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In earlier work, the authors �Tracy, C. A. and Widom, H., “Integral formulas for the
asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815 �2008��
obtained integral formulas for probabilities for a single particle in the asymmetric
simple exclusion process. Here, formulas are obtained for joint probabilities for
several particles. In the case of a single particle, the derivation here is simpler than
the one in the earlier work for one of its main results. © 2010 American Institute of
Physics. �doi:10.1063/1.3431977�

I. INTRODUCTION

The asymmetric simple exclusion process �ASEP� is a continuous time Markov process of
interacting particles on the integer lattice Z. Each particle waits exponential time; then with
probability p, it jumps one step to the right if the site is unoccupied and otherwise it stays put; with
probability q=1− p, it jumps one step to the left if the site is unoccupied and otherwise it stays put.
We refer the reader to Refs. 15 and 16 for a precise definition of the model.

When particles can jump only to the right or only to the left, the model is referred to as the
totally asymmetric simple exclusion process �TASEP�. This process is quite special in that it,
unlike ASEP, is a determinantal process.4,12,22,23 For example, in N-particle TASEP the transition
probability from an initial state Y = �y1 , . . . ,yN� to a state X= �x1 , . . . ,xN� in time t is given by an
N�N determinant.22 For TASEP with step initial condition �yi= i�, Johansson, in the seminal
paper,12 proved a limit law for the particle current fluctuations. �The limiting distribution is the
distribution function F2 of random matrix theory.�

Subsequently, these particle current limit laws for TASEP were extended to other initial
conditions including periodic initial conditions,6 stationary initial conditions,10 and the general
two-sided Bernoulli initial condition.3,10 Much recent work on TASEP has focused on the joint
distributions of the particle current.2,5,7,8,11,13,17 In particular, for step initial condition, the joint
distribution of the associated height function and its KPZ scaling �KPZ refers to Kardar, Parisi,
and Zhang14� to the Airy2 process11,18 is now well developed for TASEP.13 We refer the reader to
Ref. 9 for a recent review of TASEP and closely related random growth models.

For ASEP the results have been restricted to probabilities for a single particle.24–27 In Refs. 25
and 26, the present authors extended Johansson’s limit law for TASEP to ASEP, thus proving a
stronger form of KPZ universality. Using results from Ref. 25, Sasamoto and Spohn20,21,19 and
Amir, Corwin, and Quastel1 obtained explicit formulas for the exact height distribution for the
KPZ equation with narrow wedge initial condition. This height distribution interpolates between a
standard Gaussian distribution for small time and the F2 distribution for large time. To extend the
results of Refs. 1, 20, 21, and 19 and show that the Airy2 process is the large time limit of KPZ
with narrow wedge initial condition, we would first try to extend the results of Refs. 24 and 25 to
joint distributions of particle positions in ASEP. In this paper, we take a first step in this direction
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in that we derive integral formulas for joint probabilities. Whether these formulas can be used to
study the KPZ scaling limit remains to be seen.

Here is an outline of this paper. We consider an N-particle system with an initial configuration
Y = �y1 , . . . ,yN�, where y1� ¯ �yN, and denote by �x1�t� , . . . ,xN�t�� the configuration of the sys-
tem at time t. Our starting point is Theorem 2.1 of Ref. 24, a formula for the probability

PY�xi�t� = xi,i = 1, . . . ,N� �1�

�the subscript indicating the initial configuration�, which is a sum of N! multiple integrals, one for
each permutation in the symmetric group SN. The integrals are over small circles about the origin.
In Sec. II we obtain a formula for

PY�xi�t� = xi, i = 1, . . . ,m� , �2�

the joint probability for the first m particles, by summing �1� over all xi with i�m which satisfy
xm�xm+1� ¯ �xN��. We may do this because the integrals are over small circles. Application
of combinatorial identity �1.6� of Ref. 24 replaces the sum of N! integrals by a sum of
N ! / �N−m+1�! integrals. This is Theorem 1.

