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We consider the asymmetric simple exclusion process confined to the nonnegative
integers with an open boundary at 0. The point 0 is connected to a reservoir where
particles are injected and ejected at prescribed rates subject to the exclusion rule.
We derive formulas for the transition probability as a function of time from states
where initially there are m particles to states where there are n particles. C© 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4822418]

I. INTRODUCTION

In previous work10 the authors considered the asymmetric simple exclusion process (ASEP)
where particles are confined to the nonnegative integers Z+ = {0, 1, 2, . . .}. Each particle waits
exponential time, and then with probability p it moves one step to the right if the site is unoccupied,
otherwise it does not move; and with probability q = 1 − p a particle not at 0 moves one step to the
left if the site is unoccupied, otherwise it does not move. For n-particle ASEP a possible cofiguration
is

x = {x1, . . . , xn}, (0 ≤ x1 < · · · < xn).

The xi are the occupied sites. We denote by Xn the set of possible configurations for n-particle ASEP,
and by pn(x, y; t) the probability that at time t the system is in configuration x given that initially it
was in configuration y. (We shall drop the subscript “n” when it is understood.)

In Ref. 10 a formula was found for this probability. It was the sum over the Weyl group Bn of
multiple integrals. (For ASEP on Z it was a sum over the permutation group Sn .8, 9)

Here we consider the ASEP on Z+ with an open boundary at zero. The stationary measure
for ASEP on the finite lattice [1, L] or on the semi-infinite lattice Z+ with boundaries connected
to reservoirs has been the subject of much research starting with Spohn7 and Derrida et al.1 We
refer the reader to the recent work of Sasamoto and Williams6 for an up-to-date account of these
developments. Here we consider the time-dependent properties of ASEP on Z+ with an open
boundary. Specifically, the point 0 is connected to a reservoir where a particle is injected into site
0 from the reservoir at a rate α, assuming that the site 0 is empty, and a particle at site 0 is ejected
into the reservoir at a rate β. Now the number of particles is not conserved and for ASEP with open
boundary the configuration x may lie in Xn while y may lie in Xm with m �= n.

We find an infinite tri-diagonal matrix with operator entries in which the Laplace transforms of
the probabilities can be read off from the entries of the inverse matrix. When either α = 0 or β = 0
the matrix is triangular and so the inverse can be computed more explicitly. The result is obtained by
solving a system of differential equations for the probabilities. The final formulas involve inverses
of operators with kernels the Laplace transforms of certain p(x, y; t) obtained in Ref. 10.

There are two special cases in which the results are more explicit. For TASEP with p = 1, the
inverse operator is computable in terms of p(x, y; t) itself, and the probabilities are given in terms of
certain determinants. For SSEP (p = q) and general α and β we find formulas analogous to the ones
described above for the probability that sites x1, . . . , xn are occupied. This is for infinite systems as
well as finite ones.
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FIG. 1. Plotted are the TASEP probabilities Pn(t) for n = 0, 1, 2, 3 with α = 1. Increasing n moves the maximum to the
right.

We state the formulas for p(x, y; t) in the Appendix.

II. STATEMENT OF RESULTS

We denote by En the Lebesgue space L1(Xn). From the fact that∑
x∈Xn

p(x, y; t) = 1 (1)

for each y, it follows that the operator on En with this kernel is bounded with norm one. We denote
the Laplace transform of p(x, y; t) by p̂(x, y; s):

p̂(x, y; s) =
∫ ∞

0
p(x, y; t) e−st dt.

The operator with this kernel is bounded on En with norm at most (Re s)− 1. We denote it by Ln(s).
(When n = 0 we interpret p(x, y; t) as 1, and so L0(s) is multiplication by s− 1.) In the results stated
below it is tacitly assumed that Re s is sufficiently large.

Now for ASEP with open boundary at zero, we define Pn(x; t) to be the probability that the
system is in configuration x ∈ Xn at time t. We shall usually drop the “x” in the notation, and do not
specify an initial configuration. (In the examples, we clearly state the initial conditions.) We denote
its Laplace transform by P̂n(s).

We define vector functions

P̂(s) = (P̂n(s))n≥0, P(0) = (Pn(0))n≥0,

belonging to the direct sum
∑∞

n=0 En .
We define operators An : En−1 → En and Bn : En+1 → En by

(An F)(x1, . . . , xn) = δ(x1) F(x2, . . . , xn), (2)

(Bn F)(x1, . . . , xn) = (1 − δ(x1)) F(0, x1, . . . , xn). (3)

(When n = 0 we interpret δ(x1) as zero. In particular A0 = 0 and B0 F = F(0).)
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Then we define matrices δ, L(s), A, B, with operator entries, acting on
∑∞

n=0 En . The first is
diagonal with (n, n)-entry multiplication by δ(x1), the second is diagonal with n, n-entry Ln(s), the
third is subdiagonal (one diagonal below the main diagonal) with n, n − 1-entry An, and the last is
superdiagonal (one diagonal above the main diagonal) with n, n + 1-entry Bn.

Theorem 1. With this notation we have

P̂(s − α) =
(

I − L(s) ((α − β) δ + α A + β B)
)−1

L(s) P(0). (4)

There are expressions for the entries of the inverse operator as infinite series of products. But
when either β = 0 or α = 0 the operator has only one subdiagonal or one superdiagonal and each
entry of the inverse is a single product. We state the results as recursion formulas. Define

Mn(s) = (I − (α − β) Ln(s) δ)−1. (5)

Corollary 1.1. Suppose β = 0 and that initially there are k particles at y ∈ Xk . Then

P̂k(s − α) = Mk(s) Lk(s) δy,

(interpreted as s− 1 when k = 0) and when n > k

P̂n(s − α) = α Mn(s) Ln(s) An P̂n−1(s − α).

