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ASEP on Integer Lattice
Introduced by F. Spitzer (1970)

⬅⬅ pq

Each particle has an alarm clock -- 
exponential distribution with  parameter one

●

When alarm rings particle jumps to right with 
probability p and to the left with probability q

●

Jumps are suppressed if neighbor is occupied ●

p≠q
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Initial Conditions

Step Initial Condition, q>p

Flat Initial Condition

Bernoulli Initial Condition

Step Bernoulli Initial Condition, q>p
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Current Fluctuations

• Let I(x,t)= # of particles less than or equal 
to x at time t.  (Definition OK for step type 
initial conditions.)

• I(x,t) is a random variable: What can be said 
about its long-time behavior?  Can we find a 
central limit type theorem for I(x,t)?

• First some results for the special case of 
TASEP where particles are allowed to jump 
in only one direction
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• Determinantal Process: Correlations are 
expressed as determinants of kernel 
functions K(x,y).

• As a result many techniques from random 
matrix theory can be applied to TASEP.

• This determinantal structure goes back at 
least to G. Schütz (1997).

• First limit theorems: K. Johansson (2000), 
“Shape Fluctuations and Random Matrices” 
where TASEP was a limiting case of a certain 
Corner Growth Model.

T(Totally)ASEP
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Current & Position of mth particle
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Current & Position of mth particle
Step initial condition

xm(t)=position of mth particle from 
left at time t, xm(0)=m
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Current & Position of mth particle
Step initial condition

xm(t)=position of mth particle from 
left at time t, xm(0)=m

Event:
{I(x,t)=m}={xm(t)≤x, xm+1(t)>x}
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Current & Position of mth particle
Step initial condition

xm(t)=position of mth particle from 
left at time t, xm(0)=m

Event:
{I(x,t)=m}={xm(t)≤x, xm+1(t)>x}

From this and exclusion property:

Prob(I(x,t)≤m) = 1-Prob(xm+1(t)≤x)
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TASEP: Step Initial Condition
Theorem (K. Johansson):

where

lim
t→∞

P
�

I([−vt], t)− a1t

a2t1/3
≤ s

�
= 1− F2(−s)

a1 =
1
4
(1− v)2, a2 = 2−4/3(1− v2)2/3, 0 ≤ v < 1

and F2 is a distribution function first arising in 
random matrix theory.  It can be expressed in 
terms of a Painlevé II function or as a Fredholm 
determinant of the “Airy kernel”.

Sunday, November 22, 2009



Remarks
• Fluctuations are of order t1/3 not t1/2.

• This ⅓ exponent is related to the physicists’ 
KPZ Universality (Kardar-Parisi-Zhang)

•  The coefficient a1 goes back to H. Rost (1981).

•  Proof relies heavily on the RSK algorithm 
and the closely associated determinantal 
structure: “Discrete random martrix 
ensembles”.
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TASEP: Step Bernoulli, density ρ<1 
Conjectured by M. Prähofer & H. Spohn (2002) & 
proved by G. Ben Arous & I. Corwin (2009):

where coefficients ai as before (v➝-v) & F1 is 
another RMT distribution expressible in terms of 
the same Painlevé II function.
For v>2ρ-1 fluctuations are t1/2 and Gaussian.

The transition:
has appeared in other determinantal processes.

lim
t→∞

P
�

I([vt], t)− a1t

a2t1/3
≤ s

�
=

�
1− F2(−s), −1 < v < 2ρ− 1,
1− F1(−s)2, v = 2ρ− 1.

F2 −→ F 2
1 −→ G
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The Big Question 
Do these results extend to ASEP 

and more generally to a wider class of 1D exclusion processes ?

• With regards to the t1/3 : M. Balázs & T. Seppäläinen 
have proved this for Bernoulli (stationary) initial 
conditions for nearest-neighbor ASEP.  Quastel & Valkó 
extend the result to finite-range asymmetric exclusion.  
Methods use coupling (BS) and comparison estimates 
(QV). Methods so far do not extend to limit theorems.

• H. Widom & CT show for (nearest neighbor) ASEP the 
two previous limit theorems remain exactly the same 
when time t is replaced by t/(q-p) thus proving KPZ 
Universality.  Our methods start with ideas coming from 
Bethe Ansatz.
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Main Steps in Proof of Limit 
Theorems for ASEP 

• Use ideas from Bethe Ansatz to find exact expression 
for the transition probability Y➞X for finite N ASEP.

• Use some amazing combinatorial identities to compute 
marginal distributions P(xm(t) ≤ x). It is then possible to 
take N ➞ ∞. Marginal expressed as an infinite sum 
where kth term is a k-dimensional integral.

• Again certain identities permit series to be summed to 
one contour integral involving a Fredholm determinant.