To obtain from this a formula for arbitrary consecutive particles,

PY�xi�t� = xi, i = n, . . . ,m� , �3�

we have to sum over all xi with i�n, which satisfies −��x1� ¯ �xn−1�xn, and to do this
requires first replacing integrals over small circles by integrals over large ones. This is accom-
plished with the help of Lemma 3.1 of Ref. 24 and gives Theorem 2. Then summing over the
indicated xi and applying combinatorial identity �1.7� of Ref. 24 give a formula for �3� as a sum
of integrals over large circles. This is Theorem 3.

One could obtain a formula for the general joint probability,

PY�xm1
�t� = xm1

, . . . ,xmr
�t� = xmr

� ,

by taking n=m1 and m=mr in Theorem 3 and summing over those xi satisfying xmj
�xi�xmj+1

.
These are finite sums and lead to a rather complicated expression which we shall not write down.
There does not seem to be a combinatorial identity that simplifies it.

Finally, we consider the special case PY�xm�t�=xm�, the probability for a single particle. The
formula for consecutive particles simplifies by using combinatorial identity �1.9� of Ref. 24 and
yields Theorem 4. This is exactly Theorem 5.2 of Ref. 24. The proof here is much simpler than the
one in Ref. 24, although they use the same ingredients. �The theorem was the starting point for
some of the advances mentioned above, and so it is useful to have this more straightforward
proof.� The awkwardness of that proof made it seem unlikely at first that one could find formulas
for joint probabilities without great effort.

Although we assumed that the initial configuration Y was finite, Theorems 2–4 extend to
configurations that are semi-infinite on the right, in particular, to Y =Z+ �step initial condition�.
This is shown in Sec. VI.

II. THE FIRST m PARTICLES: SMALL CONTOURS

Theorem 2.1 of Ref. 24 is the formula that is valid when p�0,

PY�xi�t� = xi, i = 1, . . . ,N� = �
��SN

�
Cr

¯�
Cr

A� 	
i

���i�
xi 	

i

�i
−yi−1e�i���i�t d�1 ¯ d�N, �4�

where
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A� = sgn �
	i�j f����i�,���j��

	i�j f��i,� j�
, f��,��� = p + q��� − �, ���� = p�−1 + q� − 1. �5�

�In general, the product symbol 	 refers only to the first term after it.� Here, Cr is a circle with
center zero and radius r, which is so small that all nonzero poles of the integrand lie outside Cr.
�All contour integrals are to be given a factor 1 /2�i.�

To obtain PY�xi�t�=xi , i=1, . . . ,m�, we sum over all xm+1 , . . . ,xN such that xm�xm+1� ¯

�xN��, which we may do when r�1. The result of the summation is that the product 	i���i�
xi in

�4� is replaced by

	
i�m

���i�
xi 	

i	m

���i�
xm

���m+1����m+2�
2

¯ ���N�
N−m

�1 − ���m+1����m+2� ¯ ���N�� ¯ �1 − ���N��
.

We take a fixed ordered �m−1�-tuple 
= ��1 , . . . ,�m−1� with distinct �i�N and consider first
the sum over all permutations � such that

��1� = �1, . . . ,��m − 1� = �m−1.

�This meaning of 
 as an �m−1�-tuple will be retained throughout.�
The product 	i�m���i�

xi 	i	m���i�
xm becomes

	
i�m

��i

xi 	
j�” 


� j
xm

�in the second factor here, and elsewhere below, 
 is thought of as a set� and the numerator in the
expression for A� may be written as

	
j��1

f���1
,� j� 	

j��1,�2

f���2
,� j�¯ 	

j��1,. . .,�m−1

f���m−1
,� j� 	

m�i�j

f����i�,���j��

= 	
i�
,j�” 


f��i,� j� 	
i�j

f���i
,��j

� 	
m�i�j

f����i�,���j�� .

As for sgn �, we will consider a new guise for � as its restriction to 
c= �1,N� \
. �It may be
associated in an obvious way with a permutation in SN−m+1, as 
 may be associated in an obvious
way with a permutation in Sm−1.� What we now call sgn � will be different from the old sgn �
because the number of inversions in the original � equals the number of inversions of the new
guise � plus the number of inversions in the original � which involve some �i. This number is

�
i�m

��i − i� + No. of inversions in 
 .

