . . . , xN }, X−

i = {x1, . . . , xi−1, xi −1, xi+1, . . . , xN }.

The master equation for a function u on Z
N × R

+ is

d

dt
u(X; t) =

N∑

i=1

(
p u(X−

i ; t) + q u(X+
i ; t)− u(X; t)

)
, (2.1)

and the boundary conditions are, for i = 1, . . . , N − 1,

u(x1, . . . , xi , xi + 1, . . . , xN ; t)

= p u(x1, . . . , xi , xi , . . . , xN ; t) + q u(x1, . . . , xi + 1, xi + 1, . . . , xN ; t). (2.2)

The initial condition is

u(X; 0) = δY (X) when x1 < · · · < xN .

The basic fact is that if u(X; t) satisfies the master equation, the boundary conditions,
and the initial condition, then PY (X; t) = u(X; t) when x1 < · · · < xN .2

Recall that an inversion in a permutation σ is an ordered pair {σ(i), σ ( j)} in which
i < j and σ(i) > σ( j). We define

Sαβ = − p + qξαξβ − ξα

p + qξαξβ − ξβ

and then

Aσ =
∏

{Sαβ : {α, β} is an inversion in σ }.

We also set

ε(ξ) = p ξ−1 + q ξ − 1.

For now we shall assume p �= 0, so the Aσ are analytic at zero in all the variables. Here
and later all differentials dξ incorporate the factor (2π i)−1,

2 The idea in Bethe Ansatz (see, e.g., [7,20,21]), applied to one-dimensional N -particle quantum mechan-
ical problems, is to represent the wave function as a linear combination of free particle eigenstates and to
incorporate the effect of the potential as a set of N −1 boundary conditions. The remarkable feature of models
amendable to Bethe Ansatz is that the boundary conditions for N ≥ 3 introduce no more new conditions,
with the result that (2.2) involves only consecutive particles. The application of Bethe Ansatz to the evolution
equation (master equation) describing ASEP begins with Gwa and Spohn [4] with subsequent developments
by Schütz [16].
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Theorem 2.1. We have when p �= 0,

PY (X; t) =
∑

σ∈SN

∫

Cr

· · ·
∫

Cr

Aσ
∏

i

ξ
xi −yσ(i)−1
σ(i) e

∑
i ε(ξi ) t dξ1 · · · dξN , (2.3)

where Cr is a circle centered at zero with radius r so small that all the poles of the Aσ
lie outside Cr .

Remark. For TASEP with p = 1 we have

Sαβ = −(1 − ξα)/(1 − ξβ).

Fix α. In Aσ the factor 1−ξα occurs for each inversion of the form {α, β} and (1−ξα)−1

for each inversion of the form {β, α}. If α = σ(i) then the number of the former minus
the number of the latter equals σ(i) − i . The number of inversions is the number of
transpositions whose product is σ . These give

Aσ = sgn σ
∏
(1 − ξσ(i))

σ (i)−i .

Now the integrand in (2.3) factors and we obtain the sum of sgn σ times

∏

i

∫

Cr

(1 − ξσ(i))
σ (i)−i ξ

xi −yσ(i)−1
σ(i) eε(ξσ(i))t dξσ(i)

=
∏

i

∫

Cr

(1 − ξ)σ(i)−i ξ xi −yσ(i)−1eε(ξ)t dξ,

and so the sum over σ equals

det
( ∫

Cr

(1 − ξ) j−i ξ xi −y j −1eε(ξ)t dξ
)
.

This is the determinant representation of PY (X; t) obtained in [16].

To prove the theorem we shall show three things:

(a) The right side of (2.3) satisfies the master equation for all X ∈ Z
N .

(b) The right side of (2.3) satisfies the boundary conditions for all X ∈ Z
N .

(c) The right side of (2.3) satisfies the initial condition when x1 < · · · < xN .

Proof of (a). This is clear once the last factor in (2.3) is written as the exponential of∑
i ε(ξσ(i)) t .

Proof of (b). We shall show that the boundary condition is satisfied pointwise by the
integrand. Let Tiσ denoteσ with the entriesσ(i) andσ(i+1) interchanged. The boundary
conditions will be satisfied provided that3

ATiσ = Sσ(i+1),σ (i) Aσ

3 The Bethe Ansatz proposes an integrand as in (2.3) with some coefficients Aσ . The fact that (2.2) only
involves consecutive particles implies that satisfying it only requires relations between the coefficients As and
ATiσ . A straightforward computation shows that the relations are as stated.



Integral Formulas for the Asymmetric Simple Exclusion Process 821

for all σ . Let us see why this relation holds. Let α = σ(i), β = σ(i + 1), and suppose
α > β. Then {α, β} is an inversion for σ but not for Tiσ , so Sαβ is a factor in Aσ but not
in ATiσ , and all other factors are the same. Therefore, using Sαβ Sβα = 1, we have

ATiσ = Sβα Aσ = Sσ(i+1),σ (i) Aσ .

The same identity holds immediately if β > α, since {β, α} is an inversion for Tiσ but
not for σ . Thus, (b) is established.

Proof of (c). The initial condition is satisfied by the summand in (2.3) coming from the
identity permutation id. So what we have to show is that

∑

σ �=id

∫

Cr

· · ·
∫

Cr

Aσ
∏

i

ξ
xi −yσ(i)−1
σ(i) dξ1 · · · dξN = 0

when x1 < · · · < xN . This is the heart of the matter. We write I (σ ) for the integral
corresponding to σ , and prove a series of lemmas. We think of σ also as the ordered
N -tuple (σ (1), . . . , σ (N )).

Lemma 2.1. Suppose that α appears in position α−1 in σ and that the entries preceding
α are α − 2 of the numbers less than α. Then I (σ ) = 0.

Proof. It follows from the assumption that there is a unique inversion of the form {α, β}
and none of the form {δ, α}. Therefore the factor Sαβ appears in Aσ but no other Sαδ or
Sδα . The variables ξα and ξβ appear in the integrand as

Sαβ ξ
xα−1−yα−1
α ξ

xα−yβ−1
β .

We make the substitution

ξα → η∏
γ �=α ξγ

,

so that η runs over a circle of radius r N , and we integrate with respect to ξβ . The power
of ξβ that now appears is

ξ
xα−xα−1+yα−yβ−1
β . (2.4)

The extra −1 in the exponent is due to the fact that dξα = dη/ξβ . Since α can appear in
no other S factor, the only one that can introduce a pole inside Cr in the ξβ integration
is Sαβ , which becomes

− p + q η
∏
γ �=α,β ξ−1

γ − η
∏
γ �=α ξ−1

γ

p + q η
∏
γ �=α,β ξ

−1
γ − ξβ

.

The apparent simple pole at ξβ = 0 coming from the third summand in the numerator
does not occur because the exponent in (2.4) is positive since yβ < yα and xα > xα−1.
The denominator is bounded away from zero when ξβ is inside Cr , since |ξβ | ≤ r and
the second summand has absolute value O(r2), so there is no pole inside Cr and the
integral is zero.

Lemma 2.2. Suppose that in the permutations σ and σ ′ the entry α appears to the left
of two adjacent smaller entries β and γ , and that the permutations differ only by an
interchange of β and γ . Then I (σ ) + I (σ ′) = 0.
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Proof. The pairs {α, β} and {α, γ } are inversions for both σ and σ ′, so Sαβ Sαγ is a
factor in both Aσ and Aσ ′ . Suppose for definiteness that β is to the left of γ in σ , so
α = σ(i), β = σ( j), γ = σ( j + 1) with i < j . We make the substitutions

ξα → η∏
δ �=α ξδ

.

Then the powers of ξβ and ξγ appear as

ξ
x j −xi +yα−yβ−1
β ξ

x j+1−xi +yα−yγ−1
γ . (2.5)

Both exponents are positive. We’ll integrate with respect to ξβ and ξγ . Any S other than
Sαβ or Sαγ involving β or γ will not introduce poles, as in the proof of Lemma 2.1. The
product Sαβ Sαγ becomes

p + q η
∏
δ �=α,β ξ

−1
δ − η

∏
δ �=α ξ

−1
δ

p + q η
∏
δ �=α,β ξ

−1
δ − ξβ

p + q η
∏
δ �=α,γ ξ

−1
δ − η

∏
δ �=α ξ

−1
δ

p + q η
∏
δ �=α,γ ξ

−1
δ − ξγ

.