Corollary 1.2. Suppose α = 0 and that initially there are k particles at y ∈ Xk . Then

P̂k(s) = Mk(s) Lk(s) δy,

and when n < k

P̂n(s) = β Mn(s) Ln(s) Bn P̂n+1(s).

In connection with the corollaries we show the following.

Remark 1.1. The operators appearing in the inverses can be replaced by lower-dimensional ones.
This will be useful for computation. Define

X+
n = {{x1, . . . , xn} ∈ Xn : x1 > 0}, E+

n = L1(X+
n ),

and then operators:
L0

n−1(s) : E+
n−1 → E+

n−1 with kernel p̂((0, x), (0, y); s),
L0

n,n−1(s) : E+
n−1 → En with kernel p̂(x, (0, y); s),

L0
n−1,n(s) : En → E+

n−1 with kernel p̂((0, x), y; s).
(a) The operator Mn(s) Ln(s) An : En−1 → En in Corollary 1.1 is equal to

L0
n,n−1(s) (I − (α − β) L0

n−1(s))−1 Rn−1,

(The I here is the identity operator on E+
n−1 while the I in (5) is the identity operator on En where

Rn−1 : En−1 → E+
n−1 is the restriction operator).

(b) The operator Mk(s) Lk(s) : Ek → Ek in Corollaries 1.1 and 1.2 is equal to

Lk(s) + (α − β) L0
k,k−1(s) (I − (α − β) L0

k−1(s))−1 L0
k−1,k(s).

Remark 1.2. In the special case of TASEP when p = 1 we have the simplification
(I − α L0

n(s))−1 = I + α L0
n(s − α).

In the case of SSEP (p = q), even for infinitly many particles, there are formulas for correlations
that are no more complicated when both α and β are nonzero. For x = {x1, . . . , xn} ∈ Xn we define
�n(x; t) to be the probability that sites x1, . . . , xn are occupied at time t. We denote its Laplace
transform by �̂n(s) = �̂n(x; s) and introduce the vector functions

�̂(s) = (�̂n(s))n≥0, �(0) = (�n(0))n≥0.

(We define �0(t) = 1, and so �̂0(s) = s−1.)
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Let the operators Ln(s) and An, and the matrices δ, L(s), A with operator entries be the same as
before. Now we define En = L∞(Xn), and observe that by (1) and the symmetry of the kernel we
have

∑
y∈Xn

p(x, y; t) = 1 for each x ∈ Xn . It follows that Ln(s) is a bounded operator on this En with
norm at most (Re s)− 1.

Theorem 2. We have

�̂(s) =
(

I + L(s) ((α + β) δ − α A)
)−1

L(s) �(0).

We now set

Mn(s) = (I + (α + β) Ln(s) δ)−1.

Corollary 2.1. For n > 0,

�̂n(s) = α Mn(s)Ln(s)An �̂n−1(s) + Mn(s)Ln(s) �n(0).

Corollary 2.2. In the case of Bernoulli initial condition with density ρ,

�̂n(s) = α Mn(s)Ln(s)An �̂n−1(s) + s−1 ρn Mn(s) 1,

where “1” is the constant function on Xn .

Corollary 2.3. When initially no sites are occupied

�̂n(s) = α Mn(s)Ln(s)An �̂n−1(s).

The analogue of Remark 1.1 holds here.

From the abstract formulas, Theorems 1 and 2 and their corollaries, we derive some concrete
results.

Suppose, in ASEP, that at time zero there is a single particle at y. From Corollaries 1.1 and 1.2
we show:

α = 0: When p > q, with probability

1 − β (q−1 − 1)−y

p − q + β
,

the particle is never ejected. When p ≤ q, with probability one the particle will eventually be ejected.
The expected value of the time at which this occurs is infinite when p = q, and when p < q it is

y + q/β

q − p
.

β = 0: With probability one a second particle will eventually be injected. The expected value of the
time at which this occurs is

1

α
+ ξ+(α)−y

q (ξ+(α) − 1) − α
,

where

ξ+(α) = 1

2q
(α + 1 +

√
(α + 1)2 − 4pq ) .

Combining Remark 1.2 with the determinant formula (A2) for p(x, y; t) in TASEP it is practical to
compute some exact results. Denote by Pn(t) the probability that starting with no particles at time 0
there are exactly n particles at time t. Then

P0(t) = e−αt ,

P1(t) = α

1 − α

(
t − α

1 − α

)
e−αt + α2

(1 − α)2
e−t ,
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P2(t) =
(

α2

2(1 − α)2
t2 − α2

(1 − α)3
t + α2

(1 − α)2

)
e−αt

+
(

α2

2(1 − α)2
t2 − α(1 − 3α + α2)

(1 − α)3
+ 1 − 2α

(1 − α)2

)
e−t − e−(1+α)t .

These are for α �= 1. When α = 1 there is no singularity; we take a limit and the formulas simplify
(see Fig. 1.).

For SSEP we obtain the following consequence of Corollary 2.2. Define

�N (t) =
∑
x≥0

(ηx (t) − ηx (0)) ,

the net number of particles that have entered the system at time t. (Which may be negative.) With
Bernoulli initial condition when 〈ηx(0)〉 = ρ, we show for the expected value that

〈�N (t)〉 ∼
√

2

π

α − (α + β)ρ

α + β
t1/2 as t → ∞.

