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Abstract For temperatures below the critical temperature, the magnetic susceptibility for
the two-dimensional isotropic Ising model can be expressed in terms of an infinite series
of multiple integrals. With respect to a parameter related to temperature and the interaction
constant, the integrals may be extended to functions analytic outside the unit circle. In a
groundbreaking paper, Nickel (J Phys A 32:3889–3906, 1999) identified a class of singu-
larities of these integrals on the unit circle. In this note we show that there are no other
singularities on the unit circle.

Keywords Ising model · Magnetic susceptibility · Singularities

1 Introduction

For the two-dimensional zero-field Ising model on a square lattice, the magnetic susceptibility
as a function of temperature is usually studied through its relation with the zero-field spin-spin
correlation function:

β−1χ =
∑

M,N∈Z

{〈σ0,0 σM,N 〉 − M2} (1)

where β = (kB T )−1, T is temperature, kB is Boltzmann’s constant and M is the spontaneous
magnetization (see, e.g., [8]). Fisher [4] in 1959 initiated the analysis of the analytic structure
of χ near the critical temperature Tc by relating it to the long-distance asymptotics of the
correlation function at Tc (a result known to Kaufman and Onsager). Subsequently Wu et al.
[15] derived the exact form factor expansion of χ which has the structure of an infinite series
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1126 C. A. Tracy, H. Widom

whose nth order term is an n-dimensional integral. In later work [12,13,16,17] the structure
of the integrands of these n-dimensional integrals was simplified.

The analysis of χ as a function of the complex variable T was initiated by Guttmann and
Enting [5] where, by the use of high-temperature series expansions, they were led to conjecture
thatχ , as a function of T , possesses a natural boundary. In two groundbreaking papers, Nickel
[10,11] analyzed the n-dimensional integrals appearing in the form factor expansion of χ
and identified a class of complex singularities, now called Nickel singularities, that lie on a
curve and which become ever more dense with increasing n. This work of Nickel provides
very strong support for the existence of a natural boundary for χ .1 For further developments
see Chan et al. [3] and the review article [9].

We recall that if Tc denotes the critical temperature, then for the isotropic Ising model,
where horizontal and vertical interaction constants have the same value J , the spontaneous
magnetization is given for T < Tc by [8,18]

M = (1 − k2)1/8,

where k := (sinh 2β J )−2; and M is zero for T > Tc. Thus k = 1 defines the critical
temperature Tc and 0 < k < 1 is the region 0 < T < Tc. Boukraa et al. [1] (building on
work of Lyberg and McCoy [7]) introduced a simplified model for χ , called the diagonal
susceptibility χd which has the following analogous representation to (1):

β−1χd =
∑

N∈Z

{〈σ0,0σN ,N 〉 − M2} .

By an analysis similar to that of Nickel, they are led to conjecture a natural boundary for
χd ; which in terms of the complex variable k, is the unit circle |k| = 1. This conjecture thus
says that the low temperature phase T < Tc is separated from the high-temperature phase
T > Tc by the natural boundary |k| = 1. This conjecture for χd is precisely the same as
the conjectured natural boundary for χ . In the low-temperature phase, the present authors
proved that |k| = 1 is a natural boundary for χd [14], thus adding additional support for the
conjecture for χ .

We now state the results of this paper. We set

s = 1/
√

k = sinh 2β J,

so that the low-temperature phase corresponds to s > 1. If we define

D(x, y; s) = s + s−1 − (x + x−1)/2 − (y + y−1)/2, (2)

then we have the expansion

β−1 χ = M2
∞∑

n=1

χ(2n), (3)

where

χ(n) = 1

n!
1

(2π i)2n

∫

Cr

. . .

∫

Cr

(1 + ∏
j x−1

j ) (1 + ∏
j y−1

j )

(1 − ∏
j x j ) (1 − ∏

j y j )

∏

j<k

x j − xk

x j xk − 1

y j − yk

y j yk − 1

×
∏

j

dx j dy j

D(x j , y j ; s)
.

