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Painlevé Functions in Statistical Physics

by

Craig A. Tracy and Harold Widom

Abstract

We review recent progress in limit laws for the one-dimensional asymmetric simple ex-
clusion process (ASEP) on the integer lattice. The limit laws are expressed in terms of a
certain Painlevé II function. Furthermore, we take this opportunity to give a brief survey
of the appearance of Painlevé functions in statistical physics.
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“It was a pleasant surprise to me that such special functions actually appeared in concrete
problems of theoretical physics. . . ”

Mikio Sato [4]

§1. Introduction

The appearance of Painlevé functions in the 2D Ising model is well-known [37, 64].
Equally well-known is that this provided one impetus for M. Sato, T. Miwa and
M. Jimbo [48] to develop their theory of holonomic quantum fields which connects
the theory of isomondromy preserving deformations of linear differential equations
with the n-point correlation functions of the 2D Ising model.1

The general consensus in the field of “exactly solvable models” is that corre-
lation functions are expressible in terms of Painlevé functions only in models that
are free fermion models. More precisely, one expects that for the appearance of
functions of the Painlevé type, it is necessary for the underlying model or process
to be a determinantal process in the sense of Soshnikov [52]. In addition to the 2D
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Ising model, some notable examples where Painlevé functions arise in correlation
functions include the one-dimensional impenetrable Bose gas [21, 28, 33, 34], the
Ising chain in a tranverse field [41], the distribution functions of random matrix
theory [1, 5, 16, 22, 28, 56, 57, 58], Hammersley’s growth process [7, 8], corner and
polynuclear growth models [9, 24, 29, 42, 43] and the totally asymmetric simple
exclusion process (TASEP) [12, 29, 44]. Universality theorems in random matrix
theory have extended the appearance of Painlevé functions to a wide class of ma-
trix ensembles [13, 17, 18, 19, 51].2 In recent developments [3, 45, 46, 47] Painlevé
II appears in the long time asymptotics of explicit formulas for the exact height
distribution for the KPZ equation [32] with narrow wedge initial condition.

As just noted, one does not expect Painlevé functions to arise in correlation
functions in models that are exactly solvable in the sense of Baxter [11] but are
not free fermion models, e.g. 6-vertex model, XXZ quantum spin chain, Baxter’s
8-vertex model. Having said that, the universality conjecture arising in the theory
of phase transitions suggests, for instance, that the scaling limit of a large class of
ferromagnetic 2D Ising models is the same as that of the Onsager 2D Ising model;
and hence, Painlevé functions are conjectured to appear (in the massive scaling
limit) in models outside of the class of exactly solvable models. This last statement
is substantiated by the developments in [3, 45, 46, 47].

In this paper we review recent progress [59, 60, 61, 62, 63] on the current
fluctuations in the asymmetric simple exclusion process (ASEP) on the integer
lattice Z [35, 36]. ASEP is in the class of Bethe Ansatz solvable models [23, 25]
but only for certain values of the parameters is ASEP a determinantal process
[29, 44, 49]. That ASEP is Bethe Ansatz solvable comes as no surprise once one
realizes that the generator of ASEP is a similarity (not unitary!) transformation
of the XXZ-quantum spin Hamiltonian [2, 50, 65]. Our main results relate the
limiting current fluctuations in ASEP for certain initial conditions to the TW
distributions F1 and F2 of random matrix theory [58, 59]. Both F1 and F2 are
expressible in terms of the same Hastings–McLeod solution of Painlevé II [20, 26]
(see §4.2).

§2. Master equation and Bethe Ansatz solution

Since its introduction in 1970 by F. Spitzer [53], the asymmetric simple exclusion
process (ASEP) has attracted considerable attention both in the mathematics and
physics literature due to the fact it is one of the simplest lattice models describing