(This result was obtained in Ref. 3 in the case β = 0 and ρ = 0.) By a laborious computation (not
included) we can show that the second moment of �N(t) is finite.

In the special case where initially there are no occupied sites, we use Corollary 2.3 and present
a not completely rigorous (to say the least) argument that

〈�N (t)2〉 ∼ 2

π

α2

(α + β)2
t as t → ∞.

Combining this with the first moment asymptotics when ρ = 0 we conclude that the variance of
�N(t)/t1/2 tends to zero as t → ∞. (As predicted in Ref. 3 in the case β = 0.) The derivation is quite
long, but the result with the precise constants came out so nicely in the end that we could not resist
including it.

III. PROOFS OF THE RESULTS

A. ASEP

Proof of Theorem 1: The probability p(x, y; t) for n-particle ASEP on Z+ is the solution of
the differential equation

d

dt
u(X ; t) =

N∑
i=1

[
p u(xi − 1) (1 − δ(xi − xi−1 − 1)) + q u(xi + 1) (1 − δ(xi+1 − xi − 1))

−p u(xi ) (1 − δ(xi+1 − xi − 1)) − q u(xi ) (1 − δ(xi − xi−1 − 1))
]

+ [q u(x1) − p u(x1 − 1)] δ(x1)

that satisfies the initial condition

u(x; 0) = δy(x).

(In the ith summand entry i is displayed and entry j is xj when j �= i.)
If we denote by Qn the operator given by the right side of the equation, then p(x, y; t) is the

kernel of etQn . Thus the equation is

dpn

dt
= Qn pn(x; t),

where we have written pn(x; t) for p(x, y; t).
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For open ASEP we write the corresponding probability as Pn(x; t) (and do not specify any initial
condition). The equation for Pn is

d Pn

dt
(x1, . . . , xn : t) = Qn Pn(x1, . . . , xn : t)

+α δ(x1) Pn−1(x2, . . . , xn : t) − α (1 − δ(x1)) Pn(x1, . . . , xn : t)

−β δ(x1) Pn(x1, . . . , xn : t) + β(1 − δ(x1)) Pn+1(0, x1, . . . , xn : t).

Define �n(x; t) = eαt Pn(x; t). In terms of the operators An and Bn defined in (2) and (3), and δ

= δ(x1), the equation for �n becomes

d�n(t)

dt
= Qn �n + (α − β) δ �n + α An �n−1 + β Bn �n+1. (6)

The equation and initial condition are satisfied if

�n(t) =
∫ t

0
e(t−u)Qn

(
(α − β) δ �n(u) + α An �n−1(u) + β Bn �n+1(u)

)
du + etQn �n(0).

We use the fact that the Laplace transform of a convolution is the product of the Laplace
transforms. Recall that the kernel of Ln(s) is p̂(x, y; s), which is the Laplace transform of the kernel
of etQn . In other words, the Laplace transform of the operator etQn is Ln(s). So taking Laplace
transforms in the last equation gives

�̂n(s) = Ln(s)
(

(α − β) δ �̂n(s) + α An �̂n−1(s) + β Bn �̂n+1(s)
)

+ Ln(s) �n(0).

If we now introduce the vector functions

�̂(s) = (�̂n(s))n≥0, �(0) = (�n(0))n≥0,

and the operator matrices δ, L(s), A, B defined earlier we see that the system may be written as

�̂(s) = L(s)
(

(α − β) δ + α A + β B
)

�̂(s) + L(s) �(0).

Since �̂(s) = P̂(s − α), this gives the statement of Theorem 1.

Corollaries 1.1 and 1.2: We write the operator inverse in (4) as(
I − (M(s) L(s) (α A + β B))

)−1
M(s) L(s),

where M(s) is the diagonal matrix with operator entries Mn(s). When β = 0 this equals

(I − α M(s) L(s) A)−1 M(s) L(s). (7)

The operator matrix M(s) L(s) A consists of one subdiagonal, with m, m − 1-entry Mm(s) Lm(s) Am.
Therefore, the n, n′-entry of the inverse (n′ ≤ n) is

αn−n′
Mn(s)Ln(s)An · · · Mn′+1(s)Ln′+1(s)An′+1,

where for n = n′ this equals I. So the n, n′-entry of (7) is

αn−n′
Mn(s)Ln(s)An · · · Mn′+1(s)Ln′+1(s)An′+1 Mn′(s)Ln′(s).

Thus,

P̂n(s − α) =
∑
n′≤n

αn−n′
Mn(s)Ln(s)An · · · Mn′+1(s)Ln′+1(s)An′+1 Mn′(s) Ln′(s) Pn′ (0), (8)

When α = 0 the matrix M(s) L(s) B consists of one superdiagonal, and we obtain similarly

P̂n(s) =
∑
n′≥n

βn′−n Mn(s)Ln(s)Bn · · · Mn′−1(s)Ln′−1(s)Bn′−1 Mn′(s) Ln′(s) Pn′ (0).
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If initially there are k particles at y ∈ Xk then in both cases Pn′ (0) is nonzero only for n′ = k.
The formulas become

P̂n(s − α) = αn−k Mn(s)Ln(s)An · · · Mk+1(s)Lk+1(s)Ak+1 Mk(s) Lk(s) δy,

P̂n(s) = βk−n Mn(s)Ln(s)Bn · · · Mk−1(s)Lk−1(s)Bk−1 Mk(s) Lk(s) δy,

and the corollaries follow.