Thus, the original sgn � in �5� is to be replaced by

�− 1��i�m��i−i�sgn 
 sgn � ,

where now � is in its new guise.
Identity �1.6� of Ref. 24 tells us that, with the new guise �,

�
�

sgn � 	
m�i�j

f����i�,���j��
���m+1����m+2�

2
¯ ���N�

N−m

�1 − ���m+1����m+2� ¯ ���N�� ¯ �1 − ���N��

= p�N−m+1��N−m�/2
1 − 	
j�” 


� j�	i�j,i,j�” 
�� j − �i�

	 j�” 
�1 − � j�
.

Now we sum over all ordered �m−1�-tuples 
 and obtain the following.

063302-3 Formulas for joint probabilities for ASEP J. Math. Phys. 51, 063302 �2010�



Theorem 1: We have when p�0,

PY�xi�t� = xi,i = 1, . . . ,m� = �



�− 1��i�m��i−i�sgn 
 p�N−m+1��N−m�/2

� �
Cr

¯�
Cr

	i�
,j�” 
f��i,� j� 	i�j f���i
,��j

�

	i�j f��i,� j�

�
1 − 	
j�” 


� j�	i�j,i,j�” 
�� j − �i�

	 j�” 
�1 − � j�
	
i�m

��i

xi 	
j�” 


� j
xm 	

i

�i
−yi−1e�i���i�td�1 ¯ d�N.

�From now until Sec. VI, N= �Y�, all indices belong to �1,N�, and all sets of indices are subsets of
�1,N�.�

III. THE FIRST m PARTICLES: LARGE CONTOURS

Here, we shall find another representation of the same probability in which all contours of
integration are CR, where R is arbitrarily large. Observe that some factors f��i ,� j� in the denomi-
nator in the integrand are canceled by factors in the numerator. We assume at first that p ,q�0.

Step 1. We show first that we may take all ��-contours with ��
 to be CR. Let us first expand
the ���

-contour, where ��=max 
. There appear to be poles at

���
=

p

1 − q� j

coming from the factor f���a
,� j� in the denominator. Since ��=max 
, we must have j�” 
. But

then this factor is cancelled by the same factor in the numerator. So the only poles when we
expand the ���

-contour are at

���
=

�i − p

q�i
,

which comes from the factor f��i ,��a
� in the denominator when i���.

We show that the integral with respect to �i of the residue at this pole equals zero. When we
make the substitution ���

→ ��i− p� /q�i, we find that ���i�+�����
� becomes analytic at �i=0. As for

the first quotient in the integrand, each factor f having ���
as one of its variables is on the order of

�i
−1 as �i→0. There are N−1 such factors in the numerator and N−2 in the denominator �since we

do not include the factor f��i ,��a
� that gave rise to the pole�. Thus, this quotient is O��i

−1�. The
residue of 1 / f��i ,��a

� at the pole is 1 /q�i, so these combine to give the power �i
−2. As for the

product of powers of the variables at the end of the integrand, when i�” 
, the product of those
involving �i is


 �i − p

q�i
�x�

�i
xm
 �i − p

q�i
�−y��

�i
−yi−1 = O��i

−x�+xm+y��
−yi� = O��i

2�

since x��xm and i���. Thus, the integrand is analytic inside Cr and so its integral is zero. If
i�
, then i=� with ��. �Otherwise, the factor f���

,���
� in the denominator is cancelled by

the same factor in the numerator.� Then the exponent xm above is replaced by x and x�x�.
We have shown that we may expand the ���

-contour to CR. Next we expand the ��
-contour

where � is the second-largest element of 
. The only difference from what went before is that
there could be a pole at
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��
=

p

1 − q���

coming from the factor f���
,���

� in the denominator. However, ���
�CR, and if R is large enough,

the pole would lie inside Cr and so would not be passed in the expansion of the ��
-contour. Thus,

we may expand the ��
-contour to CR

Continuing in this way we see that all the ��-contours with ��
 may be taken to be CR.
Step 2. Next we expand the �i-contours with i�” 
, and when we do this we encounter poles at

�i=1 as well as those coming from the first quotient in the integrand. As above, the latter poles
will not contribute, but those from �i=1 will. An application of Lemma 3.1 of Ref. 24 will tell us
the result.

