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Theme of Lecture

Simple models ➠ General Theory

•Classical harmonic oscillator ➠  
Theory of small oscillations

•Quantum harmonic oscillator ➠ 
“This example is of importance 
for general theory, because it 
forms a corner-stone in the 
theory of radiation”, P.A.M. Dirac

2Wednesday, March 4, 2009



Simple models ➠ General Theory

3Wednesday, March 4, 2009



•Ideal gas ➠ Formulation of 
statistical mechanics by Gibbs

Simple models ➠ General Theory

3Wednesday, March 4, 2009



•Ideal gas ➠ Formulation of 
statistical mechanics by Gibbs

•Schrödinger’s solution of the 
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•Ideal gas ➠ Formulation of 
statistical mechanics by Gibbs

•Schrödinger’s solution of the 
Hydrogen atom + Pauli principle ➠ 
Theory of atomic structure

•The problem, of course, is to 
choose the “right” simple model!

Simple models ➠ General Theory

3Wednesday, March 4, 2009



•The 2D Ising Model

•Random Matrix Theory

•Asymmetric Simple Exclusion 
Process

Three examples from 
statistical physics
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•The 2D Ising Model

•Random Matrix Theory

•Asymmetric Simple Exclusion 
Process

Three examples from 
statistical physics

Integrable Structure 
& 

Universality Theorems/Conjectures
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Integrable Structure
• Fredholm determinants

• Painlevé functions

Paul Painlevé
 1863-1933

Erik Ivar Fredholm
1866-1927
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2D Ising Model:
Simple model of a magnet

Lars Onsager
1903-1976
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2D Ising Model:
Simple model of a magnet

• Onsager (1944) found the 
exact free energy in zero 
magnetic field

• Beginning of modern 
critical phenomena -- 
fluctuations are important 
(B. Widom, M. Fisher, 
L.Kadanoff)

• Renormalization group (K. 
Wilson) 

Lars Onsager
1903-1976
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Spontaneous Magnetization

C. N. Yang

The ⅛ is the “universal”
part for a large class 

of ferromagnetic 2D systems, 
critical exponent
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Ising Correlations
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Ising Correlations

σx = ±1 = spin at site x ∈ Z2
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sum over nearest 
neighbors x,y
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Ising Correlations

σx = ±1 = spin at site x ∈ Z2

C=configuration = assignment of spins to lattice
EΛ=energy of C in box Λ =-∑ σx σy↱

sum over nearest 
neighbors x,y

       Gibbs measure =
       Probability of C = Exp(-β EΛ(C))/ZΛ(β)
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Ising Correlations

σx = ±1 = spin at site x ∈ Z2

C=configuration = assignment of spins to lattice
EΛ=energy of C in box Λ =-∑ σx σy↱

sum over nearest 
neighbors x,y

       Gibbs measure =
       Probability of C = Exp(-β EΛ(C))/ZΛ(β)

⟨ σ0 σx ⟩ = spin-spin correlation = lim E(σ0 σx) 
Λ→∞
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Determinantal Structure of 2D 
Ising Model on Square Lattice
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Determinantal Structure of 2D 
Ising Model on Square Lattice

⟨ σ0 σ(j,0) ⟩ = Toeplitz determinant, 
Onsager, Montroll, Potts & Ward

M2(T) = lim ⟨ σ0 σ(j,0) ⟩
j→∞

⟿ Strong Szegö limit theorem

What about correlation functions near the
critical temperature?
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Scaling Limit
ξ(T)=correlation length→∞ as T→Tc ,

R=distance between two spins→∞
such that

r=R/ξ(T) is fixed

±
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Scaling Limit
ξ(T)=correlation length→∞ as T→Tc ,

R=distance between two spins→∞
such that

r=R/ξ(T) is fixed

±

F±(r) = lim
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〈σ0σx〉
M2(T )
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Scaling Limit
ξ(T)=correlation length→∞ as T→Tc ,

R=distance between two spins→∞
such that

r=R/ξ(T) is fixed

±

F±(r) = lim
sl

〈σ0σx〉
M2(T )

F- = Fredholm det 
F+ = Fredholm det × extra factor 
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Theorem.(Wu, McCoy, Barouch & C.T., 1973–77)

F±(r) =
{

sinhψ(r)/2
cosh ψ(r)/2 ×

exp

(
−1

4

∫ ∞

r

(
dψ

dy

)2

− sinh2 ψ(y) dy

)

where

d2ψ

dr2
+

1
r

dψ

dr
=

1
2

sinh(2ψ)

