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Abstract In previous work the authors, using the Bethe Ansatz, found for the N -particle
asymmetric simple exclusion process on the integers a formula—a sum of multiple
integrals—for the probability that a system is in a particular configuration at time t given
an initial configuration. The present work extends this to the case where particles are of
different species, with particles of a higher species having priority over those of a lower
species. Here the integrands in the multiple integrals are defined by a system of relations
whose consistency requires verifying that the Yang-Baxter equations hold.

Keywords Asymmetric simple exclusion process · Multiple species · Bethe Ansatz ·
Yang-Baxter equations

1 Introduction

The one-dimensional asymmetric simple exclusion process (ASEP) [10, 14, 15] is one of
the simplest interacting particle systems with a single conservation law (density of parti-
cles) and as such is a basic model in both probability theory and nonequilibrium statistical
physics. Its importance is further enhanced by the fact that weakly asymmetric limits of
ASEP distributions can be interpreted as distributions of the height function which solves
the Kardar-Parisi-Zhang equation [3, 12, 17].

Recall that in the asymmetric simple exclusion process particles are at sites of the lat-
tice Z.1 Each particle waits exponential time, then with probability p it moves one step to
the right if the site is unoccupied, otherwise it stays put; and with probability q = 1 − p

1Many authors consider ASEP on the circle or the lattice [1,L] with open boundary conditions.
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it moves one step to the left if the site is unoccupied, otherwise it stays put. Each particle
does this independently of the other particles. For a finite number of particles this defines a
Markov process; and for infinitely many particles, with further work [15] this too defines a
Markov process.

In multispecies ASEP particles belong to different species, labeled 1,2, . . . ,M . Parti-
cles of a higher species have priority over those of a lower species.2 Thus, if a particle of
species s tries to move to a neighboring site occupied by a particle of species s ′ it is blocked
if s ≤ s ′, but if s > s ′ the particles interchange positions. Second-class particles were in-
troduced by Liggett [13] and subsequently developed and generalized by several authors
[1, 4, 5, 7–9, 20].

A configuration in ASEP with N particles is the set of occupied sites

X = {x1, . . . , xN } (x1 < · · · < xN).

Theorem 2.1 of [18] (with proof corrected in [19]) was a formula for PY (X; t), the proba-
bility that the system is in configuration X at time t , given that the initial configuration was
Y = {y1, . . . , yN }. It is a sum over the permutation group SN of multiple integrals. If p �= 0
then

PY (X; t) =
∑

σ∈SN

1

(2πi)N

∫

CN
r

Aσ (ξ)
∏

i

ξ
xi

σ (i)

∏

i

(
ξ

−yi−1
i eε(ξi )t

)
dNξ, (1)

where Cr is a circle about zero in C with sufficiently small radius r , where

ε(ξ) = pξ−1 + qξ − 1,

and where Aσ (ξ1, . . . , ξN) is given explicitly by (7) below.
In multispecies ASEP a configuration X is a pair (X,π) where X = {x1, . . . , xN } as

before and π is a function from [1,N ] to [1,M]. If the system is in configuration X then
the ith particle from the left is at xi and belongs to species πi . A special case is that of first-
and second-class particles, a first-class particle having priority over a second-class particle.
For example, if π = (1 2 2 2) the left-most particle is second-class and the other three are
first-class.

The purpose of this paper is to establish for multispecies ASEP a formula analogous
to (1) for PY (X ; t), the probability that the system is in configuration X = (X,π) at time t ,
given that the initial configuration is Y = (Y, ν). We show that there is an entirely analogous
formula,

PY (X ; t) =
∑

σ∈SN

1

(2πi)N

∫

CN
r

Aπ
σ (ξ)

∏

i

ξ
xi

σ (i)

∏

i

(
ξ

−yi−1
i eε(ξi )t

)
dNξ, (2)

but now the factors Aπ
σ are not (except in special cases) given explicitly. They are determined

by (21) and (22) below. Note that they also depend on ν.
In the next section we present the proof of (1) in some detail. This is partly because for

a correct proof one must refer to both [18] and [19], but also because we shall show how to
prove (2) by a modification of the proof of (1).

