
J Stat Phys (2013) 150:1–12
DOI 10.1007/s10955-012-0686-4

The Bose Gas and Asymmetric Simple Exclusion Process
on the Half-Line

Craig A. Tracy · Harold Widom

Received: 11 September 2012 / Accepted: 21 December 2012 / Published online: 4 January 2013
© Springer Science+Business Media New York 2013

Abstract In this paper we find explicit formulas for: (1) Green’s function for a system of
one-dimensional bosons interacting via a delta-function potential with particles confined to
the positive half-line; and (2) the transition probability for the one-dimensional asymmetric
simple exclusion process (ASEP) with particles confined to the nonnegative integers. These
are both for systems with a finite number of particles. The formulas are analogous to ones
obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use
coordinate Bethe Ansatz appropriately modified to account for confinement of the particles
to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than
for the Bose gas.

Keywords Bose gas · Asymmetric simple exclusion process · Half-line · Bethe Ansatz

1 Introduction

In this paper we solve two closely related equations: (1) the time-dependent Schrödinger
equation for a system of one-dimensional bosons interacting via a delta-function poten-
tial with particles confined to the half-line R

+; and (2) the Kolmogorov forward equation
(master equation) for the one-dimensional asymmetric simple exclusion process (ASEP)
with particles confined to the nonnegative integers Z

+. These give explicit formulas for
(1) Green’s function for the δ-function gas problem on R

+; and (2) the transition prob-
ability for the half-line ASEP. In both cases this is for a system with a finite number of
particles.

We use coordinate Bethe Ansatz appropriately modified to account for confinement of
the particles to the half-line. Formulas derived previously for the line [12, 13] are sums over
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the permutation group SN . We shall find that in our formulas for the half-line the group
SN (Weyl group AN−1) gets replaced by the Weyl group BN . The fact that in the Bethe
Ansatz for particles interacting via a δ-function potential on the half-line the group AN−1

is replaced by the group BN goes back to Gaudin [5]. See also [7, 8] for further develop-
ments.

The Lieb-Liniger [10] δ-function gas model and the ASEP have recently attracted much
attention due to the close relationship of these models to exact solutions of the Kardar-Parisi-
Zhang (KPZ) equation. Regarding these connections with KPZ, we refer the reader to two
recent reviews [2, 3] and references therein.

Here is a description of the results. We first state the earlier results for R and Z and then
indicate the analogues for R

+ and Z
+. The detailed statements and proofs are in Sects. 2

and 3, respectively.
For the δ-function Bose gas on R, the Lieb-Liniger Hamiltonian for an N -particle system

is

H = −
N∑

j=1

∂2

∂x2
j

+ 2c
∑

j<k

δ(xj − xk).

One seeks solutions to the time-dependent Schrödinger equation

HΨ = i
∂Ψ

∂t
(1)

that satisfies the initial condition

Ψ (x1, . . . , xN ;0) =
∏

j

δ(xj − yj ) (2)

where y1 < · · · < yN . (From these we can produce the solution with arbitrary initial condi-
tion.) We consider the repulsive case c > 0.

The solutions are to be symmetric in the coordinates xj (the Bose condition). From this
one sees that it is enough to solve (1) in the region x1 < · · · < xN , subject to the boundary
conditions

(
∂

∂xj+1
− ∂

∂xj

)
Ψ |xj+1=xj

= cΨ |xj+1=xj
. (3)

A solution was found in [13], and was given as the sum over the permutation group SN

of multiple integrals.1 Specifically, define

S(k) = −c − ik

c + ik
, ε(k) = k2. (4)

For σ ∈ SN an inversion in σ is an ordered pair (σ (i), σ (j)) in which i < j and σ(i) > σ(j).
We set

Aσ =
∏{

S(ka − kb) : (a, b) is an inversion in σ
}
. (5)

1Lieb and Liniger [10] consider the eigenvalue problem for H defined on the lattice [−L,L] with periodic
boundary conditions. The Lieb-Liniger eigenfunctions are expressed as a sum of N ! terms (Bethe Ansatz) and
the parameters kj satisfy certain transcendental equations (the Bethe equations). In [13] a Green’s function
for (1) is computed on the line R and the parameters kj are now integration variables. There are no Bethe
equations in [13], but the solution is of Bethe Ansatz form.
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The result was that