We do the ξβ integration first. The first factor has a pole at zero as before but, as before,
does not introduce one in the integrand because of the power of ξβ in (2.5). Assume for
the moment that q �= 0. Then the second factor has a pole at

ξβ = q η

ξγ − p

∏

δ �=α,β,γ
ξ−1
δ . (2.6)

The new second factor, its residue, has a pole of order 1 at ξγ = 0 (but again that does
not contribute) and nowhere else. But the new first factor has a pole where

ξγ = q η

ξβ − p

∏

δ �=α,β,γ
ξ−1
δ , (2.7)

with ξβ satisfying (2.6). Then ξγ satisfies a quadratic equation with one of the roots
inside Cr , in fact O(r3), but all we will need is that (2.6) and (2.7) imply that ξβ = ξγ .

Now we compare this with σ ′. The variables ξβ and ξγ occur in different positions in σ
and σ ′ and so their powers are different. After the variable change, for σ they are given
by (2.5) whereas for σ ′ they are

ξ
x j −xi +yα−yγ−1
γ ξ

x j+1−xi +yα−yβ−1
β .

When we eventually have ξβ = ξγ these are the same. The only difference, then, is the
factor Sβγ . It occurs for σ and not σ ′ when β > γ , and for σ ′ and not σ when β < γ .
(Recall that β occurs to the left of γ in σ .) It equals −1 when ξβ = ξγ , so the sum of
integrals equals zero.

Recall that we assumed q �= 0. If q = 0 then the integrals with respect to ξβ , after
the substitution, for both σ and σ ′ are zero, so I (σ ) = I (σ ′) = 0 then.

Lemma 2.3. For n > 1 the permutations in Sn can be grouped in pairs in such a way
that the permutations in a pair differ only by one interchange of adjacent elements.
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Proof. Let two permutations form a pair if they differ by an interchange of the first two
entries.

Lemma 2.4. For any N the set SN \{id} is the union of disjoint subsets, each of which
consists of either of a single permutation satisfying Lemma 2.1 or a pair of permutations
satisfying Lemma 2.2.

Proof. We use induction, so we assume the result holds for N − 1. It clearly holds for
N = 2, so we assume N > 2. For the set of permutations in which N appears in slot N
we apply the induction hypothesis. Those permutations in which N appears in slot N −1
all satisfy Lemma 2.1 with α = N . Consider all those permutations that begin with a
fixed (α1 α2 · · ·αN−n−1 N ) with n ≥ 2, so N is in slot N − n. There are n! of them,
corresponding to the permutations of the n remaining entries. Pair these permutations as
in Lemma 2.3. The pairs of permutations in SN corresponding to these satisfy Lemma 2.2
with α = N . Putting all these together gives the desired decomposition of SN \{id}.
Combining Lemmas 2.1, 2.2, and 2.4 completes the proof of (c), and so of Theorem 2.1.

Remark. In case q �= 0 the same formula (2.3) holds when the circle is sufficiently
large instead of small. A similar argument to the one just given should hold, but there is
another way to see this. If we set

X− = {−xN , . . . ,−x1}, Y − = {−yN , . . . ,−y1}

and denote by P̃ the probability density for the process with p and q interchanged,
then PY (X; t) = P̃Y −(X−; t). If we apply (2.3) to this other process and then make the
substitutions ξi → ξ−1

i in the integrals we obtain (2.3) with a large CR . This duality will
be use again in Sect. V, in the derivation of (1.5) from (1.4).

III. The Left-most Particle

Here we determine the probability that the left-most particle x1 is at x at time t .

Theorem 3.1. With Cr as before and I (x,Y, ξ) given by (1.1), we have when p �= 0

P(x1(t) = x) = pN (N−1)/2
∫

Cr

· · ·
∫

Cr

I (x,Y, ξ) dξ1 · · · dξN . (3.1)

Proof. Since x1 < · · · < xN we may rewrite X = {x1, x2, . . . , xN } as

x, x + z1, x + z1 + z2, . . . , x + z1 + · · · + zN−1.

Then P(x1(t) = x) equals the sum of PY (X; t) over all zi > 0. After summing, the
integrand in (2.3) becomes

Aσ
(1 − ξσ(1) · · · ξσ(N )) ξσ(2)ξ2

σ(3) · · · ξ N−1
σ(N )

(1−ξσ(1)ξσ(2) · · · ξσ(N ))(1−ξσ(2) · · · ξσ(N )) · · · (1 − ξσ(N ))

∏

i

(
ξ

x−yi −1
i eε(ξi )t

)
.
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If we observe that

Aσ = sgn σ
∏

i< j
σ(i)>σ( j)

p + qξσ(i)ξσ( j) − ξσ(i)

p + qξσ(i)ξσ( j) − ξσ( j)
= sgn σ

∏

i< j

(p + qξσ(i)ξσ( j) − ξσ(i))

∏

i< j

(p + qξiξ j − ξi )
,

(3.2)
then we see that the theorem follows from (1.6).

We derive here the alternative expression for P(x1(t) = x). Given a set S ⊂
{1, . . . , N } there is a corresponding set YS = {yi : i ∈ S} and corresponding |S|-
dimensional integrand I (x,YS, ξ). We define σ(S) = ∑

i∈S i , the sum of the indices in
S.

Theorem 3.2. When q �= 0 we have

P(x1(t) = x) =
∑

S

p σ(S)−|S|

q σ(S)−|S|(|S|+1)/2

∫

CR

· · ·
∫

CR

I (x,YS, ξ) d |S|ξ, (3.3)

where R is so large that all the poles of the integrand lie inside CR. The sum runs over
all nonempty subsets S of {1, . . . , N }.
We begin with a lemma that replaces integrals such as appear in (3.1) by sums of integrals
over large contours.

Suppose f (ξ1, . . . , ξN ) is analytic for all ξi �= 0 and that for i > k,

f (ξ1, . . . , ξN )

∣∣∣
ξi →(ξk−p)/qξk

= O(ξk),

as ξk → 0, uniformly when all ξ j with j �= k are bounded and bounded away from zero.
Define

I f (ξ) =
∏

i< j

ξ j − ξi

p + qξiξ j − ξi

f (ξ1, . . . , ξN )∏
i (1 − ξi )

.

For a subset S of {1, . . . , N } let I f,S(ξ) denote the analogous function where the variables
are the ξi with i ∈ S, and in f (ξ1, . . . , ξN ) the ξi with i ∈ Sc are replaced by 1.

Lemma 3.1. Under the stated assumptions on f (ξ1, . . . , ξN ), we have when p, q �= 0

∫

Cr

· · ·
∫

Cr

I f (ξ) d N ξ =
∑

S

p |Sc|−σ(Sc)

q σ(S)−|S|(|S|+1)/2

∫

CR

· · ·
∫

CR

I f,S(ξ) d |S|ξ , (3.4)

where r is so small that the poles of the integrand on the left lie outside Cr and R is so
large that the poles of the integrand on the right lie inside CR. The sum runs over all
subsets S of {1, . . . , N }. When S is empty the integral is interpreted as f (1, . . . , 1).

Proof. We use induction. The result is easily seen to be true when N = 1, so we assume
N > 1 and that the lemma holds for N − 1. We expand the ξN -contour on the left
side. In addition to the pole at ξN = 1 we encounter poles at ξN = (ξk − p)/qξk . We
claim that the residue at this pole, when integrated over ξk , will give zero. The factor
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f (ξ1, . . . , ξN ), after substituting for ξN its value at the pole, is O(ξk) as ξk → 0 by the
assumption on f , while

∏
i< j (ξi − ξ j )∏

i (1 − ξi )
,

after substituting for ξN its value at the pole, will be of the order ξ−N+2
k at ξk = 0. The

residue of 1/(p + qξkξN − ξk) at the pole is 1/q ξk . The factor 1/(p + qξiξN − ξi ) with
i �= k equals ξk/(p(ξk − ξi )). The factor ξk − ξi is cancelled by the same factor in the
numerator, so no new poles in the ξk variable are introduced. So the 1/(p + qξiξN − ξi )

combined, including the contribution of the residue, give the power ξ N−3
k . Thus the

product of all factors combined is O(1). Hence the ξk integral equals zero, as claimed.
So after we expand the ξN -contour we have an integral where ξN is over an arbitrarily

large contour CR and the other ξi over small contours Cr , and another integral (coming
from the pole at ξN = 1) in which ξN does not appear and the other ξi are over Cr .