There is another difference here. The factors Aπ
σ must satisfy the family of identities de-

termined by (21) and (22) below. For ordinary ASEP there is no issue about the existence of

2This is sometimes called the M + 1 species model, empty sites behaving as particles of another species.
With our convention, a particle of species M is first-class, having priority over all others.
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a solution since it can be written down explicitly. But for multispecies ASEP we must show
that the identities define Aπ

σ consistently. If, as in [1], the multispecies ASEP is formulated
as a nested Bethe Ansatz problem, one is led to show that the Yang-Baxter equations [6, 21]
are satisfied. That the model has nontrivial solutions to the Yang-Baxter equations can be
traced back to early work of Perk and Schultz on multistate vertex models [16]. It was Al-
caraz et al. [2] who recognized that these Bethe Ansatz solvable multistate vertex models
lead to integrable stochastic models. In our formulation below, these consistency conditions
are stated in terms of representations of braid relations.

In the last section we focus on the explicit determination of some Aπ
σ , with particular

attention to the case of one second-class particle.

2 ASEP with One Species

2.1 Bethe Ansatz Solution

The probability PY (X; t) satisfies the differential equation (the master equation)

∂u

∂t
=

N∑

i=1

[
pu(xi − 1)

(
1 − δ(xi − xi−1 − 1)

) + qu(xi + 1)
(
1 − δ(xi+1 − xi − 1)

)

− pu(xi)
(
1 − δ(xi+1 − xi − 1)

) − qu(xi)
(
1 − δ(xi − xi−1 − 1)

)]
. (3)

Here u is u(x1, . . . , xN ; t), and in the ith summand above the j th variable is xj when j �= i.
We use the convention that any δ term involving x0 or xN+1 is zero.

The probability PY (X; t) is the solution of this equation that also satisfies the initial
condition

u(X;0) = δY (X). (4)

The particles interact through the exclusion constraint. If they did not interact then
PY (X; t) would satisfy the differential equation

∂u

∂t
=

N∑

i=1

[
pu(xi − 1) + qu(xi + 1) − u(xi)

]
. (5)

If u satisfies this equation then it would also satisfy (3) if in addition the difference of the
right sides were zero. This difference is

N−1∑

i=1

[
pu(xi, xi+1 − 1) + qu(xi + 1, xi+1) − u(xi, xi+1)

]
δ(xi+1 − xi − 1).

Here we displayed entries i and i + 1 in u(x). For the first and last summands, we changed
indices of summation from what they were in (3).

Thus u(x) satisfies (3) if it satisfies both (5) and, for i = 1, . . . ,N − 1, the boundary
conditions

pu(xi, xi) + qu(xi + 1, xi + 1) − u(xi, xi + 1) = 0. (6)
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For any nonzero complex numbers ξ1, . . . , ξN , a solution of (5) is
∏

i (ξ
xi

i eε(ξi )t ). We may
permute the ξi , take linear combinations, and integrate. In this way we obtain a class of
solutions

∫ ∑

σ∈SN

Fσ (ξ)
∏

i

ξ
xi

σ (i)

∏

i

eε(ξi )t dNξ,

where the functions Fσ (ξ) are arbitrary. We look for Fσ such that the integrand satisfies the
boundary conditions pointwise. This is the Bethe Ansatz.

Substituting the left side of (6) into the part of the integrand that depends on xi we get
(ξσ(i)ξσ(i+1))

xi times

(p + qξσ(i)ξσ(i+1) − ξσ(i+1))Fσ .

Define Tiσ to be σ with the entries σ(i) and σ(i + 1) interchanged. If we replace σ by
Tiσ nothing else in the integrand changes, so a sufficient condition that the integrand is zero
is that

(p + qξσ(i)ξσ(i+1) − ξσ(i+1))Fσ + (p + qξσ(i)ξσ(i+1) − ξσ(i))FTiσ = 0.

If we define

S
(
ξ, ξ ′) = − p + qξξ ′ − ξ

p + qξξ ′ − ξ ′ ,

then the conditions become

FTiσ

Fσ

= S(ξσ(i+1), ξσ(i)).

We can find the general solution of this system of equations for the Fσ . An inversion in
σ is a pair (i, j) with i > j and σ−1(i) < σ−1(j). It is straightforward to check that one
solution is

Aσ (ξ) =
∏

inversions (i,j)

S(ξi, ξj ). (7)

All Fσ are determined by Fe , where e is the identity permutation. Since this can be an
arbitrary function ϕ(ξ), the general solution is Fσ (ξ) = Aσ (ξ)ϕ(ξ).