Ψy(x; t) =
∑

σ∈SN

∫

R

· · ·
∫

R

Aσ

N∏

j=1

eikσ(j)xj

N∏

j=1

e−ikj yj −it
∑

j ε(kj ) dk1 · · ·dkN (6)

solves (1) and satisfies the initial condition (2) and boundary conditions (3).2

In the asymmetric simple exclusion process, particles are at integer sites on the line. Each
particle waits exponential time, and then with probability p it moves one step to the right if
the site is unoccupied, otherwise it does not move; and with probability q = 1 − p it moves
one step to the left if the site is unoccupied, otherwise it does not move. For N -particle
ASEP a possible configuration is given by

X = {x1, . . . , xN }, x1 < · · · < xN (xi ∈ Z).

The xi are the occupied sites. Denote by PY (X; t) the probability that at time t the system
is in configuration X given that initially it was in configuration

Y = {y1, . . . , yN }.
The probability PY (X; t) is the solution of the differential equation

d

dt
u(X; t) =

N∑

i=1

[
pu(xi − 1)

(
1 − δ(xi − xi−1 − 1)

) + qu(xi + 1)
(
1 − δ(xi+1 − xi − 1)

)

− pu(xi)
(
1 − δ(xi+1 − xi − 1)

) − qu(xi)
(
1 − δ(xi − xi−1 − 1)

)]
(7)

that satisfies the initial condition

u(X;0) = δY (X). (8)

(In the ith summand in (7) entry i is displayed and entry j is xj when j �= i. Any δ-term
involving x0 or xN+1 is replaced by zero.)

Equation (7) holds if u satisfies

d

dt
u(X; t) =

N∑

i=1

[
pu(xi − 1) + qu(xi + 1) − u(xi)

]
(9)

for all x1, . . . , xN , and the boundary conditions

pu(xi, xi) + qu(xi + 1, xi + 1) − u(xi, xi + 1) = 0 (10)

for i = 1, . . . ,N − 1. (Here entries i and i + 1 are displayed.) One sees this by subtracting
the right sides of (7) and (9).

The conclusion is that if a function u, defined for all X ∈ Z
N , satisfies (9) and (10), then

when restricted to the Weyl chamber x1 < · · · < xN it satisfies (7).
The solution of (7) and (8) was found in [12, 14], and was given as the sum over SN of

multiple integrals. We now define

S
(
ξ, ξ ′) = − p + qξξ ′ − ξ

p + qξξ ′ − ξ ′ , ε(ξ) = pξ−1 + qξ − 1, (11)

Aσ =
∏{

S(ξa, ξb) : (a, b) is an inversion in σ
}
. (12)

2All integrals over R are given the factor (2π)−1.
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The result [12, Theorem 2.1] was that if q �= 0 then3

PY (X; t) =
∑

σ∈SN

∫

CN

Aσ (ξ)
∏

i

ξ
xi

σ (i)

∏

i

(
ξ

−yi−1
i eε(ξi )t

)
dξ1 · · ·dξN . (13)

Here C is a circle about zero which is so large that the S-factors are analytic for the ξi inside
and on C .4

To know that the solution given by the right side of (13) is actually the probability, we
need uniqueness. This solution satisfies |u(X; t)| = O(R

∑ |xi |) for some R, uniformly for
bounded t . A solution with this bound and zero at t = 0 is identically zero: The operator
L given by the right side of (7) is bounded on the space of functions v(X) with norm
supX |v(X)|R−∑ |xi |. The operators e±tL are well-defined and (7) gives de−tLu/dt = 0.
Therefore e−tLu is constant, and therefore zero, and applying etL gives u = 0. A different
argument, pointed out to us by a referee, is in [1].