Remark 1.1: For (a) we use the fact that because An has the factor δ,

Mn(s)Ln(s)An = (I − (α − β) Ln(s) δ)−1Ln(s) δ An = Ln(s) δ (I − (α − β) δ Ln(s) δ)−1 An.

Since (Anf)(x1, x) = δ(x1) (Rn − 1f)(x) and x ∈ E+
n−1, we obtain statement (a) in different notation.

For (b) we use

Mk(s) = (I − (α − β) Lk(s)δ)−1 = I + (α − β) Lk(s)δ (I − (α − β) Lk(s)δ)−1

= I + (α − β) Lk(s)δ (I − (α − β) δLk(s)δ)−1. (9)

Thus,

Mk(s)Lk(s) = Lk(s) + (α − β) Lk(s)δ (I − (α − β) δLk(s)δ)−1δLk(s),

and statement (b) follows.

Initially a single particle: Let P1(y; t) = ∑
x≥0 P1(x, y; t) denote the probability that, starting

with one particle at y, we still have one particle at time t. Denote its Laplace transform by P̂1(y; s).
We begin with the case β = 0, soP1(y; t) is the probability that no new particle has been injected

by time t.
By Corollary 1.1 the Laplace transform P̂1(x, y; s − α) is equal to (M1(s)L1(s)δy)(x). By Remark

1.1(b) this equals

p̂(x, y; s) + α p̂(x, 0; s) (1 − α p̂(0, 0; s))−1 p̂(0, y; s).

Then using
∑

x≥0 p̂(x, y; s) = s−1 we obtain

P̂1(y; s − α) = 1

s

[
1 + α p̂(0, y; s)

1 − α p̂(0, 0; s)

]
.

From formula (A1) for p(x, y; t) in the case n = 1 we compute that

p̂(0, y; s) = 1

q

ξ+(s)−y

ξ+(s) − 1
, (10)

where

ξ+(s) = 1

2q
(s + 1 +

√
(s + 1)2 − 4pq);

this is the solution of ε(ξ ) = s with positive square root when s > 0. Thus

P̂1(y; s − α) = 1

s

[
1 + α ξ+(s)−y

q(ξ+(s) − 1) − α

]
. (11)

The denominator in the brackets is nonzero for s = α (and positive for s > α), from which we
conclude that ∫ ∞

0
P1(y; t) dt = P̂1(y; 0) = 1

α
+ ξ+(α)−y

q(ξ+(α) − 1) − α
.
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It follows that with probability one a second particle will eventually be injected, since P(y; t) → 0
as t → ∞, and the integral is the expected time at which it occurs. (If T(y) denotes the time when a
second particle is injected, then Prob (T (y) > t) = P1(y; t), from which the statement follows.)

This was for β = 0. For α = 0, P1(y; t) is the probability that the particle has not been ejected
by time t. We use Corollary 1.2 (and Remark 1.1), and formula (11) is replaced by

P̂1(y; s) = 1

s

[
1 − β ξ+(s)−y

q(ξ+(s) − 1) + β

]
.

We compute that as s → 0,

P̂1(y; s) ∼ 1

s

[
1 − β (q−1 − 1)−y

p − q + β

]
if p > q,

P̂1(y; s) ∼ 1√
2s

(2y + 1/β) if p = q,

P̂1(y; s) → y + q/β

q − p
if p < q.

Applying the Tauberian theorem we deduce

lim
t→∞P1(y; t) = 1 − β (q−1 − 1)−y

p − q + β
if p > q,

P1(y; t) ∼ 1√
2π

[
2y + 1

β

]
t−1/2 as t → ∞ if p = q,

∫ ∞

0
P1(y; t) dt = y + q/β

q − p
if p < q.

When p > q the limit on the first line is the probability that the particle is never ejected. If p ≤
q, then with probability 1 the particle will eventually be ejected. The expected value of the time at
which it is ejected is infinite when p = q, by the second line, and is given by the integral on the last
line when p < q.

B. TASEP

Remark 1.2: To compute (I − α L0
n(s))−1 we use the fact that for k ≥ 1 the kernel of L0

n(s)k is∑
z1,...,zk−1∈X+

n

p̂((0, x), (0, z1); s) p̂((0, z1), (0, z2); s) · · · p̂((0, zk−1), (0, y); s).

The summand is the Laplace transform of the (k − 1)-fold convolution∫
u1+···+uk−1=t

p((0, x), (0, z1); u1) p((0, z1), (0, z2); u2) · · · p((0, zn−1), (0, y); uk−1) du.

When p = 1, if the left-most particle begins at 0 and ends at 0 then it was always at 0. It follows that
these probabilities have the semigroup property. Thus after summing over z1, . . . , zk − 1 the integral
becomes ∫

u1+···+uk−1=t
p((0, x), (0, y), t) du = t k−1

(k − 1)!
p((0, x), (0, y), t).

Therefore, the kernel of L0
n(s)k is∫ ∞

0
e−st t k−1

(k − 1)!
p((0, x), (0, y), t) dt.
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It follows that the kernel of
∑∞

k=1(α L0
n(s))k is

α

∫ ∞

0
e−st eαt p((0, x), (0, y), t) dt = α p̂((0, x), (0, y); s − α).