2.2 Satisfying the Initial Condition

We choose ϕ(ξ) so that the initial condition is satisfied by the σ = e summand. Since

1

(2πi)N

∫

CN

∏

i

ξ
xi−yi−1
i dNξ = δY (X),

where C is a circle about zero, we take ϕ(ξ) = (2πi)−N
∏

i ξ
−yi−1
i and the domain of inte-

gration to be CN .
When σ �= e it matters which contours of integration we take because of the denominators

in the Aσ . If p �= 0 then all the denominators will be nonzero on and inside Cr if r is small
enough. It is such an r that we take in (1).

Denote by I (σ ) the σ -summand in (1) with t = 0. To prove (1) we must show that

∑

σ �=e

I (σ ) = 0.
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This will be proved by induction on N . For N = 1 there is nothing to show. Assuming the
result for N − 1, the sum over all permutations in SN\{e} such that σ(N) = N will be zero,
by the induction hypothesis. (No S-factor in Aσ will involve ξN , and there is an obvious
correspondence between σ ∈ SN−1 and those σ ∈ SN satisfying σ(N) = N .) So it suffices
to show that

∑

σ(N)�=N

I (σ ) = 0. (8)

For each nonempty subset B of [1,N − 1] define

SN(B) = {
σ ∈ SN : the inversions in σ involving N are the (N, i) with i ∈ B

}
.

We shall show that for each B we have

∑

σ∈SN (B)

I (σ ) = 0. (9)

Once we have this, (8) will follow since the set of σ with σ(N) �= N is the disjoint union of
the various SN(B).

Start of the proof The integrands in I (σ ) with σ ∈ SN(B) may be written

∏

i∈B

S(ξN , ξi) ×
∏

i≤N

ξ
x
σ−1(i)

−yi−1

i ×
∏{

S(ξk, ξ
) : N > k > 
, σ−1(k) < σ−1(
)
}
.

In these integrals we make the substitution

ξN → η∏
i<N ξi

, (10)

so that η runs over a circle of radius rN . The integrand becomes

(−1)|B| ∏

i∈B

p + qη
∏


�=i,N ξ−1

 − η

∏

�=N ξ−1




p + qη
∏


�=i,N ξ−1

 − ξi

(11)

× η
x
σ−1(N)

−yN −1
∏

i<N

ξ
x
σ−1(i)

−x
σ−1(N)

+yN −yi−1

i (12)

×
∏{

S(ξk, ξ
) : N > k > 
, σ−1(k) < σ−1(
)
}
. (13)

The reason we still have −1 in the exponents in (12) is that dξN = ∏
i<N ξ−1

i dη.

Lemma 1 When |B| = 1 we have I (σ ) = 0 for all σ ∈ SN(B).

Proof There is a single i ∈ B and (11) is analytic inside the ξi -contour except for a simple
pole at ξi = 0. The exponent of ξi in (12) is positive since N > i, and so yN > yi , and
σ−1(i) > σ−1(N), and so xσ−1(i) > xσ−1(N). Therefore the integrand is analytic inside the
ξi -contour, so the integral is zero. �
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Lemma 2 When |B| > 1 we have for all σ ∈ SN(B),

I (σ ) =
∑

(i,j)

IB,(i,j)(σ ),

where in the sum (i, j) runs over all unordered pairs with i, j ∈ B and i �= j , where each
IB,(i,j)(σ ) is a lower-order integral in which (11) is replaced by a factor depending only on
B and (i, j) (the other factors remaining the same), and where ξi = ξj in the domain of
integration.

Proof We may assume that q �= 0. This case follows by a limiting argument. We are going
to shrink some of the ξi -contours with i ∈ B . Due to the defining property of r , the only
poles we pass will come from the product (11). In fact, to avoid double poles later we take
ξi ∈ Cri with the ri all slightly different.