ψ(r) ∼ 2
π

K0(r), r →∞

Note: η = exp(−ψ) is a Painlevé III transcendent.
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T. T. Wu

This is the first appearance of Painlevé 
functions in statistical physics

B. M. McCoy 
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Theory Emerging from 2D 
Ising Model

13Wednesday, March 4, 2009
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Ising Model

• Notion of a τau-function & 
“rediscovery” of the importance of 
isomonodromic deformations: M. Sato, 
T. Miwa and M. Jimbo (1977-1981).
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Theory Emerging from 2D 
Ising Model

• Notion of a τau-function & 
“rediscovery” of the importance of 
isomonodromic deformations: M. Sato, 
T. Miwa and M. Jimbo (1977-1981).

• Holonomic quantum fields (SMJ)

• Connection formulas for Painlevé 
functions, MTW, M. Ablowitz, H.Segur, 
M. Jimbo, A. Its, A. Kapaev, . . .
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M. Sato

M. Jimbo

T. Miwa
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Open Problem 
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• The Ising scaling functions F± are conjectured 
to be universal for a large class of 2D 
ferromagnetic systems.
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• The Ising scaling functions F± are conjectured 
to be universal for a large class of 2D 
ferromagnetic systems.

• These systems don’t have the  “determinantal 
structure” & therefore can’t apply methods so 
far developed.

Open Problem 
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• The Ising scaling functions F± are conjectured 
to be universal for a large class of 2D 
ferromagnetic systems.

• These systems don’t have the  “determinantal 
structure” & therefore can’t apply methods so 
far developed.

• Problem: Classify 2D ferromagnetic systems 
whose scaling functions are F±.  

Open Problem 
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Random Matrix Theory
In the beginning . . .

John Wishart
1898-1956

Eugene Wigner
1902-1995

Freeman Dyson
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Gaussian Ensembles
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• Simplest random matrix models: the N×N 
Gaussian Ensembles: GOE, GUE & GSE.

Gaussian Ensembles
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• P(A)≃Exp(-Tr(A2)), measure invariant under 
orthogonal, unitary or symplectic 
transformations.

Gaussian Ensembles
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• Simplest random matrix models: the N×N 
Gaussian Ensembles: GOE, GUE & GSE.

• P(A)≃Exp(-Tr(A2)), measure invariant under 
orthogonal, unitary or symplectic 
transformations.

• Basic quantity: λmax(A) = largest eigenvalue of a 
random matrix A

• Basic fact is that the distribution of λmax(A) is a 
Fredholm determinant.

•  Want limit theorem as N→∞               

Gaussian Ensembles
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Limit Theorem
H. Widom & T.
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Limit Theorem
H. Widom & T.

• Prob(λmax ≤ c1(N)+c2(N) s)→Fβ(s) as 
N→∞ where β=1 (orthogonal), 2 
(unitary) or 4 (symplectic)
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Limit Theorem
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• Prob(λmax ≤ c1(N)+c2(N) s)→Fβ(s) as 
N→∞ where β=1 (orthogonal), 2 
(unitary) or 4 (symplectic)

• Each Fβ is expressible in terms of a  
Fredholm determinant.  Scaler kernel 
for β=2 and matrix kernel for β=1,4.
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Limit Theorem
H. Widom & T.

• Prob(λmax ≤ c1(N)+c2(N) s)→Fβ(s) as 
N→∞ where β=1 (orthogonal), 2 
(unitary) or 4 (symplectic)

• Each Fβ is expressible in terms of a  
Fredholm determinant.  Scaler kernel 
for β=2 and matrix kernel for β=1,4.

•  Fβ have Painlevé representation
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Painlevé II Representation of F2

F2(s) = exp
(
−

∫ ∞

s
(x− s)q2(x) dx

)

d2q

dx2
= xq + 2q3, Painlevé II

q(x) ∼ Ai(x), x→∞

This q is called the Hastings-McLeod solution.
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Universality Theorems
Invariant measures

Replace Gaussian measure with
exp(-N V(A)) dA/ZN

where V is a polynomial, Gaussian V(x)=x2

Have orthogonal, unitary & symplectic cases

Riemann-Hilbert approach: 
Unitary Case: Its, Bleher, Deift, Kriecherbauer, 

McLaughlin, Venakides, Zhou
Orthogonal & Symplectic: Deift, Gioev 
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Universality Theorems
Invariant measures

