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A limit theorem for the total current in the asymmetric simple exclusion process
�ASEP� with step initial condition is proven. This extends the result of Johansson
on TASEP to ASEP. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3136630�

I. INTRODUCTION

The asymmetric simple exclusion process �ASEP� is a continuous time Markov process of
interacting particles on the integer lattice Z subject to two rules: �1� A particle at x waits an
exponential time with parameter one �independently of all other particles� and then it chooses y
with probability p�x ,y�; �2� if y is vacant at that time it moves to y, while if y is occupied, it
remains at x and restarts its clock. The adjective “simple” refers to the fact that the allowed jumps
are one step to the right, p�x ,x+1�= p, or one step to the left p�x ,x−1�=1− p=q. The asymmetric
condition is p�q so there is a net drift of particles. The special cases p=1 �particles hop only to
the right� or q=1 �particles hop only to the left� are called the T�totally�ASEP. The dynamics are
uniquely determined once we specify the initial state, which may be either deterministic or ran-
dom. A rigorous construction of this infinite particle process can be found in Ref. 7 by Liggett.

Since its introduction by Spitzer,12 the ASEP has remained a popular model among probabi-
lists and physicists because it is one of the simplest nontrivial processes modeling nonequilibrium
phenomena. �For recent reviews, see, Refs. 4, 8, 10, and 13.� If initially the particles are located at
Z+= �1,2 , . . .�, called the step initial condition, and if p�q, then there will be on average a net
flow of particles, or current, to the left. More precisely, we introduce the total current I at position
x�0 at time t,

I�x,t� ª # of particles � x at time t .

With step initial condition, it has been known for some time �see, e.g., Theorem 5.12 in Ref. 7�
that if we set �ªq− p�0 and 0�c��, then the current I satisfies the strong law,

lim
t→�

I��− ct�,t�
t

=
1

4�
�� − c�2 a.s.

The natural next step is to examine the current fluctuations,

I�x,t� −
1

4�
�� − c�2t �1�

for large x and t. Physicists conjectured,6 and Johansson proved for TASEP,5 that to obtain a
nontrivial limiting distribution the correct normalization of �1� is cube root in t. For TASEP
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Johansson not only proved that the fluctuations are of order t1/3 but also found the limiting
distribution function. Precisely, for 0�v�1 we have1

lim
t→�

P�I��− vt�,t� − a1t

a2t1/3 � s� = 1 − F2�− s� , �2�

where

a1 = 1
4 �1 − v�2, a2 = 2−4/3�1 − v2�2/3, �3�

and F2 is the limiting distribution of the largest eigenvalue in the Gaussian unitary ensemble.14

The proof of this relied on the fact that TASEP is a determinantal process.5,11,13 However,
universality arguments suggest that �2� should extend to ASEP with step initial condition even
though ASEP is not a determinantal process. When the initial state is the Bernoulli product
measure, it has been recently proved, using general probabilistic arguments, that the correct
normalization remains t1/3 for a large class of stochastic models including ASEP.1–3,9

In this paper we show that �2� does extend to ASEP.
Theorem: For ASEP with step initial condition we have, for 0�v�1,

lim
t→�

P�I��− vt�,t/�� − a1t

a2t1/3 � s� = 1 − F2�− s� ,

where �=q− p and a1 and a2 are given by �3�.2

This theorem is a corollary, as we show below, of earlier work by the authors.15

II. PROOF OF THE THEOREM

We denote by xm�t� the position of the mth leftmost particle �thus xm�0�=m�Z+�. We are
interested in the probability of the event,

�I�x,t� = m� = �xm�t� � x,xm+1�t� � x� . �4�

The sample space consists of the four disjoint events �xm�t��x ,xm+1�t��x�, �xm�t��x ,xm+1�t�
�x�, �xm�t��x ,xm+1�t��x�, and �xm�t��x ,xm+1�t��x�, and because of the exclusion property, we
have

�xm�t� � x,xm+1�t� � x� = �xm+1�t� � x� ,

�xm�t� � x,xm+1�t� � x� = �xm�t� � x� ,

�xm�t� � x,xm+1�t� � x� = � .

These observations and �4� give �the intuitively obvious�

P�I�x,t� = m� = P�xm�t� � x� − P�xm+1�t� � x� .

Since P�I�x , t�=0�=P�x1�t��x�, we have

P�I�x,t� � m� = 1 − P�xm+1�t� � x� .

Thus, since x and xm+1�t� are integers, the statement of the Theorem is equivalent to the statement
that

1The value of a2 given in �3� corrects a misprint in Corollary 1.7 of Ref. 5.
2With step initial condition and x�0 the total current equals the number of particles to the left of x at time t minus x. In
what follows we shall require only that 	v	�1. Therefore the statement of the Theorem holds for all such v if when v
�0 the value of a1 is decreased by 	v	.
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lim
t→�

P�xm+1�t/�� � − vt� = F2�s� ,

when m= �a1t−a2st1/3�. In fact, we shall show that

lim
t→�

P�xm�t/�� � − vt� = F2�s� , �5�

when

m = a1t − a2st1/3 + o�t1/3� . �6�

Let

� =
m

t
, c1 = − 1 + 2
�, c2 = �−1/6�1 − 
��2/3.

It was proved in Ref. 15 that when 0� p�q,

lim
t→�

P�xm�t/�� � c1t + sc2t1/3� = F2�s� �7�

uniformly for � in a compact subset of �0,1�.
To obtain �5� from this we determine � so that

− vt = c1t + sc2t1/3.

Thus,

v = 1 − 2
� − s�−1/6�1 − 
��2/3t−2/3.

Solving, we get

�1 − v
2

�2

= � + s�1/3�1 − 
��2/3t−2/3 + O�t−4/3� ,

from which we deduce3

� = �1 − v
2

�2

− s�1 − v
2

�2/3�1 + v
2

�2/3

t−2/3 + O�t−4/3� = �1 − v
2

�2

− s2−4/3�1 − v2�2/3t−2/3 + O�t−4/3� .

By the uniformity of �7� in �, we get the same asymptotics if we replace the � we just
computed by any � satisfying

� = �1 − v
2

�2

− s2−4/3�1 − v2�2/3t−2/3 + o�t−2/3� .

Since this is exactly the statement that m=�t satisfies �6�, we see that the Theorem is established.
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