We shall show that for the δ-function Bose gas and ASEP on the half-line, both suitably
interpreted, there are formulas analogous to (6) and (13). Instead of the sums being taken
over SN they are taken over the Weyl group BN , which is most conveniently interpreted here
as the group of signed permutations. These are functions σ : [1,N ] → [−N,−1] ∪ [1,N ]
such that |σ | is a permutation in the usual sense.5

An inversion in BN is defined to be a pair (±σ(i), σ (j)) with i < j such that
±σ(i) > σ(j). For example, if σ = (−3,1,−2) then the inversions are (3,1), (3,−2),

(−1,−2), and (1,−2).
In our final formulas, for the analogues of (5) and (12) we will define ka = −k−a and

ξa = τ/ξ−a when a < 0. (Here τ = p/q .) There will be also be extra factors required, to
take account of the behavior at zero. They are given in formulas (15) and (21) below. Just as
the proof for the Bose gas on R was more straightforward than for ASEP on Z, so will the
proof for the Bose gas on R

+ be more straightforward than for ASEP on Z
+.

After submission of this manuscript, Gueudre and Le Doussal [6] analyzed the KPZ
equation on the half-line with droplet initial conditions (equivalently, a directed polymer
problem in the continuum in the presence of a hard wall) using a combination of Bethe
Ansatz and the replica method. They find that the height function of KPZ (equivalently the
free energy of the directed polymer model) converges to F4, the GSE largest eigenvalue
distribution [11]. One expects this same scaling limit for half-line ASEP, but this seems
difficult to prove from our formulas.

2 Bose Gas on the Half-Line

Here in Eq. (1), the initial condition (2), and the boundary conditions (3) we assume that
0 < x1 < · · · < xN , and in the initial condition we assume that 0 < y1 < · · · < yN . The half-
line restriction includes the hard-wall boundary condition

Ψ (0+, x2, . . . , xN ; t) = 0. (14)

3All integrals over C are given the factor (2πi)−1.
4The assumptions were actually that p �= 0 and that C was so small that the S-factors were analytic for the ξi
inside and on C . That it also holds for q �= 0 and C large was explained in the remark after [12, Lemma 2.4].
5These can be identified in an obvious way with bijections σ : [−N,N ] → [−N,N ] satisfying σ(−i) =
−σ(i). From this the group structure of BN is clear.
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For this half-line case we define

Aσ := (−1)#{i:σ(i)<0} ×
∏

inversions (a,b)

S(ka − kb). (15)

Recall that the inversions are those in BN and we define ka = −k−a when a < 0.

Theorem The function

Ψy(x; t) =
∑

σ∈BN

∫

R

· · ·
∫

R

Aσ

N∏

j=1

eikσ(j)xj

N∏

j=1

e−ikj yj −itε(kj ) dk1 · · ·dkN (16)

solves Eq. (1), with initial condition (2) and boundary conditions (3) and (14).

Proof It is easy to see that (16) satisfies Eq. (1). This is true no matter how the Aσ are
defined. Then, as in [13], the boundary conditions (3) will be satisfied if for all σ ∈ BN ,

ATiσ

Aσ

= S(kσ(i+1) − kσ(i)), (17)

where Ti interchanges the values of σ(i) and σ(i + 1).
We first show that these are satisfied by

A0
σ :=

∏

inversions (a,b)

S(ka − kb).

The only things that can change when we apply Ti to σ are the inversions due to a pair
(σ (i), σ (i + 1)). In the following table we list all possibilities for such pairs, then the order-
ing of the absolute values of the constituents, then the inversions they give rise to, then the
inversions for the pair we get after switching the entries (i.e., applying Ti ), then the product
of the S-factors coming from the second set of inversions divided by the product of the S-
factors coming from the first set of inversions. In the table, we have a, b > 0.

pair ordering inversions inversions after switch ratio of S-factors

a, b a < b (b, a) S(kb − ka)

a, b a > b (a, b) S(ka − kb)−1

−a, b a < b (b,−a) S(kb + ka)

−a, b a > b (a, b) (b,−a), (−b,−a) S(kb + ka)

a, −b a < b (a,−b), (−a,−b) (b, a) S(ka + kb)−1

a, −b a > b (a,−b) S(ka + kb)−1

−a, −b a < b (−a,−b), (a,−b) (b,−a) S(kb − ka)−1

−a, −b a > b (a,−b) (−b,−a), (b,−a) S(ka − kb)

If we use S(k)−1 = S(−k) we deduce that (17) is satisfied by the A0
σ in all cases.