Take j = maxB and shrink the ξj -contour. The product (11) has a simple pole at ξj = 0
(the j -factor has the pole and the i-factors with i �= j are analytic there) and the power of
ξj in (12) is positive as before, so the integrand is analytic at ξj = 0. For each k ∈ B with
k �= j we pass the pole at

ξj = qη
∏


�=j,k,N ξ−1



ξk − p
(14)

coming from the k-factor in (11). (Our assumption on the ri assures that there are no double
poles.) For the residue we replace the k-factor by

−p + qη
∏


�=k,N ξ−1

 − η

∏

�=N ξ−1




qηξ−2
j

∏

�=j,k,N ξ−1




, (15)

where in this and the j -factor we replace ξj by the right side of (14). When i �= j, k the
i-factor becomes

p + qη
∏


�=i,N ξ−1

 − η

∏

�=N ξ−1




p(1 − ξiξ
−1
k ),

and we replace ξj in the numerator by the right side of (14).
We now shrink the ξk-contour. There is a pole of order 2 at ξk = 0 coming from (15) and

the j -factor in (11). Since k < j = maxB < N , we have yN − yk ≥ 2, so the exponent of
ξk in (12) is at least 2. Therefore the integrand is analytic at ξk = 0. The factor (15) has no
other poles inside Crk . An i-factor with i �= j, k will have a pole at ξk = ξi if ri < rk . There
is also the pole at

ξk = qη
∏


�=j,k,N ξ−1



ξj − p

coming from the j -factor. This relation and (14) imply ξj = ξk .
Thus when we shrink the ξj -contour and the ξk-contours with k �= j we obtain (N − 2)-

dimensional integrals in each of which two of the ξ -variables corresponding to indices in B

are equal. This proves the lemma. �

Lemma 3 In the notation of Lemma 2, for each (i, j) there is a partition of SN(B) into
pairs σ,σ ′ such that IB,(i,j)(σ ) + IB,(i,j)(σ

′) = 0 for each pair.
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Proof We pair σ and σ ′ if they agree except for the positions of i and j , which are inter-
changed. The factor (12) is clearly the same for both when ξi = ξj , and we shall show that
the σ - and σ ′-factors in (13) are negatives of each other when ξi = ξj .

Assume for definiteness that

i < j and σ−1(i) < σ−1(j). (16)

(Otherwise we reverse the roles of σ and σ ′.) Then the factor S(ξj , ξi) does not appear for
σ in (13) but it does appear for σ ′. This factor equals −1 when ξi = ξj .

To complete the proof it is enough to show that for any k �= i, j the product of S-factors
involving k and either i or j is the same for σ and σ ′ when ξi = ξj . If σ−1(k) is outside the
interval (σ−1(i), σ−1(j)) the S-factors in question are the same for σ and σ ′, so we assume
σ−1(k) is inside the interval. There are three cases, with the results displayed in the table
below. The first column gives the position of k relative to i and j , the second column gives
the product of S-factors involving k and either i or j for σ , and the third column gives the
corresponding product for σ ′,

i < k < j, 1, S(ξj , ξk)S(ξk, ξi),

k < i, S(ξi, ξk), S(ξj , ξk),

k > j, S(ξk, ξj ), S(ξk, ξi).

In all cases but the second the S-factors are exactly the same for σ and σ ′ when ξi = ξj . For
the second we use S(ξ, ξk)S(ξk, ξ) = 1. �

Clearly (9) follows from Lemmas 1–3, and this completes the proof of (1). �

3 ASEP with Multiple Species

3.1 Bethe Ansatz Solution

Observe that an interchange of particles at positions xi and xi+1 has the same effect as
leaving the particles as they were but interchanging πi and πi+1. Thus X remains the same
but π is replaced by Tiπ . (This is the same Ti as before, but applied to π rather than σ .)

Write uπ(X; t) for PY (X ; t). The master equation for uπ differs from Eq. (3) for u since
particles are not blocked as much, so there are other terms on the right side.

We define

αi(π) =

⎧
⎪⎨

⎪⎩

0 if πi = πi+1,

p if πi < πi+1,

q if πi > πi+1,

and define βi(π) as above but with p and q interchanged. (Thus βi(π) = αi(Tiπ).) We
compute that what must be added to the right side of (3) is

N−1∑

i=1

[
αi(π)uTiπ (xi, xi+1) − βi(π)uπ(xi, xi+1)

]
δ(xi+1 − xi − 1).