2It is also worth noting that due to the close connection of random matrix theory to mul-
tivariate statistical analysis, these same distribution functions involving Painlevé functions are
now routinely used in data analysis [30, 31, 40].
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transport far from equilibrium. Recall [35, 36] that the ASEP on the integer lattice
Z is a continuous time Markov process ηt where ηt(x) = 1 if x ∈ Z is occupied at
time t, and ηt(x) = 0 if x is vacant at time t. Particles move on Z according to two
rules: (1) A particle at x waits an exponential time with parameter one, and then
chooses y with probability p(x, y); (2) If y is vacant at that time it moves to y,
while if y is occupied it remains at x. The adjective “simple” refers to the fact that
the allowed jumps are only one step to the right, p(x, x + 1) = p, or one step to
the left, p(x, x− 1) = q = 1− p. The totally asymmetric simple exclusion process
(TASEP) allows jumps only to the right (p = 1) or only to the left (p = 0).3 In
the mapping from the XXZ quantum spin chain, the anisotropy parameter ∆ of
the spin chain is related to the hopping probabilities p and q by

∆ =
1

2
√
pq
≥ 1,

the ferromagnetic regime of the XXZ spin chain.
We begin with a system of N particles and later take the limit N → ∞.

A configuration is specified by giving the location of the N particles. We denote
by Y = {y1, . . . , yN} with y1 < · · · < yN the initial configuration of the process
and write X = {x1, . . . , xN} ∈ ZN . When x1 < · · · < xN then X represents
a possible configuration of the system at a later time t. We denote by PY (X; t)
the probability that the system is in configuration X at time t, given that it was
initially in configuration Y .

Given X = {x1, . . . , xN} ∈ ZN we set

X+
i = {x1, . . . , xi−1, xi + 1, xi+1, . . . , xN},

X−i = {x1, . . . , xi−1, xi − 1, xi+1, . . . , xN}.

The master equation for a function u on ZN × R+ is

(1)
d

dt
u(X; t) =

N∑
i=1

(p u(X−i ; t) + q u(X+
i ; t)− u(X; t)),

and the boundary conditions are, for i = 1, . . . , N − 1,

(2) u(x1, . . . , xi, xi + 1, . . . , xN ; t)

= pu(x1, . . . , xi, xi, . . . , xN ; t) + qu(x1, . . . , xi + 1, xi + 1, . . . , xN ; t).

The initial condition is

(3) u(X; 0) = δY (X) when x1 < · · · < xN .

3It is TASEP that is a determinantal process.
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The basic fact is that if u(X; t) satisfies the master equation, the boundary condi-
tions, and the initial condition, then PY (X; t) = u(X; t) when x1 < · · · < xN . This
is, of course, one of Bethe’s basic ideas (see, e.g., [10]): incorporate the interaction
(in this case the exclusion property) into the boundary conditions (2) of a free
particle system (1).

Recall that an inversion in a permutation σ is an ordered pair {σ(i), σ(j)} in
which i < j and σ(i) > σ(j). We define [65]

(4) Sαβ = −p+ qξαξβ − ξα
p+ qξαξβ − ξβ

and then
Aσ =

∏
{Sαβ : {α, β} is an inversion in σ}.

We also set
ε(ξ) = p ξ−1 + q ξ − 1.

In the next theorem we shall assume p 6= 0, so the Aσ are analytic at zero in all
the variables. Here and later all differentials dξ incorporate the factor (2πi)−1.

Theorem 2.1. We have

(5) PY (X; t) =
∑
σ∈SN

∫
Cr
· · ·
∫
Cr
Aσ
∏
i

ξ
xi−yσ(i)−1

σ(i) e
P
i ε(ξi) t dξ1 · · · dξN ,

where Cr is a circle centered at zero with radius r so small that all the poles of the
integrand lie outside Cr.

The proof that PY (X; t) satisfies (1) is immediate and the fact it satisfies
the boundary conditions (2) is exactly the same argument as in the XXZ problem
[65]. The difficulty lies in showing (5) satisfies the initial condition (3). Observe
that the term in (5) corresponding to the identity permutation does satisfy the
initial condition. Thus the proof will be complete once one demonstrates that the
remaining n!−1 terms sum to zero at t = 0. This is indeed the case and the result
depends crucially upon the choice of the contours Cr [59]. For the special case of
TASEP, p = 1, it follows from (4) and (5) that the right-hand side of (5) can be
expressed as an N ×N determinant as first obtained in [49].

