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Abstract

We give a method to solve the time-dependent Schrödinger equation for a
system of one-dimensional bosons interacting via a repulsive delta function
potential. The method uses the ideas of Bethe Ansatz but does not use the
spectral theory of the associated Hamiltonian.
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1. Introduction

In this paper we give an alternative approach to solve the time-dependent Schrödinger equation
for a system of one-dimensional bosons interacting via a delta function potential. This quantum
many-body model, called the Lieb–Liniger model [6, 7], is ‘exactly solvable’ by means of Bethe
Ansatz [2] in the sense that the ground-state energy [7], the excitation spectrum [6] as well as
equilibrium thermodynamics [13] are known. (See [5, 10] for textbook treatments.) Current
widespread interest in the Lieb–Liniger model has arisen because of its connection to ultracold
gases confined in a quasi one-dimensional trap. Indeed, it has been recently shown that the
Lieb–Liniger model for one-dimensional bosons ‘can be rigorously derived via a scaling limit
from a dilute three-dimensional Bose gas with arbitrary repulsive interaction potential of finite
scattering length’ [8]. These applications focus interest on the time-dependent solutions. For
a review of these developments see [3].

Recall that the Lieb–Liniger δ-function (N-particle) Bose gas Hamiltonian is

H = −
N∑

j=1

∂2

∂x2
j

+ 2c
∑
j<k

δ(xj − xk) (1)

where c > 0 (the repulsive case) and xj ∈ R.3 Most work [1, 4, 6, 7, 9, 12] focuses on the
eigenfunctions and eigenvalues of H from which, in principle, any solution �(x; t) of the
3 We choose units where 2m = 1 and h̄ = 1.
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time-dependent Schrödinger equation

H� = i
∂�

∂t
, (2)

subject to the initial condition

�(x; 0) = �(x1, . . . , xN ; 0) = ψ0(x1, . . . , xN), (3)

may be constructed4. In practice, due to the complexity of the Bethe eigenfunctions and the
nonlinear Bethe equations, it is difficult to analyze time-dependent solutions whose initial
conditions are not eigenfunctions. We give here an alternative to the spectral method for
solving (2).

Since different physical conditions require different choices of the initial wavefunction
ψ0, we develop here a flexible mathematical structure to incorporate these different choices.
Suppose we solve (2) with the initial condition

ψδ(x) = ψδ(x1, . . . , xN) = 1

N !

∑
σ∈SN

N∏
j=1

δ(xσ(j) − yj ) (4)

where SN is the permutation group acting on {1, . . . , N}. Here yj ∈ R are fixed and without
loss of generality we may assume

y1 < y2 < · · · < yN. (5)

If �δ(x, y; t) denotes this solution, then the solution to (2) satisfying (3) is

�(x; t) =
∫

R
N

�δ(x, y; t)ψ0(y) dy

(dy = dy1 · · · dyN). The subject of this paper is �δ , a Green’s function for (2).
We remark that there are two natural choices for the initial wavefunction ψ0. The free

particle Gaussian wavefunction localized at y is5

ϕa(x; y, p) = 1

(2π)1/4
√

a
e−(x−y)2/(4a2) eipx.

Thus an initial condition where the particles are separated and free is

ψfree(x) = cN

∑
σ∈SN

N∏
j=1

ϕa(xσ(j); yj , pj )

where cN is a normalization constant.
A second choice is for the Bose gas to be initially confined to a subset of R and in its

ground state. Solving (2) with this initial condition corresponds to the confined Bose gas
freely expanding into all of R. The ground-state wavefunction for confinement to R

+ has been
computed by Gaudin [4] and confinement to a hard wall box by Batchelor et al [1].