• Asymptotic analysis of this Fredholm determinant.  
Kernel initially not of familiar RMT structure.
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We solve the Kolmogorov 
forward equation (“master 
equation”) for the transition 
probability Y→X for finite N 
ASEP:

Main idea comes from the
Bethe Ansatz (1931)

Integrable Structure of ASEP

Hans Bethe in 1967

PY (X; t)
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● ● ● ● ● ● ● ● ● ●

N=1 ASEP 

probability pprobability q

Let PY(X;t)=probability Y→X at time t.  
Master equation:

dP

dt
= p P (x− 1; t) + q P (x + 1; t)− P (x; t)

Py(x; t) =
�

C
ξx−y−1etε(ξ) dξ

ε(ξ) =
p

ξ
+ q ξ − 1
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N=2 ASEP

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Master equation takes simple form for this configuration

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Master equation reflects exclusion for this configuration
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N=2 ASEP

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Master equation takes simple form for this configuration

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Master equation reflects exclusion for this configuration

Impose boundary conditions for first equation so 
that if satisfied the second equation is 
automatically satisfied --- Bethe’s Idea
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N=2 Equations for P(x1,x2;t)

x2 > x1 + 1 : Not neighbors
dP (x1, x2; t)

dt
= pP (x1 − 1, x2; t) + qP (x1 + 1, x2; t) +

pP (x1, x2 − 1; t) + qP (x1, x2 + 1; t)− 2P (x1, x2; t)

x2=x1+1: Neighbors
dP (x1, x2; t)

dt
= pP (x1 − 1, x2; t) + qP (x1, x2 + 1; t)− P (x1, x2; t)

Subtract: 
qP (x1 + 1, x1 + 1; t) + pP (x1, x1; t)− P (x1, x1 + 1; t) = 0
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Important Point
New boundary conditions arise for N=3, 4,...

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Last configuration requires new BC -- 
automatically satisfied by 2-particle BC
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Bethe Ansatz Solution of Master 
Equation
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Bethe Ansatz Solution of Master 
Equation

For any ξ1,...,ξN ∈ C\{0} and any permutation 
σ a solution is �

j

ξ
xj

σ(j) etε(ξj)
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Bethe Ansatz Solution of Master 
Equation

For any ξ1,...,ξN ∈ C\{0} and any permutation 
σ a solution is �

j

ξ
xj

σ(j) etε(ξj)

Can take linear combination or integral of 
a linear combination & have a solution: � �

σ∈SN

Fσ(ξ)
�

j

ξ
xj

σ(j)

�

j

etε(ξj) dNξ

Sunday, November 22, 2009



Remarks
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• Want BC to be satisfied.  Bethe’s idea: This 
can be applied pointwise to the integrand

Remarks
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• Want BC to be satisfied.  Bethe’s idea: This 
can be applied pointwise to the integrand
• Gives condition on coefficients with result 
(This part same as the C.N. Yang & C.P. Yang 
analysis of XXZ spin Hamiltonian.) 

If Aσ = sgn(σ)
�

i<j(p + qξσ(i)ξσ(j) − ξσ(i))�
i<j(p + qξiξj − xii)

Remarks
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• Want BC to be satisfied.  Bethe’s idea: This 
can be applied pointwise to the integrand
• Gives condition on coefficients with result 
(This part same as the C.N. Yang & C.P. Yang 
analysis of XXZ spin Hamiltonian.) 

If Aσ = sgn(σ)
�

i<j(p + qξσ(i)ξσ(j) − ξσ(i))�
i<j(p + qξiξj − xii)

then solution to DE that satisfies BC is

�

σ

�
Aσ(ξ)

�

i

ξ
xi−yσ(i)−1

σ(i) etε(ξi) dNξ

Remarks
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Remarks
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• To recap: We have found a solution to the 
master equation satisfying the BCs.

Remarks

Sunday, November 22, 2009



• To recap: We have found a solution to the 
master equation satisfying the BCs.

• Must show the solution at X={x1,...xN} & t=0 
reduces to δX,Y where Y={y1,...,yN} is the initial 
configuration of N particles.

Remarks
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• To recap: We have found a solution to the 
master equation satisfying the BCs.

• Must show the solution at X={x1,...xN} & t=0 
reduces to δX,Y where Y={y1,...,yN} is the initial 
configuration of N particles.

• Term for σ=id satisfies initial condition. Must 
show remaining N!-1 terms give zero at t=0. 
This is the new part of the problem.

Remarks
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• To recap: We have found a solution to the 
master equation satisfying the BCs.

• Must show the solution at X={x1,...xN} & t=0 
reduces to δX,Y where Y={y1,...,yN} is the initial 
configuration of N particles.

• Term for σ=id satisfies initial condition. Must 
show remaining N!-1 terms give zero at t=0. 
This is the new part of the problem.

• Have not yet specified the contours.

Remarks
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Theorem (TW): If p �= 0 and r is small enough then

PY (X; t) =
�

σ∈SN

�

CN
r

Aσ(ξ)
�

i

ξxi

σ(i)

�

i

�
ξ−yi−1
i eε(ξi) t) dNξ.

where

Aσ = sgnσ

�
i<j(p + qξσ(i)ξσ(j) − ξσ(i))�

i<j(p + qξiξj − ξi)

and satisfies
PY (X; 0) = δY (X).

Remarks:

• There is no Ansatz in our work!

• Usual Bethe Ansatz calculates the spectrum of the operator. This leads
to transcendental equations for the eigenvalues and issues of completeness
of the eigenfunctions.

• We compute the semigroup directly. No spectral theory.

Sunday, November 22, 2009



Marginal Distributions
P(xm(t)≤x)
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Marginal Distributions
P(xm(t)≤x)

Case m=1:

Fix x1=x, sum PY(X;t) over allowed x2, x3, x4,...

Can do this since contours are small: |ξi|< 1
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Marginal Distributions
P(xm(t)≤x)

Case m=1:

Fix x1=x, sum PY(X;t) over allowed x2, x3, x4,...

Can do this since contours are small: |ξi|< 1

Result is an expression involving N! terms. Use 