Relations (17) also hold for the Aσ since they hold for the A0
σ and the Ti have no effect

on the first factor in (15). Thus we have (3).
Now we show that (14) also holds. Pair σ and σ ′ if σ ′(1) = −σ(1) and σ ′(i) = σ(i) for

i > 1. The inversions for σ and σ ′ are the same, so A0
σ = A0

σ ′ . Since the number of negative
numbers in the ranges of σ and σ ′ differ by one, we have Aσ +Aσ ′ = 0 for each pair (σ,σ ′).
When x1 = 0 the remaining factors in the integrands in (6) are the same for σ and σ ′, so the
sum of the two integrands equals zero. Thus (14) holds.
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It remains to verify the initial condition (2). It is enough to show that

∫

R

· · ·
∫

R

Aσ

N∏

j=1

eikσ(j)xj

N∏

a=1

e−ikaya dk1 · · ·dkN = 0

when σ is not the identity permutation. We know from [13, Sect. 2.2] that this is true when all
σ(i) > 0, so we may assume this is not the case. Let −b = σ(j) be the most negative value
of σ . Then the only inversions involving ±b are of the form (a,−b) or (b, a). Therefore all
S-factors involving kb are of the form S(kb ± ka). The other factors involving kb combine
as e−ikb(xj +yb). Since S is analytic in the lower half-plane and xj , yb > 0, integration with
respect to kb gives zero. Thus, (2) is satisfied. �

3 ASEP on the Half-Line

Here particles are restricted to the nonnegative integers Z+, where probabilities for the sites
x ∈ Z

+ are as before while a particle at 0 hops to the right with probability p (if site 1 is
unoccupied) and stays at 0 with probability q . We assume q �= 0.

Now in the i = 1 term on the right side of (7) the first and last summands have the factor
1−δ(x1), because a particle cannot move left from 0. This equation would hold if u satisfied
(9) and (10) as before, and in addition the boundary condition

u(0, x2, . . . , xN) − τu(−1, x2, . . . , xN) = 0. (18)

With S(ξ, ξ ′) defined by (11), we expect an analogue of (13) where the sum is over BN

and the analogue of the Aσ would contain factors S(ξa, ξb) with (a, b) an inversion in σ .
Recall that we use

ξ−a = τ/ξa, (19)

where τ = p/q . But there is a difficulty: since

S
(
ξ, τ/ξ ′) = ξ + ξ ′ − p−1ξξ ′

ξ + ξ ′ − q−1
,

a factor S(ξa, ξb) has singularities on the contours when a > 0 and b < 0 since
C ∩ (q−1 − C) �= ∅.6 This problem is avoided if the ξa run over circles with center 1/2q

and different radii. However, the argument that follows requires that the domain of integra-
tion be symmetric in the ξa . Therefore we average over all choices of radii for the ξa . To be
precise, fix R1 < · · · < RN with the Ra large, and denote by Ca the circle with center 1/2q

and radius Ra . We take as our domain of integration
⋃

μ∈SN

Cμ(1) × · · · × Cμ(N). (20)

We now define

Aσ =
∏

σ(i)<0

r(ξσ(i)) ×
∏

inversions (a,b)

S(ξa, ξb), (21)

6Inside small contours, which we may take in (13), there will be no singularities. But if we take small contours
in (22) below the initial condition (8) will no longer be satisfied, even when N = 1, as is easily seen from
(23). That explains the large contours.
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where

r(ξ) := − 1 − ξ

1 − τξ−1
.

Theorem For ASEP on the half-line we have

PY (X; t) = 1

N !
∑

σ∈BN

∫
· · ·

∫
Aσ (ξ)

∏

i

ξ
xi

σ (i)

∏

i

(
ξ

−yi−1
i eε(ξi )t

)
dξ1 · · ·dξN, (22)

where Aσ is given by (21) and the domain of integration by (20).