1 As Nickel noted, for a rigorous proof one must show that there are no cancellations of the singularities in
the infinite sum.
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On the Singularities in the Susceptibility Expansion 1127

Here Cr denotes the circle with center zero and radius r < 1 and r sufficiently close to 1
(depending on s). All indices in the integrand run from 1 to n. A derivation of this represen-
tation will be given in Appendix 1.2

We extend χ(n) to a function of the complex variable s with |s| > 1. A Nickel singularity
is a point s0 on the unit circle T such that the real part of s0 is the average of the real parts
of two nth roots of unity.

We shall show that for n even these are the only singularities of χ(n). More precisely, χ(n)

extends from the exterior of T to a C∞ function on T except for the Nickel singularities.3

Here we use the term “singularity” to denote a point in no neighborhood of which a function
is C∞. In the physics litearture it usually means a point beyond which a function cannot be
continued analytically. It appears that χ(n) satisfies a linear differential equation with only
regular singular points (although the authors admit not having seen a derivation of this that
they understand).4 At a regular singular point the function has a series expansion whose
leading term is a fractional or negative power, or a power times a power of the logarithm.
Such a function cannot extend from outside T to be C∞ in a neighborhood of that point.
Therefore we get the stronger result that for n even χ(n) extends analytically across the unit
circle except at the Nickel singularities.

2 Outline of the Proof

With the notations

F(x) = 1

1 − ∏
j x j

, F(y) = 1

1 − ∏
j y j

, Fjk(x) = 1

1 − x j xk
, Fjk(y) = 1

1 − y j yk
,

G j (x, y; s)= 1

D(x j , y j ; s)
�(x, y)=

⎛

⎝1+
∏

j

x−1
j

⎞

⎠

⎛

⎝1+
∏

j

y−1
j

⎞

⎠
∏

j<k

(x j − xk) (y j − yk),

all thought of as functions on R
n × R

n , the integral becomes
∫

Cn
r

∫

Cn
r

F(x) F(y)
∏

j<k

Fjk(x)
∏

j<k

Fjk(y)
∏

j

G j (x, y; s) �(x, y) dx dy.

This equals r2n times
∫

Tn

∫

Tn

F(r x) F(ry)
∏

j<k

Fjk(r x)
∏

j<k

Fjk(ry)
∏

j

G j (r x, ry; s) �(r x, ry) dx dy. (4)

A partition of unity allows us to localize. At any given point (x0, y0) ∈ T
n × T

n some of
the F-factors may become singular as r → 1, and after letting r → 1 some of the G-factors
may become singular as s → s0 ∈ T. We represent each of these potentially singular factors
as an exponential integral over R

+. The gradient of the exponent in the resulting integrand
is approximately a linear combination with positive coefficients of certain vectors, one from
each factor. Unless s0 is a Nickel singularity, the convex hull of these vectors does not contain

2 Our χ(2n) is equal to the χ̂ (2n) of [10,11].
3 For n odd our argument leaves open the possibility of other singularities. See footnote 6.
4 The equations for n ≤ 6 have been found [2], and all their singularities are regular.
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0, a fact that allows us to find a lower bound for the length of the gradient. (This is the crucial
point in the proof.5) Then several applications of the divergence theorem give the bound
O(1) for the integral, uniformly in s and r . The same is true after differentiating with respect
to s any number of times. This will imply that χ(n) extends to a C∞ function on T excluding
these points.

3 The Proof

For a given point (x0, y0) = ((x0
j ), (y

0
j )) ∈ T

n × T
n some of the factors in (4) become

singular as r → 1 and s → s0, as described above. For example F(r x) becomes singular
when

∏
j x0

j = 1 and G j (r x, ry; s) becomes singular when

Re x0
j + Re y0

j = 2 Re s0.

There is a neighborhood of (x0, y0) in which no other factors become singular, so that outside
this neighborhood the rest of the integrand is a smooth function of x and y and bounded for
s in a neighborhood of s0, together with each of its derivatives with respect to s. Let ψ(x, y)
be a C∞ function with support in this neighborhood. (Eventually the support will be taken
even smaller.) We shall show that the integral (4), with the function ψ(x, y) inserted in the
integrand, is uniformly bounded for s in a neighborhood of s0, together with each derivative
with respect to s, when r is taken close enough (depending on s) to 1.

In our neighborhood we make the variable changes

x j = x0
j eiθ j , y j = y0

j eiϕ j .