This gives (I − α L0
n(s))−1 = 1 + α L0

n(s − α).
Once we have this result (and Corollary 1.2, Remark 1.1, and the determinant formula (A2)

for p(x, y; t)), we have all the ingredients necessary to compute Pn(t) for small n. This is the
probability that starting with no particles at time 0 there are exactly n particles at time t, which
equals

∑
x∈Xn

Pn(x; t). The computation of products of kernels involves summing geometric series.

C. SSEP

Proof of Theorem 2: A state of the system is a function η : Z+ → {0, 1} where ηx = 1 means
site x is occupied and ηx = 0 means site x is not occupied. Recall that we defined �n(x1, x2, . . . ,
xn; t) as the probability that sites x1, . . . , xn are occupied at time t. Thus,

�n(x1, x2, . . . , xn; t) = 〈ηx1 (t) · · · ηxn (t)〉. (12)

The Markov generator L of ASEP on Z+ with an open boundary at zero is given6 by

L f (η) = α (1 − η0)
(

f (η0) − f (η)
) + β η0

(
f (η0) − f (η)

)

+
∞∑

k=0

[p ηk (1 − ηk+1) + q (1 − ηk) ηk+1]
(

f (ηk,k+1) − f (η)
)
. (13)

Here f is an R-valued function that depends on only finitely many sites, and

(ηk)x =
{

1 − ηx if x = k
ηx if x �= k,

(
ηk,k+1

)
x =

⎧⎨
⎩

ηk+1 if x = k
ηk if x = k + 1
ηx if x �= k, k + 1.

For SSEP the sum in (13) equals 1/2 times

∞∑
k=0

[ηk (1 − ηk+1) + (1 − ηk) ηk+1] ( f (ηk,k+1) − f (η)).

When ηk = ηk + 1 the first factor equals 0; otherwise it equals 1. Since the second factor is zero
when ηk = ηk + 1, we can ignore the first factor, and we get

∞∑
k=0

( f (ηk,k+1) − f (η)).

For the correlations we are interested in f (η) = ηx1 · · · ηxn , so the kth summand equals zero
unless either k = xi for some i or k = xi − 1 for some i. (We will see that these cannot both happen
for a nonzero summand.)

Suppose first that k = xi. If xi + 1 = xi + 1 then k + 1 = xi + 1 and the substitution η → ηk, k + 1

applied to f(η) just interchanges ηxi and ηxi+1 . Therefore, the kth summand is zero. It follows that for
a nonzero summand we must have xi + 1 > xi + 1 = k + 1, and the substitution η → ηk, k + 1 only
affects the ith factor in f(η). Therefore, the summand equals(

ηx1 · · · ηxi−1 ηxi +1 ηxi+1 · · · ηxn − ηx1 · · · ηxi−1 ηxi ηxi+1 · · · ηxn

)
(1 − δ(xi+1 − xi − 1)). (14)

Similarly if k = xi − 1 the summand equals(
ηx1 · · · ηxi−1 ηxi −1 ηxi+1 · · · ηxn − ηx1 · · · ηxi−1 ηxi ηxi+1 · · · ηxn

)
(1 − δ(xi − xi−1 − 1)). (15)

(This is to be multiplied by 1 − δ(x1) when i = 1.)
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If k = xi for (14) and k = xi ′ − 1 for (15) then i′ = i + 1, so xi+1 = xi ′ = xi + 1 and (14) zero,
and xi ′ = xi + 1 = xi ′−1 + 1 so (15) is zero. Thus for the kth summand to be nonzero either k = xi

for some i or k = xi − 1 for some i, but not both.
It follows that for SSEP the expected value of the sum in (13) is equal to 1/2 times the sum over

i of the expected values of the sum of (14) and (15). This equals Qn(〈ηx1 · · · ηxn 〉).
Adding what we get from the first two terms of (13) we find that the differential equation for

�n = �n(t) is

d

dt
�n(x1, x2, . . . , xn) = Qn �n(x1, x2, . . . , xn)

−(α + β) �n(x1, , x2, . . . , xn) δ(x1) + α �n−1(x2, . . . , xn) δ(x1).

This is a well-known result for SSEP; namely, that the master equations for the n-point correlation
functions (12) form a closed system of equations, see, e.g., Refs. 2,4, and 7. Observe that the constant
functions �n = (α/(α + β))n satisfy the equations. Thus, the Bernoulli measure with density
ρ = α/(α + β) is stationary. This also follows from the results of Ref. 6 in which stationary
measures were determined for general ASEP on Z+. Except for the change α − β → − (α + β),
this is equation (6) without the Bn terms. Therefore, to complete the proof of Theorem 2 we need
only make this change as we go through the rest of the proof of Theorem 1, which we need not do.

Corollaries 2.1 and 2.2: Just as (8) is obtained from Theorem 1, we obtain now for n > 0,

�̂n(s) =
n∑

k=0

αn−k Mn(s)Ln(s)An · · · Mk+1(s)Lk+1(s)Ak+1 Mk(s)Lk(s) �k(0).

Corollary 2.1 follows. For Corollary 2.2 we have �n(0) = ρn, and we use the fact that Ln(1) =∑
y∈Xn

p̂(x, y; s) = s−1. Corollary 2.3 is the case ρ = 0 of Corollary 2.2.

�N(t), the net number of particles that entered the system: We assume that we have SSEP
with Bernoulli initial condition. Corollary 2.2 when n = 1 gives, for the Laplace transform of 〈ηx(t)〉,

〈̂ηx 〉(s) = �̂1(x ; s) = s−1 (ρ M1(s) 1 + α M1(s)L1(s)A1 1).