We restate the lemma to make it compatible with the present notation. Let T be a finite set of
indices and let

g = g��i�i�T

be a function that is analytic for all �i�0. Assume that for i�k

g��i→��k−p�/q�k
= O��k� �6�

as �k→0, uniformly when all the � j with j� i ,k are bounded and bounded away from zero. For
S�T denote by gS the function obtained from g by setting all �i with i�” S equal to 1. �In particular,
g=gT.� Define

IS��� = 	
i�j

i,j�S

� j − �i

f��i,� j�
gS���

	i�S�1 − �i�
.

Then when p ,q�0,

�
Cr

�T�
IT���	

i�T

d�i = �
S�T

���S,T�−�S� q�S���S�−1�/2

p�T���T�−1�/2 �
CR

�S�
IS���	

i�S

d�i, �7�

where R is so large that all the zeros of the denominators lie inside CR. �When S is empty, the
integral on the right side is interpreted as g�1, . . . ,1�.� Here, �= p /q and

��S,T� = # ��i, j�:i � S, j � T,i 	 j� .

We apply this with T=
c and

g��i�i�
c = 
1 − 	
i�
c

�i� 	
i,j�
c

�i
xm−yi−1e�i�
c ���i�t

� �
CR

�
�

	i�
,j�” 
 f��i,� j� 	i�j f���i
,��j

�

	i�j, i or j�
 f��i,� j�
	
i�m

��i

xi 	
i�


�i
−yi−1e�i�
���i�t 	

i�


d�i.

The integral on the left side of �7� is then the integral in Theorem 1. That g is analytic for �i

�0 despite the denominator in the integrand follows from the fact that R may be arbitrarily large.
The argument leading to �6� is like the analogous argument in step 1. There are m−1 factors on the
order of �k

−1 in both the numerator and denominator of the quotient in the integrand, and the
product �i

−yi−1�k
−yk−1 becomes


 �k − p

q�k
�−yi−1

�k
−yk−1 = O��k�

since i�k.
So the lemma applies. If �S�=k, then the coefficient on the right side of �7� is
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p−�N−m+1��N−m�/2���S,
c�−kqk�k−1�/2. �8�

However, there is another factor arising from

	i�
,j�” 
 f��i,� j�

	i�j, i or j�
 f��i,� j�

when any �k with k�
c \S is set equal to 1. This factor is

	i�
 f��i,1�
	k�j, j�
 f�1,� j� · 	i�k, i�
 f��i,1�

= 	
j�k
j�


f�� j,1�
f�1,� j�

= �− ��#�j�
:j�k�.

Hence, the total factor when �k with k�
c \S is set equal to 1 is

�− ����
,Sc�
c�. �9�

If we use the bilinearity of ��U ,V� in its two variables, and the easy fact that

��U,V� + ��V,U� = �U��V� + �U � V� ,

we see that

��
,Sc � 
c� = ��
,
c� − ��
,S� = � �i − m�m − 1�/2 + ��S,
� − �m − 1�k .

Thus �8� times �9� equals

p−�N−m+1��N−m�/2�− 1��i�m��i−i�+��S,
�−�m−1�k��i�m��i−i�+��S�−mkqk�k−1�/2,

where we have written ��S� for ��S ,
�+��S ,
c�=��S , �1,N��.
We replace each integral in the formula of Theorem 1 by the sum over S�
c we obtain using

�7�. The result is as follows.
Theorem 2: We have when q�0,

PY�xi�t� = xi,i = 1, . . . ,m� = �



S�
c

�− 1���S,
�−�m−1�ksgn 
��i�m��i−i�+��S�−mkqk�k−1�/2

� �
CR

¯�
CR

	i�
,j�S f��i,� j� 	i�j f���i
,��j

�

	i�j f��i,� j�

�
1 − 	
j�S

� j�	i�j, i,j�S �� j − �i�

	 j�S �1 − � j�
	
i�m

��i

xi 	
j�S

� j
xm 	

i

�i
−yi−1e�i���i�t 	

i

d�i.

The summation is over all sets S and �m−1�-tuples 
 disjoint from S. Here, k= �S� and in the
integrand indices that are not specified belong to S�
.

We assumed at first that p ,q�0 since that was required by Lemma 3.1 of Ref. 25. To obtain
the relation when p=0 by passing to the p→0 limit, we need to only observe that the power of �
in the coefficient is non-negative and that the integrand is continuous at p=0 when R�1.

