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Figure: Want the (random) height function h = h(x , t)



Modelling Growth Processes

∂h

∂t
= Φ (h, x , t) + W (x , t)

h = h(x , t) = height function

Φ −→ captures growth effects to be modelled

W −→ noise term

This is a nonlinear stochastic PDE

Discrete versions are also popular models



Kardar-Parisi-Zhang–1986

Growth occurs normal to the surface
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term in Φ.



KPZ Equation

∂h

∂t
= ν

∂2h

∂x2︸︷︷︸
diffusion

+λ

(
∂h

∂x

)2

︸ ︷︷ ︸
growth

+ W︸︷︷︸
noise

I Nonlinear stochastic PDE.

I Difficult to make rigorous sense due to nonlinear growth term.

I KPZ made important prediction as t →∞

h(x , t) = v∞ t︸︷︷︸
deterministic linear growth

+ t1/3︸︷︷︸
1
3

fluctuations

χ

Famous KPZ 1
3 exponent. χ is a fluctuating quantity—no prediction

from KPZ phenomenology.



Experiments

I Finding a “pure KPZ system” has been difficult to achieve
experimentally.

I An early experiment (2003 Myllys, Timonen,. . . ) measured the
“smouldering fronts in paper sheets” and determined that fluctuations
were of order 1/3 demonstrating growth is in KPZ universality class.

Figure: Digitized slow-combustion fronts with 10 s intervals. Courtesy of
M. Myllys.
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I Takeuchi & Sano, 2010–11: Convection of nematic liquid crystal
driven by an electric field. They focus on the interface between two
turbulent states. A thin square container is filled with a liquid
crystal. The liquid crystal molecules, initially aligned perpendicular to
the cell surfaces, strongly fluctuate when an AC voltage is applied
leading to first turbulent state. A laser pulse nucleates a defect in the
liquid crystal causing a second turbulent state.

Figure: Growing droplet. Courtesy of K. Takeuchi.



I K. A. Takeuchi and M. Sano, Universal fluctuations of growing
interfaces: evidence in turbulent liquid crystals, Phys. Rev. Let. 104,
230601 (2010)

I K. A. Takeuchi, M. Sano, T. Sasamoto and H. Spohn, Growing
interfaces uncover universal fluctuations behind scale invariance,
Scientific Reports 1:34 (2011)

Droplet initial conditions

Flat initial conditions



Growing DSM2 cluster with a circular (a) and flat (b) interface. : Growing interfaces uncover universal fluctuations behind scale invariance ...
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Figure 1: Growing DSM2 cluster with a circular (a) and flat (b)
interface.
From
Growing interfaces uncover universal fluctuations behind scale invariance
Kazumasa A. Takeuchi Masaki Sano Tomohiro Sasamoto Herbert Spohn
Scientific Reports  1,  Article number: 34  doi:10.1038/srep00034

Figure 1: Growing DSM2 cluster with a circular (a) and flat (b) interface.

Binarised snapshots at successive times are shown with different colours. Indicated in the colour bar is the elapsed time after the laser
emission. The local height h(x, t) is defined in each case as a function of the lateral coordinate x along the mean profile of the interface (a
circle for a and a horizontal line for b). See also Supplementary Movies 1 and 2.
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Figure: The height function h = h(x , t) for droplet and flat initial conditions
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Figure: Comparison with theoretical predictions. Courtesy of K. Takeuchi.



Random Matrices

ΩN = {A : N × N complex hermitian or real symmetric matrix}

Gaussian Measure:
e−tr(A2) dA

Gaussian Unitary Ensemble for hermitian matrices (GUE)

Gaussian Orthogonal Ensemble for real symmetric matrices (GOE)
Eigenvalues are random variables

λ1 < λ2 < · · · < λN

Want distribution of largest eigenvalue λN .

Actually, want limiting distribution as size N →∞
Must center and normalize random variable λN to obtain a limit law.