(As before, we displayed entries i and i + 1.) The terms here may be incorporated into the
boundary conditions, as the δ-terms in (3) were. We conclude that if uπ(X; t) satisfies the
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equation

∂uπ

∂t
=

N∑

i=1

[
puπ(xi − 1) + quπ(xi + 1) − uπ(xi)

]
, (17)

the boundary conditions for i = 1, . . . ,N − 1

puπ(xi, xi) + quπ(xi + 1, xi + 1) − uπ(xi, xi + 1)

− αi(π)uTiπ (xi, xi + 1) + βi(π)uπ(xi, xi + 1) = 0, (18)

and the initial condition

uπ(X; t) = δY (X)δν(π),

then PY (X ; t) = uπ(X; t).
We assume a solution of the form

uπ(X; t) =
∑

σ∈SN

1

(2πi)N

∫

CN
r

Aπ
σ (ξ)

∏

i

ξ
xi

σ (i)

∏

i

(
ξ

−yi−1
i eε(ξi )t

)
dNξ,

where Aπ
e = δν(π) so that the initial condition is satisfied by the σ = e summand.

Substituting the left side of (18) into the part of the integrand that depends on xi we now
get (ξσ(i)ξσ(i+1))

xi times

[
f (b, a) + βi(π)b

]
Aπ

σ − αi(π)bATiπ
σ ,

where

f
(
ξ, ξ ′) = p + qξξ ′ − ξ, a = ξσ(i), b = ξσ(i+1). (19)

If we replace σ by Tiσ nothing else in the integrand changes, so a sufficient condition that
the integral be zero is that

[
f (b, a) + βi(π)b

]
Aπ

σ + [
f (a, b) + βi(π)a

]
Aπ

Tiσ
− αi(π)bATiπ

σ − αi(π)aA
Tiπ

Tiσ
= 0.

If this is to hold for all π it must hold for π replaced by Tiπ , so

[
f (b, a) + αi(π)b

]
ATiπ

σ + [
f (a, b) + αi(π)a

]
A

Tiπ

Tiσ
− βi(π)bAπ

σ − βi(π)aAπ
Tiσ

= 0.

If πi+1 = πi then we obtain simply

f (b, a)Aπ
σ + f (a, b)Aπ

Tiσ
= 0. (20)

If πi+1 �= πi we use βi(π) = 1 −αi(π) to help with the computation and find by eliminating
A

Tiσ

Tiσ
from the two equations above that

Aπ
Tiσ

= αi(π)
b − a

f (a, b)
ATiπ

σ −
[
αi(π)

a − b

f (a, b)
+ 1

]
Aπ

σ .

(Here (19) was also used.) If we replace the second αi(π) by 1 − βi(π) we get
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Aπ
Tiσ

= αi(π)
b − a

f (a, b)
ATiπ

σ − f (b, a) − βi(π)(a − b)

f (a, b)
Aπ

σ ,

which now agrees with (20) when πi+1 = πi .
The relation is nicer for the quantity hπ

σ defined by

Aπ
σ = hπ

σ Aσ , (21)

where Aσ is defined by (7) as before. The condition Aπ
e = δν(π) becomes hπ

e = δν(π).
If we use a − b = f (b, a) − f (a, b), divide by ATiσ = S(b, a)Aσ , and recall (19), our

formula becomes

hπ
Tiσ

= hπ
σ + (

1 + S(ξσ(i), ξσ(i+1))
)[

αi(π)hTiπ
σ − βi(π)hπ

σ

]
. (22)

We have to show that these formulas together with hπ
e = δν(π) define hπ

σ consistently.
This means that if we obtain σ from e by a sequence of operations Ti on SN then what we
obtain from this same sequence acting on the hπ

σ is independent of the particular sequence
chosen. This follows from the relations

(i) TiTi = I ;
(ii) TiTj = TjTi when |i − j | > 1;
(iii) TiTi+1Ti = Ti+1TiTi+1.

We should be more precise as to what exactly these Ti are. Let H0 be the set of all
functions

h : π → function of ξ,

and H = SN × H0. Define T 0
i : H → H0 by

T 0
i (σ,h) = h + (

1 + S(ξσ(i), ξσ(i+1))
)[

αi · (h ◦ Ti) − βi · h]
. (23)

Then define Ti : H → H by

Ti(σ,h) = (
Tiσ,T 0

i (σ,h)
)
. (24)

(The same symbol Ti is used to denote these operators and operators on SN . The context
should make it clear which is meant.) It is the Ti defined by (24) that satisfy relations (i)–(iii).
Once we have these relations it follows from the Coxeter presentation of SN [11, Sect. 1.9]
that there is a homomorphism from SN to the group of mappings from H to itself, such that
each Ti acting on SN goes to the corresponding Ti acting on H. Because this is a homo-
morphism, if two products of transpositions in SN are equal then so are the corresponding
products of the Ti on H, which is what was claimed.