Remark The ASEP on the half-line for N = 1 is one of the simplest examples of a birth-
and-death process.7 Formula (22) for the transition probability then,

Py(x; t) =
∫

C

[
ξx−y−1 −

(
1 − τ/ξ

1 − ξ

)
τ xξ−x−y−1

]
eε(ξ)t dξ, (23)

is a known one [9, Chap. 4] for this special case of the birth-and-death process where the
transition rates depend upon the states.

Proof We must verify Eq. (9), boundary conditions (10) and (18), and initial condition (8).
Each term on the right side of (22) satisfies (9) no matter what the Aσ are,8 so (9) holds

for the sum.
As in [12], boundary conditions (10) will be satisfied if the Aσ satisfy

ATiσ

Aσ

= S(ξσ(i+1), ξσ(i)). (24)

We first show these are satisfied by

A0
σ :=

∏

inversions (a,b)

S(ξa, ξb).

Using the easily verified identity

S(ξ−a, ξ−b) = S(ξb, ξa), (25)

we find that the analogue of the table in the last section is here

pair ordering inversions inversions after switch ratio of S-factors

a, b a < b (b, a) S(ξb, ξa)

a, b a > b (a, b) S(ξa, ξb)−1

−a, b a < b (b,−a) S(ξb, ξ−a)

−a, b a > b (a, b) (b,−a), (−b,−a) S(ξb, ξ−a)

a, −b a < b (a,−b), (−a,−b) (b, a) S(ξa, ξ−b)−1

a, −b a > b (a,−b) S(ξa, ξ−b)−1

−a, −b a < b (−a,−b), (a,−b) (b,−a) S(ξ−a, ξ−b)−1

−a, −b a > b (a,−b) (−b,−a), (b,−a) S(ξ−b, ξ−a)

7See, e.g., [4, Chap. 17].
8This uses the fact that ε(ξ) is invariant under the mapping ξ → τ/ξ . In the preceding section we used the
fact that ε(k) was invariant under k → −k.
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If we use

S
(
ξ, ξ ′)S

(
ξ ′, ξ

) = 1 (26)

we deduce that (24) is satisfied by the A0
σ in all cases.

The other boundary condition, (18), will be satisfied if
∑

σ∈BN

Aσ

(
1 − τξ−1

σ(1)

)∏

i>1

ξ
xi

σ (i) = 0.

By (19) this may be written
∑

σ∈BN

Aσ (1 − ξ−σ(1))
∏

i>1

ξ
xi

σ (i) = 0.

This will hold if, with σ and σ ′ paired as in the last section, so that σ ′(1) = −σ(1) and
σ ′(i) = σ(i) when i > 1, we have

Aσ ′

1 − ξσ ′(1)

= − Aσ

1 − ξσ(1)

.

We find that if we define Aσ as we did in (21) then this relation holds. (Observe that the
product of S-factors for σ and σ ′ are the same since they have the same inversions.) And
(24) continues to hold since the first factor in Aσ is not affected by the Ti .

We now know that the equation and boundary conditions are satisfied, and it remains to
verify the initial condition (8).

Denote by I (σ ) the σ -summand of the right side of (22) with t = 0. What we have to
show is that

∑

σ∈BN

I (σ ) = δY (X).

We know from [14] that the sum over σ ∈ SN equals δY (X). Therefore it remains to show
that

∑

σ∈BN \SN

I (σ ) = 0. (27)

Henceforth we consider only σ ∈ BN\SN , those for which some σ(j) < 0.
In the proof of this we use i when σ(i) > 0 and j when σ(j) < 0. We denote by |σ |

the permutation in SN defined by k → |σ(k)|. It is convenient to make the substitutions
ξa → ξa + 1/2q , so that the Ca become circles with center zero and the interesting part of
the integrand becomes

∏

i

ξ
xi−yσ(i)−1
σ(i)

∏

j

ξ
−xj −y|σ |(j)−2
|σ |(j)

∏

i<j

ξσ(i) ξ|σ |(j)

ξσ(i) + ξ|σ |(j)

∏

j<j ′

ξ|σ |(j)ξ|σ |(j ′)
ξ|σ |(j) + ξ|σ |(j ′)

. (28)

By “the interesting part” we mean enough to show the location of the poles when we expand
contours, and the orders of magnitude of the factors at infinity. (Observe that each r(ξσ(j))

is O(ξ−1
|σ |(j)) at infinity, which accounts for the exponents −2 instead of −1 in the second

product. It follows from identity (25) that an S-factor S(ξa, ξb) coming from an inversion
(a, b) has poles only when a > 0, b < 0, which accounts for the last two products.)

