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ASEP on Integer Lattice
Introduced by F. Spitzer (1970)

-=
qa b p*q

® Each particle has an alarm clock --
exponential distribution with parameter one

e When alarm rings particle jumps to right with
probability p and to the left with probability q

e Jumps are suppressed if neighbor is occupied
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Current Fluctuations

® Let I(x,1)= # of particles less than or equal
to x at time t. (Definition OK for step type
initial conditions.)

® I(x,t) is a random variable: What can be said
about its long-time behavior? Can we find a
central limit type theorem for I(x,t)?

@® First some results for the special case of
TASEP where particles are allowed o jump
in only one direction
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T(Totally) ASEP

Determinantal Process: Correlations are
expressed as determinants of kernel
functions K(x,y).

As a result many techniques from random
matrix theory can be applied to TASEP.

This determinantal structure goes back at
least to G. Schutz (1997).

First limit theorems: K. Johansson (2000),
"Shape Fluctuations and Random Matrices”
where TASEP was a limiting case of a certain
Corner Growth Model.
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Current & Position of m™ particle

Step initial condition
xm(t)=position of m™ particle from
left at time 1, xn(0)=m

Event:
{I(x, t)=mi={xm(t)<x, Xma1(t)>x}

From this and exclusion property:

Prob(I(x,1t)<m) = 1-Prob(Xmsi(t)<x)
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TASEP: Step Initial Condition

Theorem (K. Johansson):

lim P (I([_”t]’t) — ot 3) — 1 — Fy(—s)

where
1 ) _4/3 2\2/3
alzz(l_v),CLQ:Q (1—v9)“", 0<v<1

and Fzis a distribution function first arising in
random matrix theory. It can be expressed in
terms of a Painleve II function or as a Fredholm
determinant of the “Airy kernel”.
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Remarks

® Fluctuations are of order t3 not t\/2.

® This /3 exponent is related to the physicists’
KPZ Universality (Kardar-Parisi-Zhang)

® The coefficient a; goes back to H. Rost (1981).

® Proof relies heavily on the RSK algorithm
and the closely associated determinantal
structure: "Discrete random martrix
ensembles”.
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TASEP: Step Bernoulli, density p«l

Conjectured by M. Prahofer & H. Spohn (2002) &
proved by G. Ben Arous & I. Corwin (2009):

lim P

{— 00

I(|vt],t) — aqt (1 —Fy(—s), —-1l<v<2p—1,
SS — < 2
astl/3 1 - Fi(—s)°, v=2p—1.

where coefficients a; as before (v—-v) & F; is
another RMT distribution expressible in terms of
the same Painleve II function.

For v>2p-1 fluctuations are t/2 and Gaussian.

The transition: F, — F? — G
has appeared in other determinantal processes.
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The Big Question

Do these results extend to ASEP
and more generally to a wider class of 1D exclusion processes ?

® With regards to the t/3: M. Balazs & T. Seppaldinen
have proved this for Bernoulli (stationary) initial
conditions for nearest-neighbor ASEP. Quastel & Valko
extend the result to finite-range asymmetric exclusion.
Methods use coupling (BS) and comparison estimates
(QV). Methods so far do not extend to limit theorems.

® H. Widom & CT show for (nearest neighbor) ASEP the
two previous limit theorems remain exactly the same
when time t is replaced by t/(q-p) thus proving KPZ
Universality. Our methods start with ideas coming from
Bethe Ansatz.
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Main Steps in Proof of Limit
Theorems for ASEP

@® Use ideas from Bethe Ansatz to find exact expression
for the transition probability Y—X for finite N ASEP.

@ Use some amazing combinatorial identities to compute
marginal distributions P(xm(t) ¢ x). It is then possible to
take N — oco. Marginal expressed as an infinite sum
where k' term is a k-dimensional integral.

@ Again certain identities permit series to be summed to
one contour integral involving a Fredholm determinant.

® Asymptotic analysis of this Fredholm determinant.
Kernel initially not of familiar RMT structure.
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Integrable Structure of ASEP

We solve the Kolmogorov
forward equation ("master §
equation”) for the transition =
probability Y—X for finite N
ASEP:

PY (X, t)

Main idea comes from the
Bethe Ansatz (1931)

Hans Bethe In 1967
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N=1 ASEP

probability g == probability p

Let Py(X;t)=probability Y—=X at time .
Master equation:
dP

— =pPe—Lit) +q Pz + 13t) - P(a;t)

R - [ €0
C

8(€)=§+q€—1
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N=2 ASEP

- @

Master equation takes simple form for this configuration

-

Master equation reflects exclusion for this configuration
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N=2 ASEP

- @

Master equation takes simple form for this configuration

Master equation reflects exclusion for this configuration

Impose boundary conditions for first equation so
that if satisfied the second equation is
automatically satisfied --- Bethes Idea

»
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N=2 Equations for P(x;,x2;t)

X2 > X1 + 1 : Not neighbors

dP(x1,x9;t
(xiitxz ) = pP(x1 — 1,20;t) + qP(x1 + 1, 29;1) +

pP(Q?l,QZ‘Q — 1;t) + QP(ZIZ‘l,.CIZQ + 1;t) — 2P(331,£E2;t)