Replace Gaussian measure with
exp(-N V(A)) dA/ZN

where V is a polynomial, Gaussian V(x)=x2

Have orthogonal, unitary & symplectic cases

Riemann-Hilbert approach: 
Unitary Case: Its, Bleher, Deift, Kriecherbauer, 

McLaughlin, Venakides, Zhou
Orthogonal & Symplectic: Deift, Gioev 

Generically behavior is same as Gaussian cases
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Universality Theorems
Wigner Symmetric/Hermitian Matrices

AN =
1√
N

(aij)
N
i,j=1

algebraically independent aij are iid random 
variables, odd moments zero, even moments decay 
at least as fast as Gaussian moments.  This is 
“nonintegrable” in that there is no Fredholm 
determinant repr. of distr. function.
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Universality Theorems
Wigner Symmetric/Hermitian Matrices

AN =
1√
N

(aij)
N
i,j=1

algebraically independent aij are iid random 
variables, odd moments zero, even moments decay 
at least as fast as Gaussian moments.  This is 
“nonintegrable” in that there is no Fredholm 
determinant repr. of distr. function.

A. Soshnikov: Limiting distribution of largest 
eigenvalue same as in Gaussian case
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The asymmetric simple exclusion 
process (ASEP): Introduced in 
1970 by Frank Spitzer in 
Interaction of Markov Processes.

The “default stochastic model for 
transport phenomena”.  The 
``Ising model of nonequilibrium 
phenomena’’.

ASEP is a model for interacting 
particles on a lattice. Frank Spitzer

1926-1992
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ASEP on Integer Lattice

⬅⬅ pq p≠q
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ASEP on Integer Lattice
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exponential distribution with  parameter one

●

When alarm rings particle jumps to right with 
probability p and to the left with probability q

●

p≠q
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ASEP on Integer Lattice

⬅⬅ pq

Each particle has an alarm clock -- 
exponential distribution with  parameter one

●

When alarm rings particle jumps to right with 
probability p and to the left with probability q

●

Jumps are suppressed if neighbor is occupied ●

p≠q
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Initial Conditions

24Wednesday, March 4, 2009



Initial Conditions

Step Initial Condition, q>p
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Initial Conditions

Step Initial Condition, q>p

Flat Initial Condition
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Initial Conditions

Step Initial Condition, q>p

Flat Initial Condition

Random: Product Bernoulli measure
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●●●●●●

Growth Processes & ASEP

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
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●●●●●●

Growth Processes & ASEP

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
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KPZ Equation & Growth Processes

∂h

∂t
= ν

∂2h

∂x2
+ λ

(
∂h

∂x

)2

+ w

u(x, t) =
∂h

∂x
Noisy Burgers eqn

↵Kardar, Parisi & Zhang
❘❘
❘

diffusion     growth    noise
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Remarks
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• Physicists expect KPZ equation to describe a 
large class of stochastically growing interfaces: 
KPZ Universality

Remarks
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• Physicists expect KPZ equation to describe a 
large class of stochastically growing interfaces: 
KPZ Universality

• KPZ eqn mathematically difficult to handle so 
make discrete space approximation.

• ASEP is one discrete version of KPZ; thus 
expect ``universal behavior’’ in limit theorems

• TASEP is ASEP with jumps only to left or jumps 
only to right.  TASEP is a simpler model 
(determinantal process)  

Remarks
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Total Current I(x,t)

Step Initial Condition 
Take q>p net drift to left 

I(x,t) = # of particles ≤ x at time t, x ≤ 0

Let η(x,t)=1 if particle at x at time t 
otherwise 0

so I(x,t)=∑y≤x η(y,t)
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Current & Position of mth particle
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Current & Position of mth particle
Step initial condition

xm(t)=position of mth particle from 
left at time t, xm(0)=m
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Current & Position of mth particle
Step initial condition

xm(t)=position of mth particle from 
left at time t, xm(0)=m

Event:
{I(x,t)=m}={xm(t)≤x, xm+1(t)>x}
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Current & Position of mth particle
Step initial condition

xm(t)=position of mth particle from 
left at time t, xm(0)=m

Event:
{I(x,t)=m}={xm(t)≤x, xm+1(t)>x}

From this and exclusion property:

Prob(I(x,t)≤m) = 1-Prob(xm+1(t)≤x)
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Integrable Structure of ASEP

Hans Bethe
1906-2005

We solve the Kolmogorov 
forward equation (“master 
equation”) for the 
transition probability 
Y→X:

PY(X;t)

Main idea comes from the
Bethe Ansatz (1931)
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● ● ● ● ● ● ● ● ● ●