We note that unlike the usual applications of Bethe Ansatz, it is not the spec-
tral theory of the operator that is of interest but rather the transition probability
PY (X; t). Thus there are no Bethe equations in our approach; and hence, no issues
concerning the completeness of the Bethe eigenfunctions. Indeed, there is not even
an Ansatz in this approach! We remark that this result extends with only minor
modifications to the solution Ψ(x1, . . . , xN ; t) of the time-dependent Schrödinger
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equation with XXZ Hamiltonian where the xi’s denote the location of the N “up
spins” in a sea of “down spins” on Z.

§3. Marginal distributions and the large N limit

We henceforth assume q > p so there is a net drift of particles to the left. Here
we consider two different initial conditions. The first, called step initial condition,
starts with particles located at Z+ = {1, 2, . . .}. The second initial condition is
the step Bernoulli initial condition: each site in Z+, independently of the others,
is initially occupied with probability ρ, 0 < ρ ≤ 1; all other sites are initially
unoccupied. In each of these cases it makes sense to speak of the position of themth
particle from the left at time t, xm(t), and its distribution function P(xm(t) ≤ x).
It is elementary to relate P(xm(t) ≤ x) to the distribution of the total current T
at position x at time t,

T (x, t) := number of particles ≤ x at time t;

namely,

P(T (x, t) ≤ m) = 1− P(xm+1(t) ≤ x).

For this reason we first concentrate on PY (xm(t) ≤ x) and only at the end translate
the results into statements concerning T . (The subscript Y denotes the initial
configuration.)

Now for finite Y ,

PY (xm(t) = x)

=
∑

x1<···<xm−1<x<xm+1<···<xN

PY (x1, . . . , xm−1, x, xm+1, . . . , xN ; t).

Since the contours Cr in (5) have r � 1, the sums over xm+1, . . . , xN can be inter-
changed with the integrations in variables ξxjσ(j), m+1 ≤ j ≤ N , and the geometric
series summed. To perform the sums over x1, . . . , xm−1, the contours in the ξxjσ(j)

variables, 1 ≤ j ≤ m−1, must be deformed out beyond the unit circle and then the
sums can be interchanged with the integrations. This deformation beyond the unit
circle can be done in such a way as not to encounter any poles of the integrand.
However, upon deforming these contours back to Cr (after the geometric series are
summed) one does encounter poles; and one finds some remarkable cancellations:
only the residues from the poles at ξi = 1 are nonzero. The result is a sum over all
subsets of S of {1, . . . , N} with |Sc| < m whose summands involve |S|-dimensional
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integrals with contours Cr.4 However, this resulting expression for PY (xm(t) = x)
is not so useful for taking the N →∞ limit.

The next step is to expand the contours to CR, R � 1. It is then possible to
take the N → ∞ limit in the resulting expressions. The details [59] are involved
and they depend crucially upon some algebraic identities which we now state.

§3.1. Three identities

Let
f(i, j) := p+ qξiξj − ξi.

Identity #1:

(6)
∑
σ∈SN

sgn(σ)

∏
i<j f(σ(i), σ(j))

(ξσ(1) − 1)(ξσ(1)ξσ(2) − 1) · · · (ξσ(1)ξσ(2) · · · ξσ(N) − 1)

= qN(N−1)/2

∏
i<j(ξj − ξi)∏
j(ξj − 1)

.

Identity #2: For N ≥ m+ 1,

(7)
∑
|S|=m

∏
i∈S
j∈Sc

f(i, j)
ξj − ξi

(
1−

∏
j∈Sc

ξj

)
= qm

[
N − 1
m

]
(1−

N∏
j=1

ξj)

In (7) the sum runs over all subsets S of {1, . . . , N} with cardinality m, and
Sc denotes the complement of S in {1, . . . , N}. Here

[
N
m

]
is a slightly modified

τ -binomial coefficient, τ := p/q,

[N ] :=
pN − qN

p− q
, [0] := 1,

[N ]! := [N ] [N − 1] · · · [1],[
N

m

]
:=

[N ]!
[m]![N −m]!

= qm(N−m)

[
N

m

]
τ

where
[
N
m

]
τ
is the usual τ -binomial coefficient. We define

[
N
m

]
τ

= 0 for m < 0. In
proving (7) we first proved a simpler identity:

Identity #3: ∑
|S|=m

∏
i∈S
j∈Sc

f(i, j)
ξj − ξi

=
[
N

m

]
.