X2=X1+1: Neighbors
dP(iCl, L9, t)
dt

= pP(z1 — 1, 29;t) + qP (21,22 + 1;t) — P(x1, 223 1)

Subtract:
qP(xl =+ 17$1 - 17t) —|—pP(QZ'1,QZ‘1,t) o P(Qfl,xl - 17t) =0
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Important Point

New boundary conditions arise for N=3, 4,...
e W o WA e W
—o—o—( H r= Do
oo Fe—eo—s
—e—oo (M =

Last configuration requires new BC --
automatically satished by 2-particle BC

(),
(),
(),
(),

Q)
<),
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Bethe Ansatz Solution of Master
Equation
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Bethe Ansatz Solution of Master
Equation
For any €,,..,.&n € C\{0} and any permutation

O a solution is ote(€5)
H €0(.7)

Can take linear combination or integral of
a linear combination & have a solution:

| 3 m@lle, T e

occSnN
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Remarks
e Want BC to be satisfied. Bethes idea: This

can be applied pointwise to the integrand

e Gives condition on coefficients with result
(This part same as the C.N. Yang & C.P. Yang
analysis of XXZ spin Hamiltonian.)
[Lic;(P+ déoiiréoti) — Eo(i))

H@'<j (p - C]fzfj — fmz)

then solution to DE that satisfies BC is

Y [ A [Te e ave

o )

If A, =sgn(o)
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Remarks

® To recap: We have found a solution to the
master equation satisfying the BCs.

® Must show the solution at X={xi,..xn} & t=0
reduces to Oxy where Y={yi,..,yn} is the initial
configuration of N particles.

® Term for O=id satisfies initial condition. Must
show remaining N!-1 terms give zero at t=0.
This is the new part of the problem.

® Have not yet specified the contours.
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Theorem (TW): If p # 0 and r is small enough then

Py (X;t) = Z / Hga(z) (gi—yz’—l 68(&)75) ng

ocESN C;

where

Hr,;<j (p + qga(i)ga(j) — fa(z))
[ic;(p+ &85 — &)

A, =sgno

and satisfies
Py (X;0) = oy (X).

Remarks:

e There is no Ansatz in our work!

e Usual Bethe Ansatz calculates the spectrum of the operator. This leads
to transcendental equations for the eigenvalues and issues of completeness
of the eigenfunctions.

e We compute the semigroup directly. No spectral theory.
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Marginal Distributions
P(Xm('l')SX)
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Marginal Distributions
P(Xm('l')SX)

Case m=l:

Fix xi1=x, sum Py(X;t) over allowed x2, X3, Xs,...

Can do this since contours are small: [El< 1
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Marginal Distributions
P(Xm('l')SX)

Case m=l:

Fix xi1=x, sum Py(X;t) over allowed x2, X3, Xs,...

Can do this since contours are small: [El< 1

Result is an expression involving N! terms. Use
first miraculous identity to reduce sum to one
term!

Heres the identity:
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First Identity

> sgno (H(p + 6o (i)éo () — Eo(i))

ocESN 1<9

X

EoE23) " Eoim)
(1 =&52)6013) o)) (L — &3y o) - (1 = &)

_ N(N-1)/2 (1 _51”'&\7) Hi<j(€j —f@)
' [1,(1—&)

oooooooooooooooooooooo



® Using this identity we get for m=1 an
expression for P(x;(t)<x) as a single N-
dimensional integral with a product

integrand. This expression is for finite-N
ASEP

](%Yaf) — H gj_ﬁi 1 —& - &n

Horeeg —a0-a)0-&v)
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Prob(x;(t)=x) =

pN(N- 1)/2/ / £ Y, ) de, - dEy

(p 7
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Prob(x;(t)=x) =

N (N 1)/2/ / Y, E)dEy - dEn

(p 7

* Sum of N! integrals reduced to one integral

* Form is not so useful to take N— o0

* We now expand contour outwards -- only
residues that contribute come from &=l.
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Prob(x;(t)=x) =

pN(N- 1)/2/ / £ Y, ) de, - dEy

(p 7

* Sum of N! integrals reduced to one integral

* Form is not so useful to take N— o0

* We now expand contour outwards -- only
residues that contribute come from &=l.

* Can take N—co in resulting expression fo
obtain
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o(S): = Zz

i€S
p (5)—15]
Z a(S) 1S|(|S]+1)/2

The sum is over all nonempty subsets of 7"
(Tfinite)

When p=0 only one term is nonzero, S=l}.

X
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there are new complications

® These come from the fact that we must
sum over all x; > Xm and all X;j < Xm.
Some contours must be small (former)
and some must be large (latter) to
obtain convergence of geometric series
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Remarks

® To go beyond the left-most particle, m=l,
there are new complications

® These come from the fact that we must
sum over all x; > Xm and all X;j < Xm.
Some contours must be small (former)
and some must be large (latter) to
obtain convergence of geometric series

® This involves finding a new identity
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Second Identity

S ranges over subsets of {1,2,..., N}

|S|=m 1€85,75€5°

> I -

m™m _N_
= q
_m_
:pN_qN
p—q
N|!