Let us consider the latter. The integral we get is the left side of (3.4) with N replaced
by N − 1 times

∏

i<N

ξN − ξi

p + qξiξN − ξi

∣∣∣
ξN =1

= 1

pN−1 . (3.5)

(Notice that ξN appears in the denominator of I f (ξ) as 1 − ξN , and the pole at ξN = 1
was outside the contour. The two minus signs cancel when we compute the contribution
from the pole.) Our induction hypothesis tell us that this equals

1

pN−1

∑

S⊂{1,...,N−1}

p |Sc|−σ(Sc)

q σ(S)−|S|(|S|+1)/2

∫

CR

· · ·
∫

CR

I f,S(ξ) d |S|ξ.

Now Sc here indicates complement with respect to {1, . . . , N −1}. If we want to express
this in terms of the complement in {1, . . . , N } as in the statement of the lemma we have
to make the substitutions

|Sc| → |Sc| − 1, σ (Sc) → σ(Sc)− N ,

and therefore in the notation of the lemma the above equals

∑

S⊂{1,...,N−1}

p |Sc|−σ(Sc)

q σ(S)−|S|(|S|+1)/2

∫

CR

· · ·
∫

CR

I f,S(ξ) d |S|ξ.

This is the portion of the right side of (3.4) corresponding to those S not containing N .

Now for the original integral, but where ξN is taken over CR . If we integrate first with
respect to ξN , leaving us with an N − 1-dimensional integral with small Cr , we see that
we are in the case N − 1 with f (ξ1, . . . , ξN ) replaced by

f̃ (ξ1, . . . , ξN−1) =
∫

CR

∏

i<N

ξN − ξi

p + qξiξN − ξi

f (ξ1, . . . , ξN )

1 − ξN
dξN . (3.6)

We have to show that f̃ satisfies the required condition. For notational convenience we
take k = 1 and i = 2, so we make the substitution ξ2 → (ξ1 − p)/qξ1. All but the
product are O(ξ1) as ξ1 → 0, by assumption on f . Write the product as the product over
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i �= 1, 2, which is bounded if R was chosen large enough, uniformly for the ξi bounded
away from zero, times

ξN − ξ1

p + qξN ξ1 − ξ1

ξN − (ξ1 − p)/qξ1

p + ξN (ξ1 − p)/ξ1 − (ξ1 − p)/qξ1

= ξN − (ξ1 − p)/qξ1

p + qξN ξ1 − ξ1

ξN − ξ1

p + ξN (ξ1 − p)/ξ1 − (ξ1 − p)/qξ1
.

The first factor equals 1/qξ1 while the second factor is O(ξ1). Thus (3.6) satisfies the
required condition and we may again apply the induction hypothesis.

If S̃ ⊂ {1, . . . , N − 1} to compute I f̃ ,S̃ we replace the ξi with i ∈ S̃c by 1 in

f̃ (ξ1, . . . , ξN−1). We see that the product in the integrand in (3.6) is replaced by

1

q |S̃c|
∏

i∈S̃

ξN − ξi

p + qξiξN − ξi
.

If we set S = S̃ ∪ {N } then in terms of S the full integrand including the ξN -variable is

1

q |Sc| I f,S(ξ).

For the coefficient on the right side of (3.4) with S replaced by S̃, the power of p is
unchanged while the power of q is

σ(S̃)− |S̃| (|S̃| + 1)/2 = σ(S)− N − (|S| − 1) |S|/2,
and if we add to this |Sc| = N − |S| we get

σ(S)− |S| (|S| + 1)/2,

which is the power of q in (3.4).
Summing over these S gives the portion of the right side of (3.4) corresponding to

those S containing N , and this completes the proof of Lemma 3.1.

Proof of Theorem 3.2. First assume p �= 0. Observe that I (x,Y, ξ) is I f (ξ) as defined
above with

s f (ξ1, . . . , ξN ) =
(

1 −
∏

i

ξi

) ∏

i

(
ξ

x−yi −1
i eε(ξi ) t

)
, (3.7)

and I (x,YS, ξ) is I f,S(ξ). We show that f as defined this way satisfies the hypothesis of
the lemma. The exponential summands ε(ξi ) and ε(ξk) combine when ξi = (ξk − p)/qξk
to give

pqξk

ξk − p
+ q

ξk − p

qξk
+

p

ξk
+ qξk − 2 = qξk +

pqξk

ξk − p
− 1,

which is analytic at ξk = 0. The powers of ξi and ξk combine as

(
ξk − p

qξk

)x−yi −1

ξ
x−yk−1
k = O(ξ yi −yk

k )
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as ξk → 0, which is O(ξk) since yi > yk . So the hypothesis on f is satisfied. Since
f (1, . . . , 1) = 0 the sum may be taken over nonempty subsets S. Because of the factor
pN (N−1)/2 in (3.1) we must multiply the factor in (3.4) by this, resulting in the factor in
(3.3).

We can remove the requirement p �= 0 by taking the p → 0 limit since the power of
p is nonnegative and no pole tends to infinity as p → 0.

An immediate conclusion from Theorem 3.2 is that P(x1(t) = x) tends exponentially
to zero as x → −∞, and therefore so does P(x1(t) < x). Thus P(x1(t) ≥ x) tends
exponentially to 1. We write

Q(x) = pN (N−1)/2
∫

Cr

· · ·
∫

Cr

ξ
x−y1−1
1 · · · ξ x−yN −1

N

∏

i< j

ξi − ξ j

p + qξiξ j − ξi

× 1∏
i (1 − ξi )

e
∑

i ε(ξi ) t dξ1 · · · dξN ,

where r is small. Clearly Q(x) → 0 as x → +∞ and

P(x1(t) = x) = Q(x)− Q(x + 1).

It follows that Q(x) = P(x1(t) ≥ x), and this tends exponentially to 1 as x → −∞.
Therefore

E(x1(t)) = lim
x→−∞

∞∑

y=x

y [Q(y)− Q(y + 1)] = lim
x→−∞

[ ∞∑

y=x

Q(y) + (x − 1) Q(x)

]

= lim
x→−∞

[ ∞∑

y=x

Q(y) + (x − 1)

]
.

Now
∞∑

y=x

Q(y) = pN (N−1)/2
∫

Cr

· · ·
∫

Cr

ξ
x−y1−1
1 · · · ξ x−yN −1

N

∏

i< j

ξ j − ξi

p + qξiξ j − ξi

× 1

1 − ξ1 · · · ξN
· 1∏

i (1 − ξi )
e
∑

i ε(ξi ) t dξ1 · · · dξN . (3.8)

If we apply the procedure of the last section to this integral we start by moving the
ξN -contour out. The resulting integral, with ξN over a very large contour, is exponentially
small as x → −∞, even though the other contours are small. As before the residues
at the poles ξN = (ξk − p)/qξk integrate out to zero. The contribution from the pole
ξN = 1 gives the same expression we started with but with N replaced by N − 1. But
there is now also a pole at ξN = 1/ξ1 · · · ξN−1 whose contribution is

−
∫

Cr

· · ·
∫

Cr

ψN−1(ξ1, . . . , ξN−1; yN − y1, . . . , yN − yN−1) dξ1 · · · dξN−1,

where

ψN (ξ1, . . . , ξN ; z1, . . . , zN ) = pN (N+1)/2ξ
z1
1 · · · ξ zN

N

∏

i< j

ξ j − ξi

p + qξiξ j − ξi

×
∏

i

(ξ1 · · · ξN )
−1−ξi

p + qξi (ξ1 · · · ξN )−1−ξi
· 1

1−ξ1 · · · ξN
· 1∏

i (1−ξi )
e
[∑

i ε(ξi )+ε((ξ1···ξN )
−1)

]
t .
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For the right side of (3.8) when N = 1, which is what we are left with at the end, we
expand the contour, encounter a double pole at ξ1 = 1, and find that it equals

(p − q) t + y1 − x + 1 + exponentially small term.