By Remark 1.1(a) applied here, we have (since the definition of Mk(s) is different now we must
replace α − β by − (α + β) when using the remark)

M1(s)L1(s)A1 1 = p̂(x, 0; s)

1 + γ p̂(0, 0; s)
, (16)

where we set

γ = α + β.

Similarly, from (9) we obtain

M1(s) 1 = 1 − γ
p̂(x, 0; s)

1 + γ p̂(0, 0; s)
.

Combining the two gives

〈̂ηx 〉(s) = 1

s

[
ρ + α − γ ρ

1 + γ p̂(0, 0; s)
p̂(x, 0; s)

]
.

Subtracting ρ/s from both sides and summing over x ≥ 0 we get for the Laplace transform of 〈�N(t)〉
̂〈�N (t)〉(s) = 1

s2

α − γρ

1 + γ p̂(0, 0; s)
.

From (10) we have for SSEP

p̂(0, 0; s) = 2

s + √
s2 + 2s

∼
√

2

s
as s → 0.



103301-11 C. A. Tracy and H. Widom J. Math. Phys. 54, 103301 (2013)

Hence

̂〈�N (t)〉(s) ∼ α − γ ρ√
2 γ

s−3/2 as s → 0.

By the Tauberian theeorem this implies

〈�N (t)〉 ∼
√

2

π

α − γ ρ

γ
t1/2 as t → ∞.

As stated in the last section the second moment 〈�N(t)2〉 is finite. To show this we use that the
second moment is equal to

lim
N→∞

∑
x1,x2<N

〈(ηx1 (t) − ηx1 (0)) (ηx2 (t) − ηx2 (0))〉.

We can show that the sum is a polynomial of degree two in ρ, and that each of the three coefficients
of the powers of ρ has a limit as N → ∞. The argument is quite involved, and we do not include it.

The second moment of �N(t) when ρ = 0: Now it is mainly a question of determining the
asymptotics of

∑
x1<x2

〈ηx1ηx2〉. The Laplace transform of �2(x; t) = 〈ηx1 ηx2〉 is given by Corollary
2.2 as

�̂2(x; s) = α2 s−1 M2(s)L2(s)A2 M1(s)L1(s)A1 1.

We computed M1(s)L1(s)A1 1 in (16). Combining this with Remark 1.1(a) gives

�̂2(x; s) = α2 s−1 L0
2,1(s) (I + γ L0

1(s))−1 p̂0

1 + γ p̂0(0)
,

where p̂0 is the function x → p̂(x, 0; s).
To obtain the Laplace transform

∑
x1<x2

̂〈ηx1ηx2〉 we sum over x ∈ X2. If we recall that the kernel
of L0

2,1(s) is p̂(x, (0, y)) and that the sum of this over x ∈ X2 is s− 1 we see that the desired sum is
the inner product of the remaining function with the constant function s− 1. Thus,∑

x1<x2

̂〈ηx1ηx2〉 = α2s−2

1 + γ p̂0(0)
((I + γ L0

1(s))−1̂p0, 1). (17)

(Here we use the fact that p̂0 belongs to L1 and that L0
1(s) is a bounded operator on this space.)

What follows is not rigorous. We want to rescale (I + γ L0
1(s))−1 as s → 0, and we refer to

formula (A1) given in the Appendix for p(x, y; t). After taking Laplace transforms in the case n = 2
we find that L0

1(s) has kernel

L0
1(x, y; s) =

∑
σ∈B2

1

(2π i)2

∫
CR

∫
CR

Aσ

ξ x
σ (2) ξ

−y
2

s − ε(ξ1) − ε(ξ2)

dξ1 dξ2

ξ1 ξ2
, (18)

where CR is a circle with radius R with R large. (Some integrals are taken over two pairs of different
contours and the results averaged.) To begin with, s is so large that taking Laplace transforms under
the integral sign is valid.

If we ignore the poles of the Aσ we can move both contours to the unit circle C1. Then the range
of ε(ξ 1) + ε(ξ 2) is [ − 4, 0], so we may take any s > 0. As s → 0 the main contribution comes
from a neighborhood of ξ 1 = ξ 2 = 1 because the denominator vanishes there when s = 0. If we set
ξ1 = eiv1 , ξ2 = eiv2 then the integral with its factor becomes to first order

1

4π2

∫
R

∫
R

Aσ (eiv1 , eiv2 )
ei (vσ (2) x−v2 y)

s + (v2
1 + v2

2)/2
dv1 dv2

= 1

2π2

∫
R

∫
R

Aσ (ei
√

2s v1 , ei
√

2s v2 )
ei

√
2s (vσ (2) x−v2 y)

1 + v2
1 + v2

2

dv1 dv2.
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This becomes, after the scaling x → x/
√

2s, y → y/
√

2s,

1

2π2
√

2s

∫
R

∫
R

Aσ (ei
√

2s v1 , ei
√

2s v2 )
ei (vσ (2) x−v2 y)

1 + v2
1 + v2

2

dv1 dv2,

which acts on functions on R+.
Each Aσ has absolute value 1 on C1 × C1, and each Aσ (ei

√
2sv1 , ei

√
2sv2 ) has limit 1 as s → 0

except when v1 = v2 (mod 2π ). Thus, we replace the above by the approximation

1

2π2
√

2s

∫
R

∫
R

ei (vσ (2) x−v2 y)

1 + v2
1 + v2

2

dv1 dv2.