We shall integrate with respect to some of the variables by expanding their contours,
leaving us with lower-order integrals, the residues at the poles that are passed. After two
steps we will be left with subintegrals, i.e., these lower-order integrals, in which two of the
variables are equal.
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Here is how we do it. Keep in mind our use of the indices i and j . If j0 is the largest
j we integrate with respect to ξ|σ |(j0) by expanding its contour. We pass simple poles at the
−ξσ(i1) with i1 < j0 and at the −ξ|σ |(j1) with j1 < j0.9 After the integration the exponent of
ξσ(i1) is reduced by xj0 + y|σ |(j0) and so the resulting exponent is at most −2, since i1 < j0.
The resulting exponent of ξ|σ |(j1) is even more negative.

The residue at ξ|σ |(j0) = −ξσ(i1) we integrate with respect to ξσ(i1) by expanding its con-
tour. We pass simple poles at some −ξ|σ |(j1) with j1 �= j0, at some ξσ(i2) with i2 �= i1, and
at some ξ|σ |(j1) with j1 �= j0. Since after the first integration we have ξ|σ |(j0) = −ξσ(i1), after
this second integration we have ξ|σ |(j1) = ξ|σ |(j0) in the first case, ξσ(i1) = ξσ(i2) in the second
case, and ξ|σ |(j1) = ξσ(i1) in the third case.

The residue at ξ|σ |(j0) = −ξσ(j1) we integrate with respect to ξ|σ |(j1). We pass poles at some
−ξσ(i1), at some ξσ(i1), at some −ξ|σ |(j2) with j2 �= j0, j1, and at some ξ|σ |(j2) with j2 �= j0, j1.
Since after the first integration we have ξ|σ |(j0) = −ξσ(j1), after the second integration we
have ξ|σ |(j0) = ξσ(i1) in the first case, ξ|σ |(j1) = ξσ(i1) in the second case, ξ|σ |(j0) = ξ|σ |(j2) in
the third case, and ξ|σ |(j1) = ξ|σ |(j2) in the last case.

Thus after two integrations any nonzero I (σ ) is represented as the sum of subintegrals
in each of which two of the variables are equal. If we take two different σ we get different
subintegrals.

Consider a subintegral where, say, ξ|σ |(j1) = ξσ(i1), and correspondingly the subintegral
where ξ|σ ′ |(j1) = ξσ ′(i1). Both the domains of integration and the integrands are different for
the two. But consider the permutations

σ = (1, −2, 3, 5, −4), σ ′ = (1, −5, 3, 2, −4). (29)

All entries of σ and σ ′ are the same except for entries 2 and 4. With j1 = 2 and i1 = 4
we have σ(j1) = −2, σ(i1) = 5 and σ ′(j1) = −5, σ(i1) = 2. In both subintegrals ξ2 = ξ5.
If we interchange the variables ξ2 and ξ5 in the σ ′-integral then the domains of integration
become the same for the two, by the symmetry of the original domain of integration,10 and
the integrands themselves become almost the same; what is different are only the S-factors
arising from the two permutations.

This is quite general. For given a, b > 0, say that σ and σ ′ are (a, b)-paired if they agree
except for the positions of ±a and ±b, and the positive numbers a and b are interchanged.
The permutations in (29) are (2,5)-paired. For subintegrals in which the variables ξa and ξb

are equal, if permutations σ and σ ′ are (a, b)-paired then what is different in the integrands
after interchanging the variables ξa and ξb in the σ ′-integral are only the S-factors arising
from the two permutations. We shall show that when ξa = ξb the product of S-factors for σ

and σ ′ are negatives of each other. (This whether or not we interchange the variables.) Thus,
the sum of the two subintegrals equals zero.