Therefore

E(x1(t)) = (p − q) t + y1 −
N−1∑

j=1

∫

Cr

· · ·

×
∫

Cr

ψ j (ξ1, . . . , ξ j ; y j+1 − y1, . . . , y j+1 − y j ) dξ1 · · · dξ j .

The integral
∫
Cr
ψ1(ξ ; z) dξ has an explicit expression in terms of Bessel functions

In(2t). Indeed, it equals

2pt e−2t [Iz−1(2t) + Iz(2t)] + (2z − 1)p
{1

2
e−2t I0(2t)− 1

2
+ e−2t

z−1∑

j=1

I j (2t)
}
.

The integrals of the other ψ j (ξ ; z) are not so simple.
We now show how to obtain the probability P(x1(t) = x) for a system with infinitely

many particles4 with initial configuration

Y = {y1, y2, . . .}, y1 < y2 < · · · → +∞ (3.9)

when q �= 0. In fact, it is very easy once we have Theorem 3.2 We just modify the
right side so that the sum runs over all finite subsets of Z

+. Because CR may be taken
arbitrarily large the resulting series converges, as we shall now show.

Consider the various factors in the integrand in (3.1), where the ξi are replaced by the
ξn with n ∈ S. The −1 parts of the exponents of the ξn may be removed if we replace dξn
by dξn/ξn , which is O(1). Suppose that |S| = k as above. The analogue of the factor

1 − ξ1 · · · ξN∏
i (1 − ξi )

is at most (Rk + 1)/(R − 1)k = O(2k) for R large. The product
∏

i< j (ξi − ξ j ) is at

most (2R)k(k−1)/2. The denominator
∏

i< j (p + qξiξ j − ξi ) is at least (q R2/2)k(k−1)/2.

The product of the ξn is at most Rkx−∑ yn . The exponential factor is O(ea Rk) for some
a depending on t . So the integral is

O
(
(a/R)k(k−1)/2 Rkx−∑ yn ea Rk

)
= RO(k)−∑ yn

if we take R > a. (Since R is fixed the factor ea Rk can be incorporated into the RO(k)

term.) Since
∑

yn ≥ ∑
(y1 +n−1) = σ(S)+k (y1 −1) the above is at most RO(k)−σ(S).

And since σ(S) ≥ k(k + 1)/2, this is at most R−σ(S)+O(σ (S)1/2).
The external factor in (3.3) is

pσ(S)−k qk(k+1)/2−σ(S) ≤ q−σ(S).
4 It follows from the fact that ASEP is a Feller process [8] that the limit as N → ∞ equals the probability

for the infinite system. We thank Thomas Liggett [10] for explaining this fact to us.
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It follows that if we take R > 1/q2 then the integral times the external factor is at most
R−σ(S)/2.

Now consider all sets S with σ(S) = k. Since the largest i ∈ S is at most k, the
number of such sets is at most 2k . Hence the sum of the absolute values of the terms of
the infinite series is at most a constant times

∞∑

k=1

2k R−k/2,

which is finite when R > 4. Thus we have shown convergence for all t .

IV. The Second-Left Particle

In this section we compute the probability P(x2(t) = x). It is somewhat more compli-
cated than that given for P(x1(t) = x) in Theorem 3.1 and the proof introduces some
new elements.

We use the notation (1.1), and for 1 ≤ k ≤ N we set Yk = Y\yk .

Theorem 4.1. With the contours Cr as in Theorem 3.1 we have when p �= 0,

P(x2(t) = x) = −q
pN−1 − q N−1

p − q
p(N−1)(N−2)/2

∫

Cr

· · ·
∫

Cr

I (x,Y, ξ) d N ξ

+ p(N−1)(N−2)/2
N∑

k=1

(
q

p

)k−1 ∫

Cr

· · ·
∫

Cr

I (x,Yk, ξ) d N−1ξ. (4.1)

Proof. We rewrite X = {x1, x2, . . . , xN } as

x − v, x, x + z1, . . . , x + z1 + · · · + zN−2.

Then P(x2(t) = x) equals the sum of PY (X; t) over all v > 0 and zi > 0. If we sum

first over z2, . . . , zN−2 the product
∏

i ξ
xi −yσ(i)−1
σ(i) in (2.3) becomes,

∏
i ξ

x−yi −1
i times

ξ−v
σ(1)

ξσ(3) ξ
2
σ(4) · · · ξ N−2

σ(N )

(1 − ξσ(3)ξσ(4) · · · ξσ(N )) · · · (1 − ξσ(N )ξσ(N−1))(1 − ξσ(N ))
.

We now move the ξσ(1)-contour out beyond the unit circle, and we do not encounter
any poles. Here is the reason. From the first part of (3.2) we see that we get poles at

ξσ(i) =
⎧
⎨

⎩

(ξσ(k) − p)/qξσ(k) if k > i,

p/(1 − qξσ(k)) if k < i.
(4.2)

The poles in the ξσ(1)-variable are at ξσ(1) = (ξσ(k) − p)/qξσ(k), and these are very
large since ξσ(k) ∈ Cr . So we move the ξσ(1)-contour out beyond the unit circle and sum,
giving

1

ξσ(1) − 1

ξσ(3) ξ
2
σ(4) · · · ξ N−2

σ(N )

(1 − ξσ(3)ξσ(4) · · · ξσ(N )) · · · (1 − ξσ(N )ξσ(N−1))(1 − ξσ(N ))
. (4.3)
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If we move the contour back to Cr we pass a pole at ξσ(1) = 1 with residue

ξσ(3) ξ
2
σ(4) · · · ξ N−2

σ(N )

(1 − ξσ(3)ξσ(4) · · · ξσ(N )) · · · (1 − ξσ(N )ξσ(N−1))(1 − ξσ(N ))
. (4.4)

The factor Aσ when ξσ(1) = 1 equals

sgn σ

(
− q

p

)σ(1)−1∏{ p + qξσ(i)ξσ( j) − ξσ(i)

p + qξσ(i)ξσ( j) − ξσ( j)
: i < j, σ (i) > σ( j), i, j > 1

}
,

(4.5)
since there are σ(1)− 1 indices less than σ(1).

Now we add all terms in which σ(1) = k. For the contribution from the pole at
ξσ(1) = 1, when σ(1) = k (4.5) may be written (as in (3.2))

sgn σ

(
− q

p

)k−1 1
∏

i< j

(p + qξiξ j − ξi )

∏

i< j

(p + qξσ(i)ξσ( j) − ξσ(i)),

where all indices are �= k. This is to be multiplied by (4.4). If we use identity (1.6) to
sum the product over those σ with σ(1) = k we get

(
q

p

)k−1

p(N−1)(N−2)/2

⎛

⎝1 −
∏

j �=k

ξ j

⎞

⎠

∏

i< j

(ξ j − ξi )

∏

j

(1 − ξ j )
∏

i< j

(p + qξiξ j − ξi )
,

where again all indices are �= k. The exterior factor is now
∏

i �=k

(
ξ

x−yi −1
i eε(ξi )t

)
, and

from these we obtain the sum on the right side of (4.1).
Next we consider (4.3), which we rewrite as

(1 − ξσ(2)ξσ(3) · · · ξσ(N ))
ξk − 1

ξσ(3) ξ
2
σ(4) · · · ξ N−2

σ(N )

(1 − ξσ(2)ξσ(3) · · · ξσ(N )) · · · (1 − ξσ(N )ξσ(N−1))(1 − ξσ(N ))
,

where σ is now a map from {2, . . . , N } to {1, . . . , N }\{k}. The factor sgn σ becomes
(−1)k+1 sgn σ . We also rewrite Aσ as

1
∏

i< j

(p + qξiξ j − ξi )

∏

j �=k

(p + qξkξ j − ξk)
∏

i< j

(p + qξσ(i)ξσ( j) − ξσ(i)).