This depends only on σ (2). If we use the fact that the denominator is even in each vi , and that
v−i = −vi , we see that the sum over σ ∈ B2 of the integrals equals

1

π2
√

2s

∫
R

∫
R

ei v2 (x−y) + ei v2 (x+y)

1 + v2
1 + v2

2

dv1 dv2 + 2

π2
√

2s

∫
R

∫
R

ei (v1 x−v2 y)

1 + v2
1 + v2

2

dv1 dv2.

In the first integral we integrate first with respect to v1, and we obtain

1

π
√

2s

∫
R

ei v (x−y) + ei v (x+y)

√
1 + v2

dv + 2

π2
√

2s

∫
R

∫
R

ei (v1 x−v2 y)

1 + v2
1 + v2

2

dv1 dv2. (19)

(The integrals are K0 Bessel functions, but this fact is not useful.)
These are of the order 1/

√
s as s → 0. Now we indicate why the contributions from the poles

of the Aσ , when we shrink the contours, are of lower order.
Consider the permutations ( ± 2 1), when Aσ = S(ξ 2, ξ 1). (Times ξ−1

1 when σ = ( − 2 1); this
has no effect on what follows.) With the ξ 2-integration over CR , we shrink the ξ 1-contour to C1.
Then when we shrink the ξ 2-contour we pass the pole at ξ2 = 2 − ξ−1

1 for all ξ1 ∈ C1. The residue
is a constant times ∫

C1

(
ξ − 1

ξ

)2
ξ x (2 − ξ−1)−y−1

s − (ξ−1)2

2ξ−1

dξ

ξ
, (20)

where we replaced ξ 1 by ξ . With either branch of ξ 1/2 we may write

(ξ − 1)2

2ξ − 1
= (ξ 1/2 − ξ−1/2)2

2 − ξ−1
.

On C1 the numerator is negative real (except when ξ = 1) while the denominator lies in the right
half-plane. Thus the quotient lies in the left half-plane (except when ξ = 1) so we may take any s
> 0 in the integral. Since again the main contribution comes from near ξ = 1, we set ξ = eiv and
make the replacements 2 − ξ−1 → 2 − (1 − iv) = 1 + iv → eiv , and we get∫

R

v2

s + v2
eiv(x−y) dv = √

s
∫
R

v2

1 + v2
ei

√
s v(x−y) dv.

After the scaling this becomes independent of s.
The factor (ξ − 1)2 in the integrand in (20) was important. It also appears in the residues for the

other integrals, which also become independent of s by similar computations. We omit the details.
Thus when we scale the contributions from the poles of the Aσ are independent of s, and so of

lower order than the main terms (19).
Set

J1(x, y) = 1

2π

∫
R

ei v (x−y) + ei v (x+y)

√
1 + v2

dv,

J2(x, y) = 1

π2

∫
R

∫
R

ei (v1 x−v2 y)

1 + v2
1 + v2

2

dv1 dv2.
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We showed that 1 + γ L0
1(s), when scaled, is equal to 2γ /

√
2s (J1 + J2) plus an operator independent

of s. Therefore, we presume that to a first approximation the scaled operator (1 + γ L0
1(s))−1 is equal

to (2γ )−1
√

2s (J1 + J2)−1. Also, we see from (10) and the symmetry of p̂(x, y; s) that

p̂0(x) = p̂(x, 0; s) ∼
√

2

s
e−√

2s x as s → 0.

This gives the Conjecture

((I + γ L0
1(s))−1 p̂0, 1) ∼ 1

γ
√

2s
((J1 + J2)−1 e−x , 1) as s → 0. (21)

We shall show that the inner product equals 2/π . Assume this, and the conjecture, for now. Then
from (17) and the asymptotics p̂(0, 0; s) ∼ √

2/s as s → 0 we find that∑
x1<x2

̂〈ηx1ηx2〉 ∼ 1

π

α2

γ 2
s−2 as s → 0.

Therefore by the Tauberian theorem,∑
x1<x2

〈ηx1 ηx2〉 ∼ 1

π

α2

γ 2
t as t → ∞.

Since

〈�N (t)2〉 =
∑

x1,x2≥0

〈ηx1 ηx2〉 = 2
∑

x1<x2

〈ηx1 ηx2〉 + 〈�N (t)〉,

and �N(t) = o(t), we get the result stated in Sec. II,

〈�N (t)2〉 ∼ 2

π

α2

γ 2
t as t → ∞.

Now we show that the inner product in (21) equals 2/π . We first use an observation about
Wiener-Hopf plus Hankel operators, of which J1 is one. (Recall that our operators act on functions
on R+.) Suppose we have such an operator with kernel J(x − y) + J(x + y), so that the result of
its action on a function f on R+ is

(J f )(x) =
∫ ∞

0
(J (x − y) + J (x + y)) f (y) dy.

If we extend f to an even function on R, then this equals∫ ∞

−∞
J (x − y) f (y) dy.

So the operator becomes simply convolution by J.
Also, it follows from the fact that J2(x, y) is even in y that if f, defined on R+, is extended to be

even on R then

(J2 f )(x) = 1

2

∫ ∞

−∞
J2(x, y) f (y) dy.