& — & .

q€i&; — & (11— H £)

1€S8
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Final series result for case Y = Z™

1 | k-1
P(Im(t) < CIS‘) _ (_1)m Z - |: :| p(k m)(k—m+1)/2 km—l—(k m)(k+m—1)/2

_ kK—m
k>m

1
X/cR /cR oy p+q€z€g &i H (1—¢&)(g&i —p)
> H (ggcee(ﬁi)t) déq - - dég
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Final series result for case Y = Z™
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1
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. For p=0 only k=m term is nonzero
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Final series result for case Y = Z™

1 | k—1
IP)(CEm(t) < .CIZ‘) _ (_1)m Z - |: :| p(k m)(k—m+1)/2 km—l—(k m)(k+m—1)/2

_ kK—m
k>m

1
></cR /cR oy p+q€z€g &i H (1—¢&)(g&i —p)
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. For p=0 only k=m term is nonzero

* Recognize double product as a determinant
whose entries are a kernel, i.e. K(g;,&;)
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Final series result for case Y = Z™

k—1
P(Im(t) < .CIZ‘) _ (_1)m Z - |: :| p(k m)(k—m+1)/2 km—l—(k m)(k+m—1)/2

kK—m
k>m

1
></cR /cR oy p+q€z€g &i H (1—¢&)(g&i —p)
> H ( éves(ﬁz)t) déq - - dég

. For p=0 only k=m term is nonzero

* Recognize double product as a determinant
whose entries are a kernel, i.e. K(g;,&;)

* Result can then be expressed as a contour
integral whose integrand is a Fredholm
determinant.
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Fredholm determinant

® Let K(x,y) be a kernel function
® Fredholm expansion of det(I-AK):

_1 n
( n!) /.../det (K(gi’gj)lgi,jgn déy - -+ dE, =

d\
/Cdet(l—)\K) CES!

*Can then do sum over k (g-Binomial theorem):
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Final expression for m™ particle distribution fn.
Step initial condition

Set vy =q—p > 0,7 =p/q <1 and define an integral operator K on the
circle Cp, R > 1

éf:ves(f)t
p+q8§’ —¢&

K(&,&) =g

then

P(zm(t/y) <) = (iftﬁil‘fi?k) d;

where the contour encloses all the singularities
at A=0,T%, k=0,...,m-1.
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Final expression for m™ particle
distribution function
Step Bernoulli initial condition

The expression for the marginal
P(Xm('l') hS X)
IS the same once we replace K by the new K:

§res o)t p(§ — )

K = e e e 14 =)

N
new term
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Asymptotic analysis

We now transform the operator
K so that we can perform a
steepest descent analysis.

Recall that the generic behavior
for the coalescence of two saddle

points leads fo the Airy function
Ai(x)

George Airy
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Introduce: Ki(n,n")

o(T1)

/

n — 17
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Two Preliminary Results
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Two Preliminary Results
Proposition:
Let [ be any closed curve going around n=1
once counterclockwise with n=1/T on the
outside. Then the Fredholm determinant of K

(€,&) acting on Cr has the same Fredholm
determinant as Ki(n,n')-Kz(n,n’) acting on T.
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Two Preliminary Results
Proposition:
Let [ be any closed curve going around n=1
once counterclockwise with n=1/T on the
outside. Then the Fredholm determinant of K

(€,&) acting on Cr has the same Fredholm
determinant as Ki(n,n')-Kz(n,n’) acting on T.

Proposition:
Suppose the contour [ is star-shaped with
respect to N=0. Then the Fredholm
determinant of K; acting on I' is equal to

O

H(l — )\Tk)

k=0
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Denote by R the resolvent kernel of K;

Factor determinant:
det(I-A\ K)=det(I-A K;) det(I+K2(I+R))

Set A=T™ U so formula for distr. fn becomes

/ ﬁ(l — ur”) det (I+7 "uKy(I + R)) %u

U runs over a circle of radius > T
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By a perturbative expansion of R, followed
by a deformation of operators, we show

det (I + AKo(I +R)) = det (I + pJ)
N Po(C)  C™ f(sC/7)
Jr) = /saoo(n’) ()m*+t  C—n %
Poc(n) = (1—n) et
flp,2) = k:z_ool_Tk”Zk

The kernel J(n,n’), which acts on a circle centered
at O with radius less than T, is analyzed by the
steepest descent method.

Note: m now appears inside the kernel!
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Main Result: Step I.C.

We set
g = %,Cl = — 14 2\/57 Co — 0-_1/6(1_\/5)2/37’7 — q—p
Theorem (TW). When 0 < p < ¢ we
have
: L'm (t//Y) - Clt
< —
tlggo]P} ( cotl/3 — S) Fa(s)

Theorem also has a current fluctuation formulation
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Thanks to A. Schilling & D. Zeilberger for
advice with the combinatorial identities

5= (G Car=6)

WHO YOU GONNA CALL,
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for youwr attentic
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