In what follows we always assume that a < b and that ±a appears before ±b in σ .
(Otherwise we reverse the roles of σ and σ ′.) There are four situations, which depend on
which pair of signs occurs. We consider them separately and, with obvious notation, we
denote the four cases by (+,+), (−,−), (+,−), (−,+). In example (29) the sign pair is
(−,+).

In each case we show that when ξa = ξb the products of S-factors involving only ±a

and ±b are negatives of each other, and that for any c �= ±a,±b the products of S-factors

9Not all of these cases need actually arise. For example if σ takes only one negative value then the only poles
passed in this integration are at the −ξσ(i1) with i1 < j0. Also, for each i1 or j1 only some of the contours in
(20) contribute. See the discussion after the end of the proof.
10We explain this after the end of the proof.
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involving ξ±c and ξ±a or ξ±b are equal. This will give the desired result. If σ−1(c) is outside
the interval (σ−1(±a), σ−1(±b)) the S-factors in question are the same for σ and σ ′, so we
will always assume σ−1(c) is inside this interval. For each of the four cases there will be five
subcases, depending on the position of c relative to ±a and ±b, with the results displayed
in tables. The first column will tell where c is relative to ±a and ±b, the second column
will give the product of S-factors involving ξ±c and either ξ±a or ξ±b for σ , and the fourth
column will give the corresponding product for σ ′.

The case (+,+): The only S-factor involving only ±a and ±b is S(ξb, ξa) for σ ′. This
equals −1 when ξa = ξb . For c �= ±a,±b the table described above is

c < −b S(ξa, ξc)S(ξ−a, ξc)S(ξ−c, ξb) S(ξb, ξc)S(ξ−b, ξc)S(ξ−c, ξa)

−b < c < −a S(ξa, ξc)S(ξ−a, ξc) S(ξb, ξc)S(ξ−c, ξa)

−a < c < a S(ξa, ξc) S(ξb, ξc)

a < c < b 1 S(ξb, ξc)S(ξc, ξa)

c > b S(ξc, ξb) S(ξc, ξa)

If we use identity (25) in the second row and identity (26) in the fourth, we see that the two
columns are the same when ξa = ξb .

The case (−,−): Now the S-factors involving only ±a and ±b are S(ξa, ξ−b)S(ξ−a, ξ−b)

for σ and S(ξb, ξ−a) for σ ′. These are clearly negatives when ξa = ξb . For c �= ±a, ±b we
have the table

c < −b S(ξa, ξc)S(ξ−a, ξc)S(ξ−c, ξb) S(ξb, ξc)S(ξ−b, ξc)S(ξ−c, ξa)

−b < c < −a S(ξa, ξc)S(ξ−c, ξ−b)S(ξ−a, ξc)S(ξc, ξ−b) S(ξb, ξc)S(ξ−c, ξ−a)

−a < c < a S(ξa, ξc)S(ξc, ξ−b)S(ξ−c, ξ−b) S(ξb, ξc)S(ξc, ξ−a)S(ξ−c, ξ−a)

a < c < b S(ξ−c, ξ−b)S(ξc, ξ−b) S(ξb, ξc)S(ξc, ξ−a)

c > b S(ξc, ξ−b) S(ξc, ξ−a)

Using (25) and (26) we see that the two columns are the same when ξa = ξb .

The case (+,−): The S-factors involving only ±a and ±b are S(ξa, ξ−b)S(ξ−a, ξ−b) for
σ and S(ξb, ξ−a) for σ ′, which are again clearly negatives of each other when ξa = ξb . For
c �= ±a, ±b we have the table

c < −b S(ξa, ξc)S(ξ−a, ξc)S(ξ−c, ξ−b) S(ξb, ξc)S(ξ−b, ξc)S(ξ−c, ξ−a)

−b < c < −a S(ξa, ξc)S(ξ−a, ξc)S(ξc, ξ−b) S(ξ−c, ξ−a)

−a < c < a S(ξa, ξc)S(ξc, ξ−b)S(ξ−c, ξ−b) S(ξb, ξc)S(ξc, ξ−a)S(ξ−c, ξ−a)

a < c < b S(ξ−c, ξ−b)S(ξc, ξ−b) S(ξb, ξc)S(ξc, ξ−a)

c > b S(ξc, ξ−b) S(ξc, ξ−a)