If we use identity (1.6) to sum this over these σ we get

(−1)k p(N−1)(N−2)/2

⎛

⎝1 −
∏

j �=k

ξ j

⎞

⎠

∏

i< j
i, j �=k

(ξ j − ξi )

∏

j

(1 − ξ j )

∏

j �=k

(p + qξkξ j − ξk)

∏

i< j

(p + qξiξ j − ξi )
. (4.6)

The other factors are still
∏

i

(
ξ

x−yi −1
i e

∑
i ε(ξi )t

)
.
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To evaluate the sum of (4.6) over k we write it as

−p(N−1)(N−2)/2

∏

i< j

(ξ j − ξi )

∏

j

(1 − ξ j )
∏

i< j

(p + qξiξ j − ξi )

×
∑

k

⎛

⎝1 −
∏

j �=k

ξ j

⎞

⎠

∏

j �=k

(p + qξ jξk − ξk)

∏

j �=k

(ξ j − ξk)
.

The factor (−1)k became −1 because of the way we rewrote the product of the ξ j − ξi
in (4.6). Identity (1.9) with k = 1 tells us that the last sum equals

q
pN−1 − q N−1

p − q

⎛

⎝1 −
∏

j

ξ j

⎞

⎠ .

If we recall the power of p in the first factor above and the ubiquitous factor
∏

i(
ξ

x−yi −1
i eε(ξi )t

)
we see that this gives the first term in (4.1).

V. The General Particle

In this section we consider the mth particle from the left for general m. We prove, with
the notation (1.8),

Theorem 5.1. We have when p �= 0,

P(xm(t) = x) = p(N−m)(N−m+1)/2 qm(m−1)/2

×
∑

|Sc|<m

(−1)m−1−|Sc|
[ |S| − 1

m − |Sc| − 1

]
qσ(S

c)−m |Sc|

pσ(Sc)−|Sc|(|Sc|+1)/2

×
∫

Cr

· · ·
∫

Cr

I (x,YS, ξ) d |S|ξ, (5.1)

where r is so small that the poles of the integrand lie outside Cr . The sum is taken over
all subsets S of {1, . . . , N } with |Sc| < m.

We shall first establish a preliminary form of the result, and for that we use a
lemma analogous to Lemma 3.1 and which follows from it. Now we have a function
g(ξ1, . . . , ξN ) which is analytic for all ξi �= 0 and satisfies, for i < k,

g(ξ1, . . . , ξN )

∣∣∣
ξi →p/(1−qξk )

= O(ξ−1
k )

as ξk → ∞, uniformly when all ξ j with j �= k are bounded and bounded away from
zero. Define, as before,

Ig(ξ) =
∏

i< j

ξ j − ξi

p + qξiξ j − ξi

g(ξ1, . . . , ξN )∏
i (1 − ξi )

,

and similarly Ig,S(ξ).
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Lemma 5.1. Under the stated assumptions on g(ξ1, . . . , ξN ), we have when p, q �= 0,
∫

CR

· · ·
∫

CR

Ig(ξ) d N ξ =
∑

S

(−1)|Sc| q σ(S
c)−N |Sc|

p |S|(N+1+|Sc|)/2−σ(S)

∫

Cr

· · ·
∫

Cr

Ig,S(ξ) d |S|ξ ,

(5.2)
where r is so small that the poles of the integrand on the right lie outside Cr and R is so
large that the poles of the integrand on the left lie inside CR. As before, S runs over all
subsets of {1, . . . , N }.
Proof. We apply Lemma 3.1 with p and q interchanged to the function

f (ξ1, . . . , ξN ) = g(ξ−1
N , . . . , ξ−1

1 )
∏

ξ−1
i .

The required hypothesis on f follows from the hypothesis on g. The left side of (5.2),
after the substitutions ξi → 1/ξN−i+1, equals the left side of (3.4) after interchanging p
and q, times (−1)N , because

∏
(1 − ξi ) becomes

∏
(ξi − 1). So we apply Lemma 3.1 to

f and then change variables again resulting in a factor (−1)|S| in each summand. The
reason for the different coefficients is the reversal of the order of the variables. Thus the
coefficient of the integral involving I f,S with p and q interchanged equals the coefficient
of the integral involving Ig,S̃ , where S̃ = {N − i + 1 : i ∈ S}. This, together with the
resulting power of −1, is what we see on the right side of (5.2). This proves Lemma 5.1.

To state the preliminary form of the result we introduce more notation. For disjoint
subsets T and U of {1, . . . , N }, we define

I (x,YT,U , ξ)

=
(

1 −
∏

i∈U

ξi

)

∏

i< j
i, j∈U or i, j∈T

(ξ j − ξi )

∏

i

(1 − ξi )

∏

i∈T, j∈U

(p + qξiξ j − ξi )

∏

i< j

(p + qξiξ j − ξi )

∏

i

(
ξ

x−yi −1
i eε(ξi ) t

)
,

(5.3)
where indices with unspecified range run over T ∪ U . If T ⊂ U we define σ(T,U )
to be the sum of the positions of the elements of T in U . Thus, if U = {2, 3, 5} and
T = {2, 5} then σ(T,U ) = 1 + 3 = 4. Finally, for a set U we define

sgn U = (−1)#{(i, j) : i> j, i∈U, j∈U c}.

Lemma 5.2. With r small enough and p, q �= 0 we have

P(xm(t) = x) = p(N−m)(N−m+1)/2+m(m−1)/2 q(m−1)(m−2)/2

×
∑

|U |=m−1

sgnU
∑

T ⊂U

(−1)|U\T |+σ(U\T )−σ(U\T, T ) qσ(U\T )−(m−1) |U\T |

pσ(U\T )+|T |(m+|U\T |)/2

×
∫

Cr

· · ·
∫

Cr

I (x,YT,U c , ξ) d |T ∪U c|ξ,

where U runs over all subsets of {1, . . . , N } with |U | = m − 1.
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Proof. To begin we now write X as

x − vm−1 − · · · − v1, x − vm−2 − · · · − v1, · · · , x − v1, x,

x + z1, . . . , x + z1 + · · · + zN−m .

The product
∏

i

(
ξ

xi −yσ(i)−1
σ(i) eε(ξi ) t

)
in (2.3) is replaced by

∏
i

(
ξ

x−yi −1
i eε(ξi )t

)
times

ξ
−v1−···−vm−1
σ(1) · · · ξ−v1

σ(m−1) ξ
z1
σ(m+1) · · · ξ z1+···+zN−m

σ(N ) ,

and we have to sum over all vi > 0, zi > 0. As in the proof of Theorem 4.1 we can
sum over the zi immediately and we get

ξ
−v1−···−vm−1
σ(1) · · · ξ−v1

σ(m−1)

ξσ(m+1)ξ
2
σ(m+2) · · · ξ N−m

σ(N )

(1 − ξσ(m+1) · · · ξσ(N )) · · · (1 − ξσ(N ))
.

Before we can sum over the vi we have to move the ξσ(i)-contours out, and we do them
in the order i = 1, . . . ,m − 1. As in the proof of Theorem 4.1 we see by referring to
(4.2) that the poles obtained from moving the ξσ(1)-contour are very large and so we can
move that contour out almost that far. Then if we want to move the ξσ(2)-contour out we
encounter poles with k > 2 in (4.2), which are far out and so no problem, but also the
pole with k = 1 when σ(2) < σ(1), which is at ξσ(2) = p/(1 − qξσ(1)). We show that
the residue at this pole, when integrated with respect to ξσ(1), gives zero.