Relations (i)–(iii) are the braid relations and are the consistency equations referred to
in Sect. 1. Relations (i) and (ii) can be checked by hand. Since (iii) involves only three
consecutive indices, it is enough to check the case N = 3. This was verified by a computer
computation.
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3.2 Satisfying the Initial Condition

We have to show that
∑

σ∈SN (B)

I π (σ ) = 0, (25)

where Iπ (σ ) is the σ -summand in (2) with t = 0.
In Sect. 2.2 we made a variable change, shrank contours, and found that all I (σ ) with

σ ∈ SN(B) are sums of lower-dimensional integrals IB,(i,j)(σ ), one for each unordered pair
(i, j) with i, j ∈ B , such that ξi = ξj in the domain of integration.

To extend this to the Iπ (σ ) we have to know first that no new poles arise from the
factors hπ

σ . These would come from S-factors involving ξN , because it is only these that
might introduce poles after the variable change (10). Using (22) to see which such factors
could arise in the expressions for hπ

σ we start with σ = e and do the following to get to our
σ ∈ SN(B): first, bring to the front and rearrange the i �∈ B ∪ {N}. This gives some factors
1 + S(ξi, ξj ) with i, j �= N . (Which exact factors occur depends on π as well as σ .) Then
move N through the i ∈ B . Since at each step N was to the right of where it moves to, we get
some factors 1 + S(ξi, ξN) with i ∈ B . Then rearange the elements of B to reach σ , which
introduces some factors 1 + S(ξi, ξj ) with i, j ∈ B . Thus the only factors involving ξN are
some 1 + S(ξi, ξN) with i ∈ B .3 If we multiply this factor by the S(ξN , ξi) from the product
in (7) for Aσ we get S(ξN, ξi) + 1. Thus, no new poles arise from hπ

σ with σ ∈ SN(B).
We can now proceed as in Sect. 2.2, making the variable change and shrinking contours.
We say that σ,σ ′ are (i, j)-paired if they agree except for the positions of i and j , which

are interchanged. We saw in the proof of Lemma 3 that if σ and σ ′ are (i, j)-paired then the
integrands in IB,(i,j)(σ ) and IB,(i,j)(σ

′) are negatives of each other. Therefore to prove (25)
it suffices to show that if σ and σ ′ are (i, j)-paired then hπ

σ = hπ
σ ′ when ξi = ξj . We show

this by induction on |σ−1(i) − σ−1(j)|, and we may assume σ−1(j) > σ−1(i).
If σ−1(j) = σ−1(i) + 1 we replace i by σ−1(i) in (22). Since S(ξi, ξj ) = −1 when ξi =

ξj , the statement holds then.
Suppose m > 1, that the statement holds when σ−1(j) = σ−1(i) + m − 1, and that

σ−1(j) = σ−1(i) + m. For convenience of notation we assume that

σ = (1,2, . . . , m,m + 1 . . .), σ ′ = (m + 1,2, . . . , m, 1 . . .).

(Thus σ and σ ′ are (1,m + 1)-paired. Neither the actual labels nor the exact positions for
the indices is relevant; only their relative positions is.) The dots represent other entries that
are equal for σ and σ ′.

We want to show that hπ
σ = hπ

σ ′ when ξ1 = ξm+1. We have

T1σ = (2,1, . . . m,m + 1, . . .), T1σ
′ = (2,m + 1, . . . m, 1, . . .).

Observe that T1σ and T1σ
′ are also (1,m + 1)-paired but (T1σ)−1(1) = 2 while

(T1σ)−1(m + 1) = m + 1, so the induction hypothesis holds. Thus hπ
T1σ = hπ

T1σ ′ for all
π when ξ1 = ξm+1.

3For example, suppose σ = (3 2 5 4 1), for which B = {4,1}. Then the steps might be

(1 2 3 4 5) → (1 3 2 4 5) → (3 1 2 4 5) → (3 2 1 4 5) → (3 2 1 5 4) → (3 2 5 1 4) → (3 2 5 4 1).