IV. CONSECUTIVE PARTICLES

Here we find a formula for PY�xi�t�=xi , i=n , . . . ,m�. If we take the preceding formula and
sum over all x1 , . . . ,xn−1 with −��x1� ¯ �xn−1�xn, which we may do when R�1, the partial
product 	i�n��i

xi is replaced by
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���1
¯ ��n−1

�xn

���1
− 1����1

��2
− 1� ¯ ���1

¯ ��n−1
− 1�

. �10�

Our �m−1�-tuple 
 may be written in the obvious way as �
1 ,
2�, where


1 = ��1, . . . ,�n−1�, 
2 = ��n, . . . ,�m−1� . �11�

Until now we did not differentiate in the notation between an ordered set and the correspond-
ing unordered set. Which was meant was always clear from the context. Now we introduce a
notation when we want to distinguish the two: for an ordered set 
, we denote by ��
� the
corresponding unordered set.

In the integrand in Theorem 2 the only factor that depends on 
 and not just on the set ��
�
is

	
i�j

f���i
,��j

� = 	
i�j�n

f���i
,��j

� 	
i�n,j	n

f���i
,��j

� 	
n�i�j

f���i
,��j

� .

The first factor depends on 
1, the second depends only on ��
1� and ��
2�, while the third
depends on 
2.

In Theorem 2 we are to sum over all sets S and all �m−1�-tuples 
 disjoint from S. Let us fix
S first and sum over all 
 disjoint from S. This sum over 
 is the sum over all 
1 and 
2 as in
�11�. We do this sum by first taking a fixed set S1 disjoint from S with �S1�=n−1 and summing
over all 
1 with ��
1�=S1. Then we must sum over S1 and, of course, 
2 �which is disjoint from
S1 and S� and S. To recapitulate: the summation in the statement of Theorem 2 may be replaced by

�
S,S1,
1,
2

,

where S and S1 run over all disjoint sets with �S1�=n−1, and 
1 and 
2 run over all �n−1�- and
�m−n�-tuples, respectively, satisfying

��
1� = S1, ��
2� � �S � S1�c.

With this notation the coefficient in Theorem 2 may be written as

�− 1���S�S1,
2�−�m−1�k�− 1���S1,
2�sgn 
1 sgn 
2���S�S1�
2�−m�m−1�/2−mkqk�k−1�/2.

Notice that 
1 appears here only in the factor sgn 
1. The sum of those terms involving 
1 as
distinguished from S1 is

�

1

sgn 
1 	
i�j�n

f���i
,��j

�
���1

¯ ��n−1
�xn

���1
− 1����1

��2
− 1� ¯ ���1

¯ ��n−1
− 1�

.

�Recall the factor �10�.� Identity �1.7� of Ref. 24 tells us that this sum equals ���1
¯��n−1

�xn times

q�n−1��n−2�/2
	i�j, i,j�S1

�� j − �i�

	 j�S1
�� j − 1�

= �− 1�n−1q�n−1��n−2�/2
	i�j, i,j�S1

�� j − �i�

	 j�S1
�1 − � j�

.

We write the last product here times the analogous product in the integrand in Theorem 2,
where S appears instead of S1, as

	i�j, i,j�S�S1
�� j − �i�

	 j�S�S1
�1 − � j�

�− 1���S1,S�

	i�S1,j�S�� j − �i�
.
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Putting all these things together and using ��S ,S1�+��S1 ,S�= �m−1�k, we obtain the follow-
ing.

Theorem 3: We have when q�0,

PY�xi�t� = xi,i = n, . . . ,m� = �
S,S1,
2

�− 1���S�S1,
2�+n−1

�sgn 
2���S�S1�
2�−m�m−1�/2−mkqk�k−1�/2+�n−1��n−2�/2

� �
CR

¯�
CR

	i�S1,j�S�
2
f��i,� j� 	i�
2,j�S

f��i,� j� 	n�i�j
f���i

,��j
�

	i�j
f��i,� j�

�
1 − 	
j�S

� j�	i�j, i,j�S�S1
�� j − �i�

	 j�S�S1
�1 − � j�

1

	i�S1,j�S �� j − �i�

� 	
i�S1

�i
xn 	

n�i�m

��i

xi 	
j�S

� j
xm 	

i

�i
−yi−1e�i���i�t 	

i

d�i.