Recall that the ξσ(1)-contour is large, and so ξσ(2) as a function of ξσ(1) is analytic
outside the ξσ(1)-contour and is in fact O(ξ−1

σ(1)) at infinity. The part of the residue that
comes from the factor

p + qξσ(1)ξσ(2) − ξσ(1)

p + qξσ(1)ξσ(2) − ξσ(2)

is O(1) at infinity as are all the other factors in the first part of (3.2) because ξσ(2), in
terms of ξσ(1), is small when ξσ(1) is large. The powers of the ξi involving ξσ(1) and ξσ(2)
combine as

ξ
−v1−···−vm−1−x−1
σ(1)

(
p

1 − qξσ(1)

)−v1−···−vm−2−x−1

ξ
−yσ(1)
σ (1)

(
p

1 − qξσ(1)

)−yσ(2)
,

which is analytic outside the ξσ(1)-contour and O(ξ
−vm−1−yσ(1)+yσ(2)
σ (1) ) at infinity. The

exponent is ≤ −2 since vm−1 > 0 and yσ(2) < yσ(1). Finally we have to check the
exponential of

∑
ε(ξi ). The sum of those involving ξσ(1) and ξσ(2) is

p

ξσ(1)
+ qξσ(1) + (1 − qξσ(1)) + q

p

1 − qξσ(1)
,

which is bounded at infinity. Hence the ξσ(1)-integral is zero, as claimed.
Continuing this way we move all the ξσ(i)-contours out for i < m. We then sum over

the vi , obtaining

1

(ξσ(1) − 1) (ξσ(1)ξσ(2) − 1) · · · (ξσ(1)ξσ(2) · · · ξσ(m−1) − 1)

× ξσ(m+1)ξ
2
σ(m+2) · · · ξ N−m

σ(N )

(1 − ξσ(m+1) · · · ξσ(N )) · · · (1 − ξσ(N ))
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as replacement for what we had before. We also have, from the numerator in the second
part of (3.2), a product which we write as

∏

i< j<m

(p + qξσ(i)ξσ( j) − ξσ(i))
∏

m≤i< j

(p + qξσ(i)ξσ( j) − ξσ(i))

×
∏

i<m≤ j

(p + qξσ(i)ξσ( j) − ξσ(i)).

Therefore we are to take the sum over all σ of sgn σ times the product
∏

i< j<m

(p + qξσ(i)ξσ( j) − ξσ(i))

× 1

(ξσ(1) − 1) (ξσ(1)ξσ(2) − 1) · · · (ξσ(1)ξσ(2) · · · ξσ(m−1) − 1)

×
∏

m≤i< j

(p + qξσ(i)ξσ( j) − ξσ(i))
ξσ(m+2)ξ

2
σ(m+3) · · · ξ N−m

σ(N )

(1 − ξσ(m+1) · · · ξσ(N )) · · · (1 − ξσ(N ))

×
∏

i<m≤ j

(p + qξσ(i)ξσ( j) − ξσ(i)).

Now we take a fixed U ⊂ {1, . . . , N } with |U | = m − 1, and sum over all permutations
σ such that σ(i) ∈ U when i ≤ m − 1. Notice that the last product above is equal to

∏

i∈U
j∈Uc

(p + qξiξ j − ξi ), (5.4)

and so is independent of the particular permutation. Therefore we may sum indepen-
dently over bijective maps {1, . . . ,m − 1} → U for the first factors and bijective maps
{m, . . . , N } → U c for the second factors.

To keep track of the signs of the permutations we observe that sgn σ equals the
product of the signs of the two restrictions of σ times sgn U . So we eventually have to
multiply by sgn U .

For the second factor above we use (1.6) and find that the sum equals

p(N−m)(N−m+1)/2

(
1 −

∏

i∈U c

ξi

)
∏

i< j
i, j∈Uc

(ξ j − ξi )

∏

i∈U c

(1 − ξi )
. (5.5)

For the first factor we use (1.6) and find that the sum equals

q(m−1)(m−2)/2

∏

i< j
i, j∈U

(ξ j − ξi )

∏

i∈U

(ξi − 1)
. (5.6)

This is to be multiplied by (5.4), divided by
∏

i< j (p +qξiξ j −ξi ), and then integrated
over large contours CR with respect to the ξi with i ∈ U . But we want all integrals to be
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taken over the same contours Cr so we want to replace the integral with all contours CR
with a sum of integrals with all contours Cr .

In our application of Lemma 5.1 N will be replaced by m − 1, {1, . . . , N } will be
replaced by U , and S will be replaced by T , which is the reason we defined σ(T,U )
as the sum of the positions of the elements of T in U . The coefficients become in this
notation

qσ(U\T,U )−(m−1) |U\T |

p |T |(m+|U\T |)/2−σ(T,U ) . (5.7)

If we put all integrands together the result is, aside from the powers of p and q in
(5.6) and (5.5),

(
1 −

∏

i

ξi

)∏

i< j

(ξ j − ξi )

∏

i< j

(p + qξiξ j − ξi )
∏

i

(1 − ξi )

∏

i

(
ξ

x−yi −1
i eε(ξi ) t

)
(all indices in U c) (5.8)

×

∏

i< j

(ξ j − ξi )

∏

i< j

(p + qξiξ j − ξi )
∏

i

(1 − ξi )

∏

i

(
ξ

x−yi −1
i eε(ξi ) t

)
(all indices in U ) (5.9)

×
∏

i> j
i∈U, j∈Uc

p + qξiξ j − ξi

p + qξiξ j − ξ j
.

We apply Lemma 5.1 with

g(ξ) =
∏

i∈U

(
ξ

x−yi −1
i eε(ξi ) t

) ∫

Cr

· · ·
∫

Cr

∏

i> j
i∈U, j∈Uc

p + qξiξ j − ξi

p + qξiξ j − ξ j

∏

j∈U c

dξ j ,

where g(ξ) = g({ξi }i∈U ).
The poles of the integrand defining g are at

ξi = (ξ j − p)/qξ j ,

where j ∈ U c. Since ξ j can be arbitrarily small the pole is outside CR for any R, so g
is analytic for all ξi �= 0.

To check the main hypothesis on g we observe that after the substitution ξi →
p/(1 − qξk) the product ξ x−yi −1

i ξ
x−yk−1
k becomes O(ξ yi −yk

k ) as ξk → ∞ which is
O(ξ−1

k ) since i < k. The sum of the exponents in the last factor which involve ξi and ξk
is

1 − qξk +
pq

1 − qξk
+

p

ξk
+ qξk,

which is bounded at infinity. As for the integral, we show that it is bounded when one
ξk → ∞ while the others are bounded. If we take a fixed j > k with j ∈ U c, the pole
at ξ j = p/(1 − qξk) passes across the ξ j -contour when ξk → ∞. The residue of the
factor in the product that contributes the pole is seen to be O(1) as are the other factors
involving i �= k. We do this with each j in turn and end up with a sum of integrals each
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of which is O(1). If we make the substitution ξi → p/(1 − qξk) then ξk → ∞ while
p/(1 − qξk) remains bounded, so g satisfies the required hypothesis.

To find the summand in (5.2), we must evaluate g(ξ), where all the ξi with i ∈ U\T
set equal to 1. Each factor in the product in the integrand with such an i is (−q/p).
For each such i the number of j in the product in the integrand satisfying i > j and
j ∈ U c equals i minus the position of i in U . The sum of this over all i ∈ U\T equals
σ(U\T )− σ(U\T, U ). If we multiply (5.7) by (−q/p) to this power the result may be
written

(−1)σ(U\T )−σ(U\T,U ) qσ(U\T )−(m−1) |U\T |

pσ(U\T )+|T |(m+|U\T |)/2−m (m−1)/2
,

since σ(U\T,U ) + σ(T,U ) = m(m − 1)/2.
There are also the factors (−1)|U\T | coming from (5.2) and (−1)|U | coming from

the fact that
∏
(ξi − 1) appears in (5.6) rather than

∏
(1 − ξi ). These factors combine as

(−1)|T |.
For the integrand we must combine (5.8), (5.9) with the ξi with i ∈ U\T set equal

to 1, and the integrand in g with the ξi with i ∈ U\T set equal to 1. The result is (5.3)
with U replaced by U c. If we take account of the original factors in (5.6) and (5.5) we
have established Lemma 5.2.

Proof of Theorem 5.1. Suppose temporarily that q �= 0 also. We take a fixed S ⊂
{1, . . . , N } with |Sc| ≤ m and in Lemma 5.2 sum over all T and U with T ⊂ U and
T ∪ U c = S. Let us write everything in terms of T and U c.

For any i ∈ U , the position of i in U equals #{ j : j ≤ i, j ∈ U }, so

σ(T,U ) = #{(i, j) : i ≥ j, i ∈ T, j ∈ U }.
In particular,

σ(U\T, U ) = #{(i, j) : i ≥ j, i ∈ U\T, j ∈ U },

σ (U\T ) = #{(i, j) : i ≥ j, i ∈ U\T, j ∈ {1, . . . , N }},
and so

σ(U\T )− σ(U\T, U ) = #{(i, j) : i ≥ j, i ∈ U\T, j ∈ U c}.
Also,

sgn U = (−1)#{(i, j) : i> j, i∈U, j∈U c}.