We now recall a well-known [7, 10] reformulation of the problem. Since we seek
symmetric solutions, it is sufficient to solve (2) in the region

R : −∞ < x1 � x2 � · · · � xN < ∞. (6)

In the interior of R, e.g. Ro : x1 < x2 < · · · < xN , the δ-functions are zero and we have the
free Schrödinger equation

−
∑

i

∂2�δ

∂x2
i

= i
∂�δ

∂t
. (7)

4 ψ0 is a given symmetric function of the coordinates xj .
5 Thus |ϕa(x; y, p)|2 is the Gaussian distribution centered at y with variance a2. Solving the time-dependent free
Schrödinger equation shows that 〈x〉 = 2pt ; and hence, 2p is the classical velocity. (Recall 2m = 1.)
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That is the effect of the δ-functions are confined to the boundary of R, e.g. on the hyperplanes
xj = xj+1, and their effect can be formulated as a boundary condition on the hyperplanes (we
also use the fact that �δ is a symmetric function):(

∂

∂xj+1
− ∂

∂xj

)
�δ

∣∣∣∣
xj+1=xj

= c�δ|xj+1=xj
. (8)

Thus the problem is to solve (7) in Ro subject to the boundary conditions (8) and the initial
condition in R

�δ(x; 0) =
N∏

j=1

δ(xj − yj ) (9)

where yj satisfy (5) and we have dropped the normalization constant N ! since it can be
incorporated at the end. The solution �δ is given below in (14).

2. Bethe Ansatz

We now explain how the ideas of Bethe Ansatz [2, 7] can be employed to solve the time-
dependent problem without using the spectral theory of the operator H. Since we avoid the
eigenvalue problem, there are no Bethe equations in this approach6. To set the notation and to
see the argument in its simplest form, we first solve N = 2.

2.1. N = 2

It is elementary to verify that∫
R

∫
R

A(k1, k2) ei(k1x1+k2x2) e−i(ε(k1)+ε(k2))t dk1 dk2

with

ε(k) = k2

solves (7) in x1 < x2. The insight from Bethe Ansatz is to add to this solution another solution
with the integration variables permuted,∫

R

∫
R

[A12(k1, k2) ei(k1x1+k2x2) + A21(k1, k2) ei(k2x1+k1x2)] e−i(ε(k1)+ε(k2))t dk1 dk2,

so that the boundary condition (8) can be applied pointwise to the above integrand. The result
is the condition

ik2A12 + ik1A21 − ik1A12 − ik2A21 = c(A12 + A21),

or equivalently,

A21 = −c − i(k2 − k1)

c + i(k2 − k1)
A12.

We set

Sαβ = Sαβ(kα − kβ) = −c − i(kα − kβ)

c + i(kα − kβ)
(10)

so that the above reads A21 = S21A12. It is also convenient to set

S(k) = −c − ik

c + ik
. (11)

6 The methods here are an adaptation of the methods of [11].
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Observe that S(k) extends to a holomorphic function in the lower half-plane and so its Fourier
transform, Ŝ(z), is supported in [0,∞).

With the initial condition (9) in mind, we choose

A12(k1, k2) = e−i(k1y1+k2y2)

so the above solution becomes∫
R

∫
R

[ei(k1(x1−y1)+k2(x2−y2)) + S21(k2, k1) ei(k2(x1−y2)+k1(x2−y1))] e−i(εk1 +εk2 )t dk1 dk2 (12)

where from now on dkj → dkj/2π .
At t = 0 the first term evaluates to δ(x1 − y1)δ(x2 − y2). Thus we must show∫

R

∫
R

S(k2 − k1) eik1(x2−y1)+ik2(x1−y2) dk1 dk2 = 0

for y1 < y2 and x1 � x2 for the solution (12) to satisfy the initial condition (9). Making the
change of variables k2 → k2 + k1 and k1 → k1 in the above integral, we have (after performing
the resulting integration over k1)

δ(x1 + x2 − y1 − y2)

∫
R

S(k2) eik2(x1−y2) dk2 = δ(x1 + x2 − y1 − y2)Ŝ(x1 − y2).

Now Ŝ(x1 − y2) is nonzero only in the region

x1 − y2 � 0

and the delta function requires that x1 + x2 = y1 + y2 for a nonzero contribution. But in R
2x1 � x1 + x2 = y1 + y2 < 2y2,

i.e. x1 < y2. Hence the integral in the region R is zero, and thus, we conclude (12) is the
sought after solution �δ(x) for N = 2.