N=1 ASEP 

probability pprobability q

Let PY(X;t)=probability Y→X at time t.  
Master equation:

dP

dt
= p P (x− 1; t) + q P (x + 1; t)− P (x; t)

Py(x; t) =
∫

C
ξx−y−1etε(ξ) dξ

ε(ξ) =
p

ξ
+ q ξ − 1
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N=2 ASEP

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Master equation takes simple form for this configuration

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Master equation reflects exclusion for this configuration
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N=2 ASEP

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Master equation takes simple form for this configuration

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Master equation reflects exclusion for this configuration

Impose boundary conditions for first equation so 
that if satisfied the second equation is 
automatically satisfied --- Bethe’s Idea
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Important Point

New boundary conditions arise for N=3, 4,...

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Last configuration requires new BC -- 
automatically satisfied by 2-particle BC
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Bethe Ansatz Solution of Master 
Equation
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Bethe Ansatz Solution of Master 
Equation

For any ξ1,...,ξN ∈ C\{0} and any permutation 
σ a solution is ∏

j

ξ
xj

σ(j) etε(ξj)
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Bethe Ansatz Solution of Master 
Equation

For any ξ1,...,ξN ∈ C\{0} and any permutation 
σ a solution is ∏

j

ξ
xj

σ(j) etε(ξj)

Can take linear combination or integral of 
a linear combination & have a solution: 
∫ ∑

σ∈SN

Fσ(ξ)
∏

j

ξ
xj

σ(j)

∏

j

etε(ξj) dNξ
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Remarks
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• Want BC to be satisfied.  Bethe’s idea: This 
can be applied pointwise to the integrand
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• Gives condition on coefficients with result 
(this part same as the Yang & Yang analysis 
of XXZ spin Hamiltonian) 
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• Want BC to be satisfied.  Bethe’s idea: This 
can be applied pointwise to the integrand

• Gives condition on coefficients with result 
(this part same as the Yang & Yang analysis 
of XXZ spin Hamiltonian) 

If Aσ = sgn(σ)
∏

i<j(p + qξσ(i)ξσ(j) − ξσ(i))∏
i<j(p + qξiξj − xii)

then solution to DE that satisfies BC is
∑

σ

∫
Aσ(ξ)

∏

i

ξ
xi−yσ(i)−1

σ(i) etε(ξi) dNξ

Remarks
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• To recap: We have found a solution to the 
master equation satisfying the BCs.
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reduces to δX,Y where Y={y1,...,yN} is the initial 
configuration of N particles.
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• Must show the solution at X={x1,...xN} & t=0 
reduces to δX,Y where Y={y1,...,yN} is the initial 
configuration of N particles.

• Term for σ=id satisfies initial condition. Must 
show remaining N!-1 terms give zero at t=0. 
This is the new part of the problem.
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• To recap: We have found a solution to the 
master equation satisfying the BCs.

• Must show the solution at X={x1,...xN} & t=0 
reduces to δX,Y where Y={y1,...,yN} is the initial 
configuration of N particles.

• Term for σ=id satisfies initial condition. Must 
show remaining N!-1 terms give zero at t=0. 
This is the new part of the problem.

• Have not yet specified the contours.

Remarks
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Theorem (TW): If p != 0 and r is small enough then

PY (X; t) =
∑

σ∈SN

∫

CN
r

Aσ(ξ)
∏

i

ξxi

σ(i)

∏

i

(
ξ−yi−1
i eε(ξi) t) dNξ.

where

Aσ = sgnσ

∏
i<j(p + qξσ(i)ξσ(j) − ξσ(i))∏

i<j(p + qξiξj − ξi)

and satisfies
PY (X; 0) = δY (X).

Remarks:

• There is no Ansatz in our work!

• Usual Bethe Ansatz calculates the spectrum of the operator. This leads
to transcendental equations for the eigenvalues and issues of completeness
of the eigenfunctions.

• We compute the semigroup directly. No spectral theory.
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Marginal Distributions
P(xm(t)≤x)
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Marginal Distributions
P(xm(t)≤x)

Fix xm=x, sum PY(X;t) over allowed x1, x2, x3, ...
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Marginal Distributions
P(xm(t)≤x)

Fix xm=x, sum PY(X;t) over allowed x1, x2, x3, ...