Below we give the behavior of the reciprocals of the F-factors, in terms of the θ j , ϕ j , if the
factors become singular at (x0, y0).

1/F(r x) = −i
∑

j

θ j + O
(
(1 − r)+

∑

j

θ2
j

)
,

1/F(ry) = −i
∑

j

ϕ j + O
(
(1 − r)+

∑

j

ϕ2
j

)
,

1/Fjk(r x) = −i (θ j + θk)+ O
(
(1 − r)+ θ2

j + θ2
k

)
,

1/Fjk(ry) = −i (ϕ j + ϕk)+ O
(
(1 − r)+ ϕ2

j + ϕ2
k

)
.

We note that the real parts of these reciprocals are at least 1 − r , and so are all positive.
For any G-factor that becomes singular at (x0, y0; s0) we have

i/G j (r x, ry; s) = − i (α j θ j + β j ϕ j )− i
[
s + s−1

−
(

s0 + s0−1
) ]

+ O
(
(1 − r)+ θ2

j + ϕ2
j

)
.

5 Each of the singular limiting factors F(x), F(y), Fjk (x), Fjk (y), G j (x, y; s0) may be interpreted as a
distribution on T

n × T
n . That 0 is not in the convex hull of the vectors is precisely the condition that allows

one to define the product of these distributions as a distribution [6]. This is what led us to the present proof.

123



On the Singularities in the Susceptibility Expansion 1129

where

α j = Im x0
j , β j = Im y0

j .

The reason we put the factor i on the left is that now the real part of the right side, which is
equal to the imaginary part of the expression in brackets, is positive when Im s > 0 and r is
sufficiently close to 1 (depending on s). This we assume. (Otherwise we replace the factor i
by −i and change signs in the definitions of α j and β j .)

All estimates are consistent with differentiation. For example, the result of differentiating
1/F(r x) with respect to θk is −i + O((1 − r)+ ∑

j |θ j |).
In what follows we exclude s0 = ±1,±i , which are Nickel singularities for even n. Thus

we assume (α j , β j ) 	= (0, 0).
Because all real parts of the reciprocals are positive they may be represented as integrals

over R
+. Thus, we have for any potentially singular factor,

F(r x) =
∫

R+
eiξ (

∑
j θ j + correction) dξ,

F(ry) =
∫

R+
eiη (

∑
j ϕ j + correction) dη,

Fjk(r x) =
∫

R+
eiξ jk (θ j +θk+ correction) dξ jk,

Fjk(ry) =
∫

R+
eiη jk (ϕ j +ϕk+ correction) dη jk,

G j (r x, ry; s) = i
∫

R+
eiζ j (α j θ j +β j ϕ j +s+s−1−s0−s0−1+ correction) dζ j .

In all of these, “correction” denotes i times the O terms above.
Thus, the integral (4) is replaced by one in which the cut-off function ψ(x, y) is inserted

into the integrand and each potentially singular factor is replaced by an integral over R
+.

Denote the number of these factors (and so the number of (ξ, η, ζ )-integrations) by N . We
change the order of integration and integrate first with respect to the θ j , ϕ j . We want to apply
the divergence theorem so that we eventually get a bound O(R−N−1), where R is the radial
variable in the N -dimensional (ξ, η, ζ )-space. To do this we have to find a lower bound for
the length of the gradient of the sum of the exponents coming from the (ξ, η, ζ )-integrations.

We define the following vectors in R
n × R

n :

X = (1 1 · · · 1 0 0 · · · 0)

Y = (0 0 · · · 0 1 1 · · · 1)

X jk = (0 · · · 1 · · · 1 · · · 0 0 · · · )
Y jk = (· · · 0 0 · · · 0 1 · · · 1 · · · )

Z j = (0 · · · 0 α j 0 · · · 0 β j · · · 0).
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1130 C. A. Tracy, H. Widom

Let us explain. The first n components are the θ j components, the last n the ϕ j components.
For X the ones are the first n components and the zeros are the rest, and for Y these are
reversed. For X jk the ones are components j and k and the others are zero, and for Y jk the
ones are components n + j and n + k and the others are zero. For Z j component j is α j and
component n + j is β j , and the others are zero.