Thus
(−1)|T |+#{(i, j) : i> j, i∈T, j∈U c} (5.10)

is the combined power of −1 that occurs.
The powers of p and q that occur in the summation are, since U\T = Sc,

qσ(S
c)−(m−1) |Sc|

pσ(Sc)+|T |(m+|Sc|)/2 , (5.11)

and only depends on |T |, given S.
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In (5.3), we write

∏

i< j
i, j∈Uc or i, j∈T

(ξ j − ξi ) =

∏

i< j
i, j∈Uc∪T

(ξ j − ξi )

∏

i< j
i∈Uc , j∈T

(ξ j − ξi )
∏

i< j
i∈T, j∈Uc

(ξ j − ξi )
.

The denominator may be written
∏

i> j
i∈T, j∈Uc

(ξi − ξ j )
∏

i< j
i∈T, j∈Uc

(ξ j − ξi ) = (−1)#{(i, j):i> j, i∈T, j∈U c} ∏

i∈T, j∈U c

(ξ j − ξi ).

The power of −1 combined with (5.10) equals (−1)|T | and therefore our integrand, aside
from this power of −1, may be written

(
1 −

∏

i∈U c

ξi

)

∏

i∈T, j∈U c

(p + qξiξ j − ξi )

∏

i∈T, j∈U c

(ξ j − ξi )

∏

i< j

(ξ j − ξi )

∏

i

(1 − ξi )
∏

i< j

(p + qξiξ j − ξi )

∏

i

(
ξ

x−yi −1
i eε(ξi ) t

)
,

where indices not specified range over T ∪ U c.
Now we take a fixed S ⊂ {1, . . . , N } with |Sc| < m and in Lemma 5.2 first sum

over all T and U such that T ∪ U c = S. The condition |U | = m − 1 translates to
|T | = m − 1 − |Sc|. Apply (1.9) with {1, . . . , N } replaced by S, with S replaced T , and
with m replaced by m − 1. We obtain (5.1), and this completes the proof when q �= 0.

We can remove this condition by taking the q → 0 limit since no pole tends to zero
when q → 0.

We now obtain the expansion where all integrals are taken over large contours.

Theorem 5.2. We have when q �= 0,

P(xm(t) = x) = (−1)m+1(pq)m(m−1)/2

×
∑

|S|≥m

[ |S| − 1

|S| − m

]
pσ(S)−m |S|

qσ(S)−|S|(|S|+1)/2

∫

CR

· · ·
∫

CR

I (x,YS, ξ) d |S|ξ,

(5.12)

where R is so large that the poles of the integrand lie inside CR. The sum is taken over
all subsets S of {1, . . . , N } with |S| ≥ m.

Proof. Denote by P̃ the probabilities for the process with p and q interchanged. As in the
remark following the proof of Theorem 2.1, P(xm(t) = x) is equal to P̃(xN−m+1(t) =
−x) with initial configuration Y replaced by {−yN , . . . ,−y1}. In the integrals in (5.12)
we make the replacements ξi → 1/ξN−i+1. The upshot is that in (5.1) we replace m by
N − m + 1, in the coefficients we replace S by S̃, we multipy by (−1)|S|+1 (because of
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the sign change in the integrand), and take the integrals over CR . A little algebra, using
the general fact

σ(S̃) =
∑

i∈S

(N − i + 1) = (N + 1) |S| − σ(S),

shows that the result is (5.12). This completes the proof of Theorem 5.2.
As with the first particle when Y is infinite and bounded below, we can show that

the sum (5.12) converges when it is taken over all finite subsets of Z
+. This gives the

probability for infinitely many particles.
In the special case Y = Z

+ we can evaluate the sum over all sets of a given cardinality.
We define the k-dimensional integrand

Jk(x, ξ) =
∏

i �= j

ξ j − ξi

p + qξiξ j − ξi

1 − ξ1 · · · ξk∏

i

(1 − ξi ) (qξi − p)

∏

i

(
ξ x−1

i eε(ξi )t
)
,

where all indices run over {1, . . . , k}. The result we obtain is 
�
Corollary. When Y = Z

+ we have when q �= 0,

P(xm(t) = x) = (−1)m+1 qm(m−1)/2

×
∑

k≥m

1

k!
[

k − 1

k − m

]
p(k−m)(k−m+1)/2 qk(k+1)/2

×
∫

CR

· · ·
∫

CR

Jk(x, ξ) dξ1 · · · dξk . (5.13)

Proof. We sum first over all S ⊂ Z
+ with |S| = k. If S = {z1, . . . , zk} we make the

variable changes ξz1 → ξ1, . . . , ξzk → ξk in the integral of I (x,YS, ξ), so all integration
are over the variables ξi with i ∈ {1, . . . , k}. The integrand becomes

∏

i< j

ξ j − ξi

p + qξiξ j − ξi

1 − ξ1 · · · ξk∏

i

(1 − ξi )

∏

i

(
ξ

x−zi −1
i eε(ξi )t

)
,

where all indices run over {1, . . . , k}. The only part of the coefficient in (5.12) involving
more than |S| is (p/q)σ(S). When we multiply by this the product may be written

∏

i< j

(ξ j − ξi )

∏

i �= j

(p + qξiξ j − ξi )

1 − ξ1 · · · ξk∏

i

(1 − ξi )

∏

i

(
ξ x−1

i eε(ξi )t
)

×
∏

i> j

(p + qξiξ j − ξi )
∏

i

( q

p
ξi

)−zi
.

If we sum over all {zi } with 0 < z1 < · · · < zk the last product becomes

∏

i> j

(p + qξiξ j −ξi )
1(

(
q
p ξ1)(

q
p ξ2) · · · ( q

p ξk)− 1
)(
(

q
p ξ2) · · · ( q

p ξk)−1
)

· · ·
(
(

q
p ξk)−1

) .
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The integral is unchanged if we antisymmetrize this, because all other factors are
symmetric except for the Vandermonde. We can bring this antisymmetrization to the
form of identity (1.7) if we make the substitutions

ξi = p

q
ηk−i+1.

The second factor becomes

1

(η1 − 1) (η1 η2 − 1) · · · (η1 η2 · · · ηk − 1)
,

while the first factor (after the index changes i → k − i + 1, j → k − j + 1) becomes

(
p

q

)k(k−1)/2 ∏

i< j

(q + pηiη j − ηi ).

Now we can apply (1.7) with p and q interchanged and we see that the antisymmetrization
of this is

1

k!
pk(k−1)

qk(k−1)/2

∏

i< j

(η j − ηi )

∏

i

(ηi − 1)
= 1

k! pk(k+1)/2

∏

i> j

(ξ j − ξi )

∏

i

(qξi − p)
.

If we recall the remaining factor

p−m |S|

q−|S|(|S|+1)/2
= qk(k+1)/2

pmk

in the coefficient in (5.12) we see that we obtain formula (5.13).

Remark. The power of p on the right side of (5.13) is always nonnegative and is zero
only when k = m. Hence when p = 0, in other words in the TASEP where particles
move to the left, only one term survives and we obtain

P(xm(t) = x) = (−1)m(m−1)/2

m!
∫

CR

· · ·
∫

CR

∏

i< j

(ξ j − ξi )
2 ξ1 · · · ξm − 1
∏

i

(ξi − 1)m

×
∏

i

(
ξ x−m−1

i e(ξi −1)t
)

dξ1 · · · dξm .

For P(xm(t) ≤ x) we sum P(xm(t) = y) over all y ≤ x (which we may, since R > 1),
obtaining

P(xm(t) ≤ x) = (−1)m(m−1)/2

m!
∫

CR

· · ·
∫

CR

∏

i< j

(ξ j − ξi )
2
∏

i

(ξi − 1)−m

×
∏

i

(
ξ x−m

i e(ξi −1)t
)

dξ1 · · · dξm .
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By a general identity [2] this equals

(−1)m(m−1)/2 det

(∫

CR

ξ i+ j+x−m (ξ − 1)−m e(ξ−1)t dξ

)

i, j=0,...,m−1
.