Several “miraculous identities” occur that 
allow one to take N➝∞ to obtain marginal 
distribution as a single contour integral 

whose integrand is a Fredholm determinant

P(xm(t)≤s)=∮ det(I-λ K) f(λ) dλ

K is an integral operator on circle
38Wednesday, March 4, 2009



Asymptotic analysis 

We now transform the operator 
K so that we can perform a 
steepest descent analysis.

Recall that the generic behavior 
for the coalescence of two saddle 
points leads to the Airy function 
Ai(x)

George Airy
1801-1892
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Main Result
We set

σ =
m

t
, c1 = −1+2

√
σ, c2 = σ−1/6(1−

√
σ)2/3, γ = q−p

Theorem (TW). When 0 ≤ p < q we
have

lim
t→∞

P
(

xm(t/γ)− c1t

c2t1/3
≤ s

)
= F2(s)
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Main Result
We set

σ =
m

t
, c1 = −1+2

√
σ, c2 = σ−1/6(1−

√
σ)2/3, γ = q−p

Theorem (TW). When 0 ≤ p < q we
have

lim
t→∞

P
(

xm(t/γ)− c1t

c2t1/3
≤ s

)
= F2(s)

Theorem also has a current fluctuation formulation
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Total Current Fluctuations

I(x,t) = # of particles ≤ x at time t, x ≤0

Theorem (TW).

where

0 ≤ v < 1, a1 =
1
4
(1− v)2, a2 = 2−4/3(1− v2)2/3

lim
t→∞

P
(

I([−vt], t/γ)− a1t

a2t2/3
≤ s

)
= 1− F2(−s)
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Remarks

42Wednesday, March 4, 2009



• Theorems generalize Kurt Johansson’s results 
for TASEP to ASEP.  

Remarks

42Wednesday, March 4, 2009



• Theorems generalize Kurt Johansson’s results 
for TASEP to ASEP.  

• Coefficients a1 & c1 known since 1980s, Liggett, 
Rost.

Remarks

42Wednesday, March 4, 2009



• Theorems generalize Kurt Johansson’s results 
for TASEP to ASEP.  

• Coefficients a1 & c1 known since 1980s, Liggett, 
Rost.

• These theorems establish KPZ Universality at 
the fluctuation level for ASEP.

Remarks

42Wednesday, March 4, 2009



• Theorems generalize Kurt Johansson’s results 
for TASEP to ASEP.  

• Coefficients a1 & c1 known since 1980s, Liggett, 
Rost.

• These theorems establish KPZ Universality at 
the fluctuation level for ASEP.

• Balázs & Seppäläinen; Quastel & Valkó prove 
t⅓ fluctuations for ASEP with Bernoulli product 
initial condition -- general probabilistic 
methods

Remarks

42Wednesday, March 4, 2009



First Appearance of F2 in growth processes
Baik, Deift & Johansson

6 7 1 8 5 4 10 9 2 3σ = { }

Patience Sorting (Aldous & Diaconis)
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First Appearance of F2 in growth processes
Baik, Deift & Johansson

6 7

1

8

5
4

10
9

2

3

!(σ) = Number of piles = 4

σ = { }

Patience Sorting (Aldous & Diaconis)
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Baik-Deift-Johansson Theorem
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Baik-Deift-Johansson Theorem
Theorem. Given a random permutation σ ∈ Sn,
let "(σ) equal the number of piles resulting from
the patience sorting algorithm. Then

lim
n→∞

P
(

"(σ)− 2
√

n

n1/6
≤ s

)
= F2(s).
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(
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Baik-Deift-Johansson Theorem
Theorem. Given a random permutation σ ∈ Sn,
let "(σ) equal the number of piles resulting from
the patience sorting algorithm. Then

lim
n→∞

P
(

"(σ)− 2
√

n

n1/6
≤ s

)
= F2(s).

● Johannsson showed F2 arises in a last passage 
percolation model (corner growth) which includes 
TASEP  with step initial condition.

● TASEP with flat initial conditions leads to F1, 
Sasamoto, Borodin, Ferrari, ...
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● Would like a conceptual understanding of why identities 
& cancellations appear in ASEP proofs.
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● Would like a conceptual understanding of why identities 
& cancellations appear in ASEP proofs.

● Extend ASEP results to other initial conditions, e.g. 
flat initial conditions.  Do we see F1 as in TASEP?

●  Can we apply Bethe Ansatz methods to other growth 
models? 

● Ultimately we want universality theorems not to rely 
upon integrable stucture of ASEP.  For ⅓ exponent 
progress by Balázs, Seppäläinen, Quastel & Valkó.
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Harold  Widom (left) and his brother Ben
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