Aside from the factor i and the correction term from each summand, the gradient of the
sum of the exponents is the subsum of

ξ X + η Y +
∑

j<k

ξ jk X jk +
∑

j<k

η jk Y jk +
∑

j

ζ j Z j (5)

containing the N (ξ, η, ζ )-variables that actually appear.

Lemma 1 Suppose that n is even and that s0 is not a Nickel singularity. Then 0 is not in the
convex hull of those of the vectors X, Y, X jk, Y jk, Z j that appear in the subsum of (5).

Proof We show that if a linear combination of these vectors with nonnegative coefficients is
zero, but not all the coefficients are zero, then s0 is a Nickel singularity. We say that a vector
“appears” in the linear combination if its coefficient is nonzero. Some Z j must appear since
all the others have nonnegative components and at least one positive component. (Recall that
Z j appears when Re x0

j + Re y0
j = 2 Re s0).

If X jk appears then then so must Z j and Zk and α j , αk < 0, to cancel the nonzero
components of X jk . But X jk appears only when x0

j x0
k = 1, so α j + αk = 0, which is a

contradiction. Thus no X jk appears. Similarly no Y jk appears.
Since some Z j appears either X or Y must. Suppose that X appears. (In particular

∏
x0

j =
1.) Then all α j < 0, and if the coefficient of X is cX the coefficient of Z j must be −cX/α j .

There are two subcases:

(i) Y appears: (In particular
∏

y0
j = 1.) In analogy with the above, if the coefficient of Y is

cY then the coefficient of Z j is −cY /β j . Thus α j/β j = cX/cY for all j . We claim that
this implies that all x0

j are equal and all y0
j are equal. Consider pairs (x, y) with both

in the lower half-plane, and Re x + Re y = 2 Re s0. Set x = eiθ , y = eiϕ . It is an
exercise in calculus to show that as θ increases while cos θ + cos ϕ remains constant the
ratio Im x/Im y = sin θ/ sin ϕ strictly decreases if Re s0 > 0 and strictly increases if
Re s0 < 0. Therefore this ratio determines θ , and so x . Similarly the ratio determines y.
So all x0

j are equal and all y0
j are equal, as claimed. They must both be nth roots of unity,

so s0 is a Nickel singularity.
(ii) Y does not appear: Since all Z j appear, we must have all β j = 0 in this case. So all

y0
j = ±1. If some y0

j = 1 then Re s0 > 0, because if Re s0 were negative it could not

be the average of 1 and some Re x0
j . Then all y0

j = 1, for the same reason. Hence each

Re x0
j = 2 Re s − 1, and since all α j < 0 this implies that all x0

j are equal, and equal to

some nth root of unity. Thus s0 is a Nickel singularity. If some y0
j = −1, and therefore

all y0
j = −1, this again implies that all x0

j equal some nth root of unity. Since n is even

s0 is again a Nickel singularity.6


�
If 0 is not in the convex hull of vectors then there is a lower bound for linear combinations

of them with nonnegative coefficients, even when the vectors are perturbed.

6 Since −1 is not an nth root of unity when n is odd, these s0 are not Nickel singularities.
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On the Singularities in the Susceptibility Expansion 1131

Lemma 2 Assume 0 is not in the convex hull of the vectors V1, . . . , VN . Then for sufficiently
small ε > 0 there is a δ > 0 such that, for vectors U j with |U j − Vj | < ε and coefficients
c j ≥ 0, we have

∣∣∣
∑

j

c j U j

∣∣∣ ≥ δ
∑

j

c j . (6)

Proof Suppose the result is not true. Then there is a sequence εk → 0, vectors U j,k with
|U j,k − Vj | ≤ εk , and coefficients c j,k ≥ 0 such that for each k,

∣∣∣
∑

j

c j,k U j

∣∣∣ <
1

k

∑

j

c j,k .

By homogeneity we may assume that each
∑

j c j,k = 1. Then, by taking subsequences, we
may assume that each c j,k converges as k → ∞ to some c j . Then

∑
j c j = 1, and each

U j,k → Vj , so
∑

j c j Vj = 0. This is a contradiction. 
�
Lemma 3 Assume n is even and s0 is not a Nickel singularity. There is a neighborhood of
(x0, y0) such that if ψ(x, y) is a C∞ function with support in that neighborhood then the
integral (4), with ψ inserted in the integrand and r sufficiently close to 1 (depending on s), is
bounded in a neighborhood of s = s0; and the same is true for each derivative with respect
to s.