Largest Eigenvalue Distributions (TW, 1990s)

I Unitary symmetry (GUE, β = 2)

F2(s) = exp

(
−
∫ ∞

s
(x − s)q2(x) dx

)
I Orthogonal symmetry (GOE, β = 1)

F1(s) = exp

(
−1

2

∫ ∞
s

(
q(x) + (x − s)q2(x)

)
dx

)
I q = q(x) is the unique solution to Painlevé II

q′′ = xq + 2q3

satisfying
q(x) ∼ Ai(x), x →∞



RMT Universality Theorems

I Invariant measures:

e−tr(A2) −→ e−tr(V (A)), V (A) = A2n +
∑
i<2n

ciA
i

I Hermitian case: Limit law F2, Deift, Kriecherbauer, McLaughlin,
Venakides & Zhou

I Real symmetric case: Limit law F1, Deift & Gioev
I Early special case V (A) = A4 − gA2: Its, Bleher, Stojanovic

I Wigner Matrices: Entries are iid random variables
I Soshnikov (1999)—odd moments zero & conditions on decay of

distribution
I Tao & Vu (2010)—needs only third moment to vanish to get limit law



Random Permutations

SN = Permutations of {1, 2, . . . ,N}

Assign equal probability to each σ ∈ SN .

`N(σ) = Length of longest increasing subsequence in σ

σ = (2, 8, 4, 1, 5, 3, 9, 7, 10, 6) ∈ S10

`10(σ) = 5

Theorem (Baik, Deift, Johansson, 1999):

lim
N→∞

P

(
`N − 2

√
N

N1/6
≤ x

)
= F2(x)



The Baik-Deift-Johansson theorem opened a new chapter in growth
processes and their connections with RMT largest eigenvalue distributions.

Building on work of Baik and Rains, Prähofer & Spohn, in the context
of a discrete growth model called PNG (polynuclear growth), predicted
that in KPZ growth

I Growth from a droplet: F2 and at the process level Airy2 process.

I Growth from a flat substrate: F1 and (later) the Airy1 process.

But what does the original KPZ equation predict?



KPZ & Stochastic Heat Equation

I Bertini & Giacomin (1997): Two essential insights

1. Define solution to KPZ equation through a Hopf-Cole transformation

h(T ,X ) = − log Z (T ,X )

where Z satisfies the stochastic heat equation

∂Z

∂T
=

1

2

∂2Z

∂X 2
− Z W

2. Z (T ,X ) is obtained from a weakly asymmetric simple exclusion process
(WASEP)

I For wedge initial conditions, in 2010 Sasamoto/Spohn and
Amir/Corwin/Quastel carried this program out which required
new theorems about the relation between stochastic heat equation
and WASEP. Both groups used the ASEP results of TW which
required a very delicate asymptotic analysis of the TW formula.
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ASEP on Integer Lattice

I Each particle has an independent clock—when it rings with
probability p (q) it makes a jump to the right (left) if site empty;
otherwise, jump is suppressed.

I Initial conditions:
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Mapping to Growing Interface

Initial height function corresponding to step initial condition

h(x , 0) = |x |
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Discrete Zε(T , X )

Bertini & Giacomin, Sasamoto & Spohn, Amir, Corwin &
Quastel:

Zε(T ,X ) =
1

2
ε−1/2 exp

[
−λεh(

t

γ
, x) + νεε

−1/2t

]
where

t = ε−3/2T , x = ε−1X , γ = q − p = ε1/2

νε =
1

2
ε+

1

8
ε2, λε = ε1/2 +

1

3
ε3/2

Need ASEP formula for h(t, x) and then let ε→ 0



h(t, x) for ASEP
Step I—Transition probability for N-particle system

I For N-particle ASEP: A configuration X = {x1, . . . , xN}, x1 < · · · xN .

I First compute for N-particle ASEP

PY (X ; t) = probability of configuration X at time t

given the initial configuration is Y at t = 0.

I Write master equation (forward equation) for PY (X ; t) and use
ideas from Bethe Ansatz: Incorporate the interaction between
particles into the boundary conditions of a free particle system.

I Want solution to master equation that obeys the initial condition

PY (X ; 0) = δX ,Y

Satisfying the initial condition is the hard part!
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SN denotes the permutation group on N symbols, σ = (σ1, . . . , σN) ∈ SN

Theorem (TW):

PY (X ; t) =
∑
σ∈SN

∫
C
. . .

∫
C

Aσ(ξ)
N∏

i=1

ξ
xi−yσ(i)−1

σ(i) etε(ξi ) dNξ

where

ε(ξi ) =
p

ξi
+ qξi − 1

Aσ(ξ) =
∏

inversions (β,α) of σ

S(ξβ, ξα)

S(ξ, ξ′) = − p + qξξ′ − ξ
p + qξξ′ − ξ′

C = sufficiently small circle about zero
i.e. all poles of Aσ lie outside of C

and each factor dξi carries a factor 1
2πi .