To recapitulate, define

K1(x, y) = 1

2π

∫
R

ei v (x−y)

√
1 + v2

dv,

K2(x, y) = 1

2π2

∫
R

∫
R

ei (v1 x−v2 y)

1 + v2
1 + v2

2

dv1 dv2,

acting on functions on R. Then on R+ we have (J1 + J2)f = (K1 + K2)f, where the f on the right
is the even extension of the f on the left.
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It follows from this that for an even function f on R, (J1 + J2)− 1f is the restriction to R+ of
(K1 + K2)− 1f. (This uses that K1 + K2 commutes with the operator f(x) → f( − x).) Therefore,
the inner product in (21), which is over R+, is equal to

1

2
((K1 + K2)−1 e−|x |, 1), (22)

where this inner product is over R.
Because of the forms of the kernels of K1 and K2, the operators simplify when we conjugate

with the Fourier transform. The operator K1 becomes K̂1, which is multiplication by the function
1/

√
1 + v2, and the operator K2 becomes K̂2, which has kernel

K̂2(u, v) = 1

π

1

1 + u2 + v2
.

Since the Fourier transform of 1 with factor 1/2π outside the integral is δ0 and the Fourier
transform of e− |x| with factor 1 is 2/(1 + v2), we see that (22) (which equals the inner product in
(21)) equals

((K̂1 + K̂2)−1(1 + v2)−1, δ0).

If we use

(K̂1 + K̂2)−1 = K̂ −1/2
1 (1 + K̂ −1/2

1 K̂2 K̂ −1/2
1 )−1 K̂ −1/2

1

and the fact that K̂ −1/2
1 δ0 = δ0, we see that the above equals

((I + K̂ )−1 ψ, δ0), (23)

where

K̂ (u, v) = 1

π

(1 + u2)1/4 (1 + v2)1/4

1 + u2 + v2
, ψ(v) = (1 + v2)−3/4.

If we conjugate with the unitary operator f(u) → (cosh x)1/2f(sinh x) we find that (23) equals
((I + K̃ )−1 ψ̃, δ0), where

K̃ (x, y) = (cosh x)1/2 K̂ (sinh x, sinh y) (cosh y)1/2 = 1

π

cosh x cosh y

1 + sinh2 x + sinh2 y
,

ψ̃(x) = (cosh x)1/2 ψ(sinh x) = sech x .

From

cosh x cosh y = 1

2
(cosh(x + y) + cosh(x − y)),

1 + sinh2 x + sinh2 y = cosh(x + y) cosh(x − y),

one sees that

K̃ (x, y) = 1

2π
(sech (x − y) + sech (x + y)).

Now ψ̃ is even, and when K̃ is restricted to the space of even functions it equals the operator with
convolution kernel sech (x − y)/π . Conjugating with the Fourier transform, this operator becomes
multiplication by sech (πξ /2). The Fourier transform of sech x with factor 1/2π is (1/2) sech (πξ /2),
and the Fourier transform of δ0 with factor 1 is 1. Therefore,

((I + K̃ )−1 ψ̃, δ0) = 1

2

∫ ∞

−∞

1

1 + sech (πξ/2)
sech (πξ/2) dξ = 2

π
.

Thus the inner product in (21) is 2/π as claimed.
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APPENDIX: THE FORMULAS FOR p(x, y; t)

The Weyl group Bn is the group of signed permutations, functions σ : [1, n] → [ − n, −
1]∪[1, n] such that |σ | ∈ Sn . An inversion in Bn is a pair ( ± σ (i), σ (j)) with i < j such that ± σ (i)
> σ (j). We write τ = p/q.

We define

S(ξ, ξ ′) = − p + q ξξ ′ − ξ

p + q ξξ ′ − ξ ′ , r (ξ ) := ξ − 1

1 − τ ξ−1
, ε(ξ ) = p ξ−1 + q ξ − 1,

and then define

Aσ =
∏

σ (i)<0

r (ξσ (i)) ×
∏

{S(ξa, ξb) : (a, b) is an inversion in Bn},

with the convention ξ − a = τ /ξ a.
The formula, valid when q �= 0, is

p(x, y; t) = 1

n!

∑
σ∈Bn

1

(2π i)n

∫
· · ·

∫
Aσ (ξ )

∏
i

(
ξ

xi
σ (i) ξ

−yi −1
i eε(ξi ) t

)
dξ1 · · · dξn, (A1)

where x = {x1, . . . , xn} and y = {y1, . . . , xn}. The domain of integration is⋃
μ∈Sn

Cμ(1) × · · · × Cμ(n),

where the Ca are circles with center 1/2q and distinct radii Ra. The Ra should be so large that S(ξ , ξ ′)
is analytic for ξ , ξ ′ on and outside Ca . (We cannot simply take C × · · · × C with C a circle with large
radius, because then there would be nonintegrable singularities of S(ξ a, ξ b) on the contour when a >

0, b < 0. However, by taking the Ra → R we can interpret each integral as a symmetric distribution
supported on C × · · · × C applied to the product in the integrand.)

In the special case n = 1,

p(x, y; t) = 1

2π i

∫
CR

[
ξ x−y−1 + τ − ξ

1 − ξ
τ x ξ−x−y−2

]
eε(ξ ) t dξ,

where CR is a circle around 0 of radius R > 1.
The formulas do not hold for p = 1 TASEP on Z+. But then the probability is the same as for

TASEP on Z, and we have then5 (or Ref. 8, p. 820)

p(x, y; t) = det

(∫
Cr

(1 − ξ ) j−iξ xi −y j −1etε(ξ ) dξ

)
, (A2)

where Cr is a circle with center 0 and radius r < 1.
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