After reversing the order of the columns this becomes a Toeplitz determinant equal to
the determinant of Rákos-Schütz [13, (12)] which they used to obtain Johansson’s result
[6].

VI. Proofs of the Identities

Proof of identity (1.6).5 We use induction on N , and assume that the identity holds for
N − 1. (It clearly holds for N = 1.) Call the left side ϕN (ξ1, . . . , ξN ). We first sum
over all permutations such that σ(1) = k, and then sum over k. If we observe that the
inequality i < j becomes j �= i when i = 1, we see that what we get for the left side is

1

1 − ξ1 ξ2 · · · ξN

N∑

k=1

(−1)k+1
∏

j �=k

(p + qξkξ j − ξk) ·
∏

j �=k

ξ j · ϕN−1(ξ1, . . . , ξk−1, ξk+1, . . . , ξN ),

which may also be written

ξ1ξ2 · · · ξN

1−ξ1ξ2 · · · ξN

N∑

k=1

(−1)k+1
∏

j �=k

(p + qξkξ j − ξk) · ξ−1
k ϕN−1(ξ1, . . . , ξk−1, ξk+1, . . . , ξN).

We want to show that this equals the right side of (1.6), and the induction hypothesis
gives

ϕN−1(ξ1, . . . , ξk−1, ξk+1, . . . ξN ) = p(N−1)(N−2)/2

∏

i< j; i, j �=k

(ξ j − ξi )

∏

j �=k

(1 − ξ j )
.

After some multiplying, dividing, and computing powers of −1 we see that what we
want to show is

N∑

k=1

∏

j �=k

(p + qξkξ j − ξk) · 1 − ξk

ξk

1∏
j �=k(ξ j − ξk)

= pN−1 1 − ξ1 ξ2 · · · ξN

ξ1 ξ2 · · · ξN
. (6.1)

If we change the first product on the left to run over all j we have to divide by
p + qξ2

k − ξk . Setting p = 1 − q shows that

1 − ξk

p + qξ2
k − ξk

= 1

p − qξk
.

5 When we showed Doron Zeilberger the identity when it was still a conjecture he suggested [23] that
problem VII.47 of [11], an identity of I. Schur, had a similar look about it and might be proved in a similar
way. He was right.
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So the left side of (6.1) equals

N∑

k=1

N∏

j=1

(p + qξkξ j − ξk) · 1

ξk (p − qξk)

1∏
j �=k(ξ j − ξk)

.

We evaluate this by integrating

N∏

j=1

(p + qzξ j − z) · 1

z (p − qz)
· 1
∏N

j=1(ξ j − z)

over a large circle. Since the integrand is O(z−2) for large z the integral is zero. There
are poles at 0 and the ξk , and the sum of the residues there is

pN−1
∏

j ξ j
−

N∑

k=1

N∏

j=1

(p + qξkξ j − ξk) · 1

ξk (p − qξk)

1∏
j �=k(ξ j − ξk)

.

There is also a pole at z = p/q and for the residue there we compute

p + pξ j − p/q

ξ j − p/q
= p

q + qξ j − 1

qξ j − p
= p,

so the residue at p/q is −pN−1. This gives

N∑

k=1

N∏

j=1

(p + qξkξ j − ξk) · 1

ξk (p − qξk)

1∏
j �=k(ξ j − ξk)

= pN−1
∏

j ξ j
− pN−1,

as desired.
This completes the proof of identity (1.6).

Proof of identity (1.9). We use the easily established recursion formula
[

N

m

]
= pm

[
N − 1

m

]
+ q N−m

[
N − 1

m − 1

]
(6.2)

and a preliminary simpler identity,

∑

|S|=m

∏

i∈S
j∈Sc

p + qξiξ j − ξi

ξ j − ξi
=
[

N

m

]
, (6.3)

where S is as before.
We prove this6 by induction on N , so assume (6.3) holds for N − 1. The left side is

symmetric in the ξi and is O(1) as any ξi → ∞ with the other ξ j fixed. If we multiply
the left side by the Vandermonde

∏
i< j (ξi −ξ j )we obtain an antisymmetric polynomial

which is O(ξ N−1
i ) as any ξi → ∞ with the others fixed, so it has degree at most N − 1

in each ξi . Being antisymmetric it is divisible by the Vandermonde, and having degree

6 The proof is a modification of one found by Anne Schilling [15] for an equivalent identity.
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at most N − 1 in each of the ξi separately it must be a constant times the Vandermonde.
Thus the left side of (6.3) is a constant, say CN ,m .

To evaluate the constant set ξN = 1. For convenience we write

p + qξiξ j − ξi

ξ j − ξ j
= U (ξi , ξ j ).

We have

CN ,m =
∑

S

∏

i∈S
j∈Sc

U (ξi , ξ j )

∣∣∣
ξ1=1

= q N−m
∑

N∈S

∏

i∈S\N
j∈Sc

U (ξi , ξ j ) + pm
∑

N �∈S

∏

i∈S
j∈Sc\N

U (ξi , ξ j ).

By the induction hypothesis the right side equals

q N−m
[

N − 1

m − 1

]
+ pm

[
N − 1

m

]
,

and this equals
[

N
m

]
by (6.2). This establishes identity (6.3).

The proof of (1.9) runs along the same lines. We interpret both sides to be zero when
N = m, and do an induction on N ≥ m. So we assume N > m and that the formula
holds for N − 1 ≥ m − 1. We quickly deduce that the left side is a polynomial of degree
at most one in each ξi . If we call the left side CN ,m(ξ) then

CN ,m(ξ1, . . . , ξN−1, 1) = q N−m
∑

N∈S

∏

i∈S\N
j∈Sc

U (ξi , ξ j ) ·
(

1 −
∏

j∈Sc

ξ j

)

+pm
∑

N �∈S

∏

i∈S
j∈Sc\N

U (ξi , ξ j ) ·
(

1 −
∏

j∈Sc\N

ξ j

)
.

= q N−m CN−1,m−1(ξ1, . . . , ξN−1) + pm CN−1,m(ξ1, . . . , ξN−1).

Similar relations hold for the other ξi . Notice that when N = m the second sum above
does not appear and Cm−1,m−1(ξ) = 0 so this is consistent with our initial condition.

If we call the right side of (1.9) C ′
N ,m(ξ)we see from (6.2) that the same relations hold

for C ′
N ,m(ξ) (with initial condition C ′

m,m(ξ) = 0) and so for the difference DN ,m(ξ) =
CN ,m(ξ) − C ′

N ,m(ξ). The induction hypothesis gives DN−1,m = DN−1,m−1 = 0, so
wse have shown that for any i ,

DN ,m(ξ)|ξi =1 = 0.

Any polynomial which has degree at most one in each ξi and vanishes when any ξi = 1
is a constant times

∏
(ξi − 1),7 so DN ,m(ξ) has this form.

We have shown that

CN ,m(ξ) = C ′
N ,m(ξ) + c

∏

i

(ξi − 1)

for some c. We show that c = 0 by computing asymptotics as ξN → ∞. All terms are
asymptotically a constant times ξN . If in the sum in (1.9) N ∈ S then the corresponding

7 Such a polynomial must be of the form ξN −1 times a polynomial in ξ1, . . . , ξN−1 with the same property,
so the statement follows by induction.
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summand is O(1). So we need consider only those S for which N �∈ S. In the product in
the summand, if j = N then the corresponding product over i has the limit qm ∏

i∈S ξi
since there are m factors with limit qξi . It follows that

lim
ξN →∞

CN ,m(ξ)

ξN
= −qm

∑

|S|=m
S⊂{1,...,N−1}

∏

i∈S
j∈Sc , j<N

p + qξiξ j − ξi

ξ j − ξi
·
∏

i∈S

ξi ·
∏

j<N , j∈Sc

ξi

= −qm
∏

i<N

ξi

∑

|S|=m
S⊂{1,...,N−1}

∏

i∈S
j∈Sc , j<N

p + qξiξ j − ξi

ξ j − ξi
.

Identity (6.3) tells us that this equals

−qm
∏

i<N

ξi

[
N − 1

m

]
.

Clearly C ′
N ,m(ξ) has the same asymptotics, so c = 0.
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