2.2. General N

Let σ ∈ SN be a permutation of {1, . . . , N}. Recall that an inversion in a permutation σ is an
ordered pair {σ(i), σ (j)} in which i < j and σ(i) > σ(j). We set

Aσ =
∏

{Sαβ : {α, β} is an inversion in σ } (13)

where Sαβ is defined by (10). Thus, for example, A231 = S21S31 and Aid = 1. We claim the
solution that satisfies (7) with boundary conditions (8) and the initial condition (9) is

�δ(x; t) =
∑
σ∈SN

∫
R

· · ·
∫

R

Aσ

N∏
j=1

eikσ(j)(xj −yσ(j)) e−it
∑

j ε(kj ) dk1 · · · dkN . (14)

First, it is clear that (14) satisfies (7) in Ro. As demonstrated in [7], if Tiσ denotes σ with
the entries σ(i) and σ(i + 1) interchanged, the boundary conditions will be satisfied provided
that

ATiσ = Sσ(i+1)σ (i)Aσ

for all σ . Let us see why this relation holds. Let α = σ(i), β = σ(i + 1), and suppose α > β.
Then {α, β} is an inversion for σ but not for Tiσ , so Sαβ is a factor in Aσ but not in ATiσ , and
all other factors are the same. Therefore, using SαβSβα = 1, we have

ATiσ = SβαAσ = Sσ(i+1)σ (i)Aσ .

The same identity holds immediately if β > α, since {β, α} is an inversion for Tiσ but not
for σ .

4



J. Phys. A: Math. Theor. 41 (2008) 485204 C A Tracy and H Widom

As in the N = 2 case, the term corresponding to the identity permutation in (14) satisfies
the initial condition (9). Thus to complete the proof we must show

∑
σ∈SN ,σ �=id

∫
R

· · ·
∫

R

Aσ

N∏
j=1

eikσ(j)(xj −yσ(j)) dk1 · · · dkN = 0.

Let I (σ ) denote the integral corresponding to σ term in the above sum. Recalling the definition
(11) of S, the integrand for I (σ ) becomes

N∏
j=1

eikσ(j)(xj −yσ(j))
∏

{S(kα − kβ) : {α, β} is an inversion in σ }.

We again use the fact that S(k) extends analytically into the lower half-plane.
If a number γ appears on the left side of an inversion and never on the right side then in

the integrand it appears only in factors of the form S(kγ − kβ) and so integrating with respect
to kγ shows that the integrand is zero unless

xσ−1(γ ) � yγ . (15)

Similarly, if a number δ appears on the right side of an inversion and never on the left side
then in the integrand it appears only in factors of the form S(kα − kδ) and so integrating with
respect to kδ shows that the resulting integrand is zero unless

xσ−1(δ) � yδ. (16)

We show I (σ ) = 0 by induction on N. If σ(1) = 1 then 1 does not appear in an inversion,
we can integrate with respect to k1, and we are reduced to the case N − 1. So assume
σ(1) = γ > 1. Then (γ, 1) is an inversion and there is no inversion of the form (α, γ )

because γ appears in slot 1. So we can apply (15) with this γ and get the resulting integrand
is zero unless

x1 � yγ .

Next we observe as before that (γ, 1) is an inversion, but now that 1, which appears on
the right side of the inversion, cannot appear on the left side of an inversion (obviously). So
we can apply (16) with δ = 1 and get

xσ−1(1) � y1.

Since y1 < yγ the two inequalities give xσ−1(1) < x1, which cannot happen. This completes
the proof of (14).

The limit of impenetrable bosons is the limit c → ∞. In this limit Sαβ → −1 and
Aσ → (−1)inv(σ ) where inv(σ ) is the number of inversions in σ . Thus in R

�δ(x; t) → �∞(x; t) =
∫

R

· · ·
∫

R

det(eikα(xβ−yα)−itεkα ) dk1 · · · dkN (17)

and the extension to R
N follows by requiring �∞ to be a symmetric function of xj .
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