Step II: Compute marginal distributions

I Want PY (xm(t) ≤ x): The probability distribution of the position of
the mth particle from the left.

I Simplest case m = 1. Leads to a complicated sum over the
permutation group:∑

σ

sgn(σ)

∏
i<j

f (ξσ(i), ξσ(j))×

ξσ(2)ξ
2
σ(3) · · · ξ

N−1
σ(N)

(1− ξσ(1)ξσ(2) · · · ξσ(N))(1− ξσ(2) · · · ξσ(N)) · · · (1− ξσ(N))

)
where f (ξ, ξ′) = p + qξξ′ − ξ

I Surprisingly this equals

pN(N−1)

∏
i<j(ξj − ξi )∏

i (1− ξi )
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Story behind proof of identity
I First discover identity for small values of N using Mathematica.

I But how to prove the identity for all N?

I

I Doron saw the identity when it was still a conjecture and suggested to
the authors that an identity of I. Schur (Problem VII.47 in Polya &
Szegö) had a similar look about it and might be proved in a similar
way. This led to the proof.



Story behind proof of identity
I First discover identity for small values of N using Mathematica.
I But how to prove the identity for all N?

I

I Doron saw the identity when it was still a conjecture and suggested to
the authors that an identity of I. Schur (Problem VII.47 in Polya &
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I For m > 1 computation of P(xm(t) ≤ x) is more complicated: Need
small contours and large contours. This requires another identity
involving τ -binomial coefficients, τ = p/q

I In final large contour expansion can take limit N →∞.

I For step initial condition and a final symmetrization of the integrand
leads to

P(xm(t) ≤ x) = (−1)m
∑
k≥m

1

k!

[
k − 1

k −m

]
τ

τm(m−1)/2−mk+k/2(pq)k2/2

×
∫
CR
· · ·
∫
CR

∏
i 6=j

ξj − ξi
f (ξi , ξj)

∏
i

ξxi etε(ξi )

(1− ξi )(qξi − p)
dξ1 · · · dξk

where [ n
k ]τ is the τ -binomial coefficient and CR is a large contour

about zero, i.e. no poles outside of contour.

I Unfortunately, we are unable to perform an asymptotic analysis at this
stage. Have similar formulas for other initial conditions.
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Step III: Contour Integral Representation
Fredholm Determinant Integrand

I For step initial condition, above integrands have nice determinant
representation (essentially a Cauchy determinant)

I With this determinant identity, recognize the kth term to be the kth
term in the Fredholm expansion times some coefficients. This
together with the τ -binomial theorem gives

PZ+(xm(t) ≤ x) =

∫
det(I − λK )∏m−1
k=0 (1− λτk)

dλ

λ

K (ξ, ξ′) = q
ξxetε(ξ)

f (ξ, ξ′)

and contour of integration encloses all singularities of the integrand.
I However, still unable to do asymptotic analysis! The operators K

have exponentially large norms as t →∞.
I The idea is to replace K with operators with the same Fredholm

determinant but better behaved norms.
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I The idea is to replace K with operators with the same Fredholm
determinant but better behaved norms.
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Limit Theorems

Theorem (TW) Let m = [σt], γ = q − p fixed, then

lim
t→∞

PZ+

(
xm(t/γ) ≤ c1(σ)t + c2(σ) s t1/3

)
= F2(s)

uniformly for σ in compact subsets of (0, 1) where c1(σ) = −1 + 2
√
σ,

c2(σ) = σ−1/6(1−
√
σ)2/3.

Theorem (ACQ, SS) Let

Zε(T ,X ) = p(T ,X )eFε(T ,X ), p = heat kernel

then

FT (s) = lim
ε→0

P(Fε(T ,X ) +
T

4!
≤ s) = KPZ crossover distribution

Remark: Explicit formulas for FT (s).
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Corollary(ACQ, SS)

lim
T→∞

FT

(
2−1/3T 1/3s

)
= F2(s)

The KPZ Equation is in the KPZ Universality Class!

Summary of KPZ Universality

I Scaling exponent 1
3 does not depend upon initial configuration

I Droplet initial conditions: Long time one-point fluctuations
described by F2.

I Flat initial conditions: Long time one-point fluctuations described
by F1. Not (yet) a rigorous proof of this for KPZ equation.
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Thank you for your attention
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