Proof We combine Lemmas 1 and 2 to deduce that if r is close enough to 1 and the support
of ψ is small enough, then in the support of ψ the length of the gradient of the exponent in
the integral is at least a constant times the sum of the coefficients in the subsum of (5) that
arises. Therefore N + 1 applications of the divergence theorem shows that the integral over
the θ j , ϕ j has absolute value at most a constant times 1/RN+1, where R is the radial variable
in the N -dimensional (ξ, η, ζ )-space.7 Therefore the integral (4) with ψ(x, y) inserted in
the integrand, which results after integration over the (ξ, η, ζ ), is O(1) uniformly for s in
a neighborhood of s0. (The integral over R < 1 is clearly bounded.) Differentiating with
respect to s any number of times just brings down powers of the ζ j , and so only requires
more applications of the divergence theorem. 
�
Theorem When n is even χ(n) extends to a C∞ function on T except at the Nickel singular-
ities.

Proof Assume s0 is not a Nickel singularity. Each (x0, y0) has a neighborhood given by
Lemma 3. Finitely many of these neighborhoods cover T

n × T
n . We can find a C∞ partition

of unity {ψi (x, y)} such that the support of eachψi is contained in one of these neighborhoods.
Each integral (4) withψi (x, y) inserted in the integrand and r sufficiently close to 1, together
with each derivative with respect to s, is bounded in a neighborhood of s = s0. Therefore
the same is true of (4) itself, and therefore for rn times (4), which is independent of r , and
therefore for χ(n). This implies8 that χ(n) extends to a C∞ function on T in a neighborhood
of s0. 
�
Acknowledgments That authors thank Tony Guttmann, Masaki Kashiwara, Jean-Marie Maillard, Bernie
Nickel, Jacques Perk, and, especially, Barry McCoy for helpful communications. This work was supported by
National Science Foundation grants DMS–1207995 (first author) and DMS–0854934 (second author).

7 We explain this in Appendix 2.
8 We explain this in Appendix 3.
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Appendix 1

For T < Tc and N ≥ 0 we have the following Fredholm determinant representation of the
spin-spin correlation function (see [13, p. 375] or [12, p. 142]):

〈σ00 σM N 〉 = M2 det(I + gM N ).

The operator has kernel

gM N (θ1, θ2) = ei Mθ1−Nγ (eiθ1 ) h(θ1, θ2),

where

h(θ1, θ2) = sinh 1
2 (γ (e

iθ1)− γ (eiθ2))

sin 1
2 (θ1 + θ2)

,

and γ (z) is defined by

cosh γ (z) = s + s−1 − (z + z−1)/2,

with the condition that γ (z) is real and positive for |z| = 1. The operator acts on L2(−π, π)
with weight function

1

2π sinh γ (eiθ )
.

Using the identity (see [13, (5.5)] or [12, (2.69)])

det
(
h(θ j , θk)

) =
∏

j<k

[h(θ j , θk)]2,

and the Fredholm expansion we obtain that 〈σ00 σM N 〉 equals

M2
∞∑

n=0

1

(2n)!
1

(2π)2n

π∫

−π
. . .

π∫

−π

∏

j<k

[h(θ j , θk)]2
∏

j

ei Mθ j −Nγ (eiθ j ) dθ j

sinh γ (eiθ j )
. (7)

Here all indices run from 1 to 2n. We used the fact that since the matrix (h(θ j , θk)) is
antisymmetric its odd-order determinants vanish.

We have the identity, observed in [11],

sinh( 1
2 (γ (e

iθ1)− γ (eiθ2))

sin( 1
2 (θ1 + θ2))

= sin( 1
2 (θ1 − θ2))

sinh( 1
2 (γ (e

iθ1)+ γ (eiθ2))

Therefore, with x j = eiθ j ,

[h(θ1, θ2)]2 = e−γ (x1) − e−γ (x2)

1 − e−γ (x1)−γ (x2)

x1 − x2

1 − x1x2
.