Using (25) we see that the two columns are the same when ξa = ξb .
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The case (−,+): The only S-factor involving only ±a and ±b is S(ξb, ξa) for σ ′, which
equals −1 when ξa = ξb . For c �= ±a, ±b we have the table

c < −b S(ξa, ξc)S(ξ−a, ξc)S(ξ−c, ξb) S(ξb, ξc)S(ξ−b, ξc)S(ξ−c, ξa)

−b < c < −a S(ξ−a, ξc)S(ξa, ξc) S(ξ−c, ξa)S(ξb, ξc)

−a < c < a S(ξa, ξc) S(ξb, ξc)

a < c < b 1 S(ξb, ξc)S(ξc, ξa)

c > b S(ξc, ξb) S(ξc, ξa)

Using (25) and (26) we see that the two columns are the same when ξa = ξb .
To recapitulate, each nonzero I (σ ) with σ ∈ BN\SN is a sum of lower-order integrals

in each of which some ξa = ξb . Denote by I(a, b)(σ ) the sum of the lower-order integrals
for σ , if any, in which ξa = ξb . It follows from what we have shown that if we pair σ and
σ ′ if they agree except for the positions of ±a and ±b, and a and b are interchanged, then
I(a,b)(σ ) + I(a,b)(σ

′) = 0. Therefore
∑

σ

I(a,b)(σ ) = 0

for each (a, b). Summing over all pairs (a, b) gives (27). This completes the proof of the
theorem. �

We now expand on the discussion following (29), and show that after the variable change
the domains of integration for σ and σ ′ become the same. The initial domain of integration
(20), after the substitutions ξa → ξa + 1/2q , we write as

(ξa)a≤N ∈
⋃

μ∈SN

∏

a≤N

Cμ(a).

Now the Ca are circles with center zero. Because of the way the Ra were ordered, when we
integrate with respect to ξ|σ |(j0) by expanding its contours we pass a pole at −ξ|σ |(k1) (where
k1 equals an i or j ) only for those contours for which μ(|σ |(k1)) > μ(|σ |(j0)). This is a
condition on μ, and our new domain of integration is a union of contours over only those μ

satisfying this condition:

(ξ|σ |(
))
�=j0 ∈
⋃

μ(|σ |(k1))>μ(|σ |(j0))

∏


�=j0

Cμ(|σ |(
)).

Then we integrate with respect to ξ|σ |(k1), and pass a pole at ±ξ|σ |(k2) only for those contours
for which μ(|σ |(k2)) > μ(|σ |(k1)). The new domain of integration is a union over fewer μ:

(ξ|σ |(
))
�=j0,k1 ∈
⋃

μ(|σ |(k1))>μ(|σ |(j0))
μ(|σ |(k2))>μ(|σ |(k1))

∏


�=j0,k1

Cμ(|σ |(
)). (30)

If we do the same for σ ′ and take the same k1 and k2, the corresponding domain of
integration would be a union over different μ of different contours:

(ξ|σ ′ |(
))
�=j0,k1 ∈
⋃

μ(|σ ′|(k1))>μ(|σ ′|(j0))

μ(|σ ′|(k2))>μ(|σ ′|(k1))

∏


�=j0, k1

Cμ(|σ ′|(
)).
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Suppose σ and σ ′ are (a, b)-paired. Switching the variables ξa and ξb in σ ′ has the effect
of replacing this by

(ξ|σ |(
))
�=j0,k1 ∈
⋃

μ(|σ ′|(k1))>μ(|σ ′|(j0))

μ(|σ ′ |(k2))>μ(|σ ′ |(k1))

∏


�=j0, k1

Cμ(|σ ′ |(
)).

Let ν be the permutation in SN that interchanges a and b and leaves the rest of [1,N ] fixed.
If we replace μ by μν on the right side (which we may do since μ denoted a generic permu-
tation) then we obtain precisely (30). This is what we meant by the domains of integration
for σ and σ ′ becoming the same after the variable switch.
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