The only S-factors involving ξ5 come from steps four and five, and are S(ξ4, ξ5) and S(ξ1, ξ5).
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Applying (22) with i = 1 and σ replaced by T1σ and by T1σ
′ gives the relations

hπ
σ = hπ

T1σ + (
1 + S(ξ2, ξ1)

)[
α1(π)h

T1π

T1σ − β1(π)hπ
T1σ

]
,

hπ
σ ′ = hπ

T1σ ′ + (
1 + S(ξ2, ξm+1)

)[
α1(π)h

T1π

T1σ ′ − β1(π)hπ
T1σ ′

]
.

When ξ1 = ξm+1 the right sides are equal and therefore so are the left sides.
This completes the proof.

3.3 Formulas for hπ
σ

3.3.1 A General Formula

For σ ∈ SN we define hσ ∈ H0 to be the function π → hπ
σ . With this notation formula (22)

may be written hTiσ = T 0
i (σ,hσ ), where T 0

i is given by (23). From this we get

hTiTj σ = T 0
i (Tjσ,hTj σ ) = T 0

i

(
Tjσ,T 0

j (σ,hσ )
) = T 0

i Tj (σ,hσ ).

And in general,

hTj1 Tj2 ···Tjmσ = T 0
j1

Tj2 · · ·Tjm(σ,hσ ).

If we first set σ = e above and then choose the various Ti such that

Tj1Tj2 · · ·Tjme = σ, (26)

we get, since hπ
e = δν(π),

hπ
σ = T 0

j1
Tj2 · · ·Tjm(e, δν). (27)

For ρ ∈ SN , and α and β functions of π , we define

Ui(ρ,β) = 1 − [
1 + S(ξρ(i), ξρ(i+1))

] · β,

Vi(ρ,α) = [
1 + S(ξρ(i), ξρ(i+1))

] · α.

These Ui and Vi come from the coefficients of h and h◦Ti , respectively, in (23), and products
of them are the coefficients of the δ-summands which result from applying the various Tj

in (27). When we apply (23) consecutively to (27) we get a sum of products of the form
W1W2 · · ·Wm, where each W is a U or V .

As an example, we find that T 0
j Ti(e, δν) is a linear combination of δν, δν◦Ti

, δν◦Tj
,

and δν◦Ti◦Tj
. The coefficient of δν is Uj(Tie,βj )Ui(e,βi), the coefficient of δν◦Ti

is
Uj(Tie,βj )Vi(e,αi), the coefficient of δν◦Tj

is Vj (Tie,αj )Ui(e,βi ◦ Tj ), and the coefficient
of δν◦Ti◦Tj

is Vj (Tie,αj )Vi(e,αi ◦ Tj ). These are the four W -products.
Passing to the general case, we observe that in every factor W the original permutation e

has been composed with all earlier (rightward) Tj in (27). Every factor Vi comes from the
corresponding h ◦ Ti summand in (23). This changes the α or β in each earlier factor W by
composing it with these Ti . Otherwise said, each α or β in a factor W is a composition with
the later Ti . The W -product is determined by these (ordered) i, and we denote the sequence
of them by I = {i1, . . . , in}. The resulting δ-term is δν◦Ti1 ◦···◦Tin

.
In general we get a linear combination of δ-terms of the form δν◦Ti1 ◦···◦Tin

, where I =
{i1, . . . , in} ⊂ Iσ and Iσ = {j1, . . . , jm} is the sequence in (26). Each ik is a j
 while the
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other j
 appear between some consecutive ik−1 and ik . (For this we set i0 = 0, in+1 = ∞.)
From the above remarks we see that the coefficient of δν◦Ti1 ◦···◦Tin

is

WI =
m∏


=1

WI,
 (28)

where

WI,
 =
{

Vik (Tj
−1 · · ·Tjme,αik ◦ Tik−1 ◦ · · · ◦ Ti1) if j
 = ik,

Uj
(Tj
−1 · · ·Tjme,βj
 ◦ Tik−1 ◦ · · · ◦ Ti1) if j
 ∈ (ik−1, ik).
(29)

This gives

hπ
σ =

∑

I⊂Iσ

WI (π)δν◦Ti1 ◦···◦Tin
(π), (30)

where I = {i1, . . . , in}.
The sequence Iσ in (26) is not unique, so we do not yet have an explicit formula for hπ

σ .
To find a particular sequence let us see how to get from σ to e by a sequence of Ti . We may
do this by first bringing 1 to slot 1 by a sequence of transpositions, then bringing 2 to slot 2
by a sequence of transpositions, etc. We first bring 1 to slot 1 by the product

T1T2 · · ·Tσ−1(1)−1.