With D(x, y; s) defined by (2) a short calculation shows that

y D(x, y; s) = −1

2
(y − e−γ (x)) (y − eγ (x)).
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On the Singularities in the Susceptibility Expansion 1133

Thus inside the unit circle 1/(y D(x, y; s))has a pole at y = e−γ (x) with residue 1/ sinh γ (x).
It follows that for r sufficiently close to 1,

1

(2π i)2n

∫

Cr

. . .

∫

Cr

∏

j<k

y j − yk

1 − y j yk

∏

j

yN−1
j dy j

D(x j , y j ; s)
=

∏

j

e−Nγ (x j )

sinh γ (x j )

∏

j<k

e−γ (x j ) − e−γ (xk )

1 − e−γ (x j )−γ (xk )
.

We deduce that the integral in (7) equals

1

(2π)2n

∫

Cr

. . .

∫

Cr

∏

j<k

y j − yk

1 − y j yk

x j − xk

1 − x j xk

∏

j

x M
j yN

j

D(x j , y j ; s)

∏

j

dx j

x j

dy j

y j
. (8)

It remains to compute
∑

M,N∈Z

{〈σ0,0 σM,N 〉 − M2} .

Subtracting M2 in the summand is the same as taking the sum in (7) only over n > 0.
To compute the sum over M, N ∈ Z we use the fact that 〈σ0,0 σM,N 〉 is even in M and in

N , so
∑

M,N

= 4
∑

M,N≥0

−2
∑

M=0, N≥0

−2
∑

N=0,M≥0

+ the (0, 0) term,

and find that after summing, the factor
∏

j x M
j yN

j in the integrand in (8) gets replaced by

(1 + ∏
j x j ) (1 + ∏

j y j )

(1 − ∏
j x j ) (1 − ∏

j y j )
.

This gives (3).

Appendix 2

Suppose f and g are C∞ functions on R
d , with f having compact support, and we have an

integral
∫

f (θ) eg(θ) dθ.

We write it as
∫

f (θ)
∇g(θ)

|∇g(θ)|2 · ∇eg(θ) dθ.

If define the operator L by

(L f )(θ) = −∇ · f (θ)
∇g(θ)

|∇g(θ)|2 ,

then q applications of the divergence theorem show that the integral equals
∫
(Lq f )(θ) eg(θ) dθ.

Now we have
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1134 C. A. Tracy, H. Widom

(a) Lq f is a linear combination of (partial) derivatives of f with coefficients that are homo-
geneous polynomials of degree q in derivatives of the components of ∇g/|∇g|2;

(b) each pth derivative of each component of ∇g/|∇g|2 equals 1/|∇g|2p+2 times a homo-
geneous polynomial of degree 2p + 1 in derivatives of g.
Assume that we also have

(c) |∇g(θ)| ≥ μ and each derivative of g(θ) is O(μ);
(d) each derivative of f (θ) is O(1).

Then assuming that Re g is uniformly bounded above, we can conclude that
∫

Rd

f (θ) eg(θ) dθ = O(μ−q) for all q.

In the application in Lemma 3 we have d = 2n, g is the sum of the exponents in the
integrals, f is the product of other integrands, and μ can be taken to be a small constant
times the sum of the coefficients in the subsum of (5).

Appendix 3

Suppose U is an open set in T, that f is analytic in the region

� = {Rs : s ∈ U, 1 < R < 1 + δ},
and that f and each of its derivatives is bounded in �. We show that f extends to a C∞
function on � ∪ U .

Pick any s0 ∈ �. We have for each k ≥ 0 and s′ ∈ �,

f (k)(s′) = f (k)(s0)+
s′∫

s0

f (k+1)(t) dt,

with the path of integration in �. Since f (k+1) is bounded, this shows that that f (k) extends
continuously to � ∪ U . Denote by fk(s) this extension. In paticular f0 is the continuous
extension of f . We show that it belongs to C∞.

We show by induction that f0 ∈ Ck . We know this for k = 0. Assuming this for k, we see
that for s ∈ U ,

dk

dsk
f0(s) = lim

s′→s

dk

ds′k f (s′) = f (k)(s0)+
s∫

s0

fk+1(t) dt.

It follows that f0 is k + 1 times differentiable and

dk+1

dsk+1 f0(s) = fk+1(s) = lim
s′→s

dk+1

ds′k+1 f (s′).

This gives the assertion.
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