We believe that these identities suggest a deeper mathematical structure that is
yet to be discovered.

4This is Theorem 5.1 in [59].
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§3.2. Final expression for P(xm(t) ≤ x) for step Bernoulli
initial conditions

We denote by Pρ the probability measure for ASEP with step Bernoulli initial
conditions. For ρ = 1 the measure is ASEP with step initial condition. Let

cm,k := (−1)m qk(k−1)τm(m−1)/2τ−km
[
k − 1
m− 1

]
τ

.

Observe that cm,k = 0 when m > k.

Theorem 3.1 ([59, 63]). Assume q > p. Then

Pρ(xm(t) ≤ x) =
∑
k≥1

qk(k−1)/2τk(k+1)/2

k!
cm,k

∫
CR
· · ·
∫
CR

∏
1≤i 6=j≤m

ξj − ξi
f(i, j)

(8)

×
∏
i

ρ

ξi − 1 + ρ(1− τ)

m∏
i=1

ξxi e
tε(ξi)

1− ξi
dξi.

The contour CR, a circle of radius R� 1 centered at the origin, is chosen so that
all (finite) poles of the integrand lie inside the contour.

We remark that for TASEP, p = 0, the above sum reduces to one term; and
this term can be shown to be equal to an m×m determinant.

The final simplification results if we use the identity [60]

det
(

1
f(i, j)

)
1≤i,j≤k

= (−1)k(pq)k(k−1)/2
∏
i 6=j

ξj − ξi
f(i, j)

∏
i

1
(1− ξi)(qξi − p)

in (8) and recognize the summand, a k-dimensional integral, as the coefficient of
λk in the Fredholm expansion of det(I − λKρ) where Kρ acts on functions on CR
by

f(ξ) 7→
∫
CR
Kρ(ξ, ξ′)f(ξ′) dξ′

where

(9) Kρ(ξ, ξ′) = q
ξxetε(ξ)

p+ qξξ′ − ξ
ρ(ξ − τ)

ξ − 1 + ρ(1− τ)
, τ =

p

q
.

Note that when ρ = 1, the case of step initial condition, the last factor in Kρ(ξ, ξ′)
equals one.

Since the coefficient of λk in the expansion of det(I − λKρ) is equal to

(−1)k

k!

∫
det(I − λKρ)

dλ

λk+1
,

this fact together with the τ -binomial theorem gives the final result for Pρ(xm(t)
≤ x).
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Theorem 3.2 ([59, 63]). Let Pρ denote the probability measure for ASEP with
step Bernoulli initial condition with density ρ and xm(t) denote the position of the
mth particle from the left at time t. Then

(10) Pρ(xm(t) ≤ x) =
∫
C

det(I − λKρ)∏m−1
j=0 (1− λτ j)

dλ

λ

where the contour C is a circle centered at the origin enclosing all the singularities
at λ = τ−j, 0 ≤ j ≤ m − 1 and Kρ is the integral operator whose kernel is given
by (9).

§4. Limit theorems

§4.1. KPZ scaling

The scaling limit that is of most interest is the KPZ scaling limit [32, 54]. In the
terminology here this scaling limit is

m→∞, t→∞ with σ = m/t ≤ 1 fixed.

As we shall see, the limiting distribution will depend upon the relative sizes of σ
and ρ2. For the moment we concentrate on the cases 0 < σ < ρ2 and σ = ρ2 with
0 < ρ ≤ 1. As in any central limit theorem, to obtain a nontrivial limit the x in
Pρ(xm(t) ≤ x) must also be scaled (this too is part of KPZ scaling). In anticipation
of the theorem we set

x := c1t+ c2t
1/3s

where the 1
3 is the famous KPZ universality exponent [32, 38] and

c1 := −1 + 2
√
σ, c2 := σ−1/6(1−

√
σ)2/3.

The two distribution functions that arise in the KPZ scaling limit are defined in
the next section.