Suppose we have brought 1, . . . , k − 1 to their slots. Then k itself has been moved to the
right by

ι(k) := #
{
j : j < k, σ−1(j) > σ−1(k)

} = the number of inversions of the form (k, j),

because bringing each such j to its slot has moved k one slot to the right. We then bring i to
its slot by the product

Tk · · ·Tσ−1(k)+ι(k)−1.

Thus
N−1∏

k=1

Ti · · ·Tσ−1(k)+ι(k)−1σ = e,

the factor with the larger k being to the left. This gives

σ =
N−1∏

k=1

Tσ−1(k)+ι(k)−1 · · ·Tke, (31)

the factor with the larger k being to the right. With this representation we have

Iσ =
N−1⋃

k=1

(
k, . . . , k), (32)

where 
k = σ−1(k) + ι(k) − 1, the interval with the larger k being to the right.
Together with (30) this gives an explicit, albeit complicated, formula for hπ

σ .
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3.3.2 One Second-Class Particle

Because all the π now will have 1 in a single position and 2 in the others, most of the α and
β terms in (29) will be zero when applied to π . So most of the WI


will be 0 (when a Vj )
or 1 (when a Uj ). It is possible systematically to determine which WI will be nonzero when
Iσ is given, and that makes it practical write down formulas for the hπ

σ in specific cases.
We shall not describe the procedure but state two results that use (32), which comes from
representation (31).

For ν−1(1) = 1 (the second-class particle initially in position 1) and π−1(1) = j (the
second-class particle ending in position j ) hπ

σ = 0 when σ−1(1) < j and

hπ
σ = (

p − qS(ξ1, ξσ(j))
)
q
(
1 + S(ξ1, ξσ(j−1))

) · · ·q(
1 + S(ξ1, ξσ(1))

)
,

when σ−1(1) ≥ j . (When σ−1(1) = j the factor on the left equals 1.)
For ν−1(1) = 2 and π−1(1) = j the formula is more complicated. When σ−1(1) ≥ j and

σ−1(2) + ι(2) ≥ j it is

hπ
σ =

j−1∑

i=1

[
i−1∏

k=1

q
(
1 + S(ξ2, ξσ(k))

) · (p − qS(ξ2, ξσ(i))
)

× (
q − pS(ξ1, ξσ(i))

) ·
j−1∏

k=i+1

q
(
1 + S(ξ1, ξσ(k))

) · (p − qS(ξ1, ξσ(j))
)
]

+
j−1∏

k=1

q
(
1 + S(ξ2, ξσ(k))

) · (p − qS(ξ2, ξσ(j))
) · p(

1 + S(ξ1, ξσ(j))
)
.

We should point out that in any given case (31) may not be the best representation for
computation. For example, take ν−1(1) = π−1(1) = 3 and σ = (4 3 2 1). Using the repre-
sentation

σ = T3T2T1T3T2T3e (33)

from (31), there are five nonzero summands in (30). Therefore hπ
σ is given as a sum of five

products. But if instead we use the representation

σ = T1T2T1T3T2T1e, (34)

there are only two nonzero summands and we get the relatively simple formula

hπ
σ = q

(
1 + S(ξ2, ξ4)

)(
q − pS(ξ2, ξ3)

)
q
(
1 + S(ξ1, ξ3)

)

+ (
q − pS(ξ2, ξ4)

)(
p − qS(ξ1, ξ4)

)(
q − pS(ξ1, ξ3)

)
.

For another example take σ = (4 3 2 1) as before but ν−1(1) = 3,π−1(1) = 4. Using (33)
we again get five nonzero summands in (30). But using (34) we get only one, and the much
simpler answer

hπ
σ = q

(
1 + S(ξ1, ξ4)

)(
q − pS(ξ1, ξ3)

)
.

So although the representation (31) leads to a general procedure for computing hπ
σ , in

any particular case there may well be a better representation for computation.
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