The summation is over all disjoint sets S and S1 with �S1�=n−1 and �m−n�-tuples 
2 disjoint from
S�S1. Here, k= �S� and in the integrand indices that are not specified belong to S�S1�
2.

V. ONE PARTICLE

In this case n=m and so 
2 disappears, the first line of the right side becomes

�
S,S1

�− 1�m−1���S�S1�−m�m−1�/2−mkqk�k−1�/2+�m−1��m−2�/2,

and the factor

	
i�S1

�i
xn 	

n�i�m

��i

xi 	
j�S

� j
xm

becomes

	
i�S�S1

�i
xm.

Now we take a fixed set S3 with �S3�=m+k−1 and sum over all partitions S3= �S ,S1� with
�S�=k , �S1�=m−1. The only part of the sum that depends on S and S1 individually is

�
S,S1

	i�S1,j�Sf��i,� j�

	i�S1,j�S�� j − �i�
1 − 	
j�S

� j� .

If we observe that S is the complement of S1 in S3, we see that we can apply identity �1.9� of Ref.
24 �with S there S1 here, with m there m−1 here, and with N there m+k−1 here�, which tells us
that the sum equals

q�m−1�km + k − 2

m − 1
�

�

1 − 	

i�S3

�i� ,

where the �-binomial coefficient � N
n
�

� is defined by

N

n
�

�

=
�1 − �N��1 − �N−1� ¯ �1 − �N−n+1�

�1 − ���1 − �2� ¯ �1 − �n�
.

Hence, after some algebra, our formula becomes
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Theorem 4: We have when q�0,

PY�xm�t� = xm� = �− 1�m−1�m�m−1�/2 �
�S3�	m

���S3�−m�S3� q�S3���S3�−1�/2 �S3� − 1

m − 1
�

�

� �
CR

¯�
CR

	
i�j

� j − �i

f��i,� j�
1 − 	i�i

	i�1 − �i�
	

i

�i
xm−yi−1e�i���i�t 	

i

d�i,

where all indices in the integrand run over S3.
This is exactly Theorem 5.2 of Ref. 24.

VI. SEMI-INFINITE CONFIGURATIONS

Here we show that Theorem 2 and, consequently, also Theorems 3 and 4, hold when Y is
semi-infinite on the right, if we take the sums over finite sets S�
c. It follows from the fact that
ASEP is a Feller process15 that the probability for the semi-infinite initial configuration Y equals
the N→� limit of the probability for the initial configuration �y1 , . . . ,yN�. Thus, we sum over only
those 
� �1,N� and those S� �1,N� in Theorem 2 and then pass to the limit. The limit will be the
sum over all 
 and �finite� S if the resulting series is absolutely convergent. This we now show
using the fact that R may be taken arbitrarily large.

Consider the integrand first. Each f factor is on the order of R2 for large R, while each �i is on
the order of R. Combining the estimates for all factors in the integrand other than 	i�i

−yi−1 gives,
after a little algebra, O�R−k2/2+O�k��. �Recall that m is fixed.� Since each yi	y1+ i−1, we have
	i�i

−yi−1=O�R−��
�S�+O�k��. Thus, the integrand is

O�R−k2/2−��
�S�+O�k�� .

Another factor Rk comes from the domain of integration, but this does not change the bound.
The coefficient on the right side of Theorem 2 has absolute value at most ���
�S�+O�k�. If we

take R��2, as we may, then this combined with the preceding bound gives

O�R−k2/2−��
�S�/2+O�k�� . �12�

This a bound for the summand in Theorem 2. Now we show that the sum of these over all 

and S is finite. For any s, we have

#��
,S�:��
 � S� = s� � 2ssm−1.

The reason is that if ��
�S�=s, then the largest element in 
�S is at most s. So there are at
most 2s choices for S, and having chosen S, there are at most sm−1 choices for 
. It follows that the
sum of �12� over all �
 ,S� is at most a constant times

�
k,s	0

2ssm−1R−k2/2−s/2+O�k�,

which is finite when R�4.
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