§4.2. Distributions F1 and F2

The distributions F1 and F2 can be defined by either their Fredholm determinant
representations or their representations in terms of a Painlevé II function. Here we
take the latter route. Let q denote the solution to the Painlevé II equation

q′′ = xq + 2q3

satisfying
q(x) ∼ Ai(x), x→∞,
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where Ai(x) is the Airy function. That such a solution exists and is unique was
proved by Hastings and McCleod [26].5 Then we have

F2(s) = exp
(
−
∫ ∞
s

(x− s)q(x)2 dx
)
,(11)

F1(s) = exp
(
−1

2

∫ ∞
s

q(x) dx
)
F2(s)1/2.(12)

The asymptotics of these distributions as x→∞ is straightforward given the large
x asymptotics of the Airy function; however, the complete asymptotic expansion as
x→ −∞ has only recently been given [6]. For high-accuracy numerical evaluation
of F1 and F2, it turns out that it is better to start with their Fredholm determinant
representations [15].

§4.3. Limit laws

The asymptotic analysis [61, 63] of the Fredholm determinant in the formula for
Pρ(xm(t) ≤ x) in (10) required the development of new methods since the operator
Kρ is not of the usual “integrable integral operator” form normally appearing in
random matrix theory [14, 27, 57]. The main point is that the kernel Kρ has
the same Fredholm determinant as a sum of two kernels; one has large norm but
fixed spectrum and its resolvent can be computed exactly, and the other is better
behaved [61].

We now state the results of this asymptotic analysis.

Theorem 4.1 ([61, 63]). When 0 ≤ p < q, γ := q − p,

lim
t→∞

Pρ
(
xm(t/γ)− c1t

c2t1/3
≤ s
)

= F2(s) when 0 < σ < ρ2,(13)

lim
t→∞

Pρ
(
xm(t/γ)− c1t

c2t1/3
≤ s
)

= F1(s)2 when σ = ρ2, ρ < 1.(14)

This theorem implies a limit law for the current fluctuations. Define

v = x/t, a1 = (1 + v)2/4, a2 = 2−4/3(1− v2)2/3.

Theorem 4.2. When 0 ≤ p < q, γ := q − p,

lim
t→∞

Pρ
(
T (vt, t/γ)− a1t

a2t1/3
≤ s
)

= 1− F2(−s) when −1 < v < 2ρ− 1,(15)

lim
t→∞

Pρ
(
T (vt, t/γ)− a1t

a2t1/3
≤ s
)

= 1− F1(−s)2 when v = 2ρ− 1, ρ < 1.(16)

5A modern account of Painlevé transcendents can be found in the monograph by Fokas et al.
[20].



370 C. A. Tracy and H. Widom

Table 1. The mean (µβ), variance (σ2
β), skewness (Sβ) and kurtosis (Kβ) of Fβ ,

β = 1, 2. The numbers are courtesy of F. Bornemann and M. Prähofer.

β µβ σ2
β Sβ Kβ

1 −1.206 533 574 582 1.607 781 034 581 0.293 464 524 08 0.165 242 9384

2 −1.771 086 807 411 0.813 194 792 8329 0.224 084 203 610 0.093 448 0876

For step initial condition with 0 < σ < 1 the limit laws are (13) and (15)
[61, 62]. When σ > ρ2 (or v > 2ρ − 1) the fluctuations are of order t1/2 and the
limiting distribution is Gaussian (see [63] for details).

For TASEP, p = 0, with step initial condition the limit law (15) was first
proved by Johansson [29]. For TASEP with step Bernoulli initial condition the
limit laws (15) and (16) were conjectured by Prähofer and Spohn [44] and proved
recently by Ben Arous and Corwin [12]. The fact that these limit laws remain
essentially identical (the only change is the factor γ in the time slot) is a very
strong statement of KPZ Universality. From the integrable systems perspective,
these results are, to the best of the authors’ knowledge, the first limit laws of
Bethe Ansatz solvable models (outside the class of determinantal models) where
the correlation functions are expressible in terms of Painlevé functions.

§5. Conclusions

Today Painlevé functions occur in many areas of theoretical statistical physics. In
the case of KPZ fluctuations there are now experiments [38, 55] on stochastically
growing interfaces where quantities such as the skewness and the kurtosis of Fβ
(see Table 1), as well as the distribution functions themselves, are compared with
experiment. In [55] K. Takeuchi and M. Sano conclude that their measurements
“. . . have shown without fitting that the fluctuations of the cluster local radius
asymptotically obey the Tracy–Widom distribution of the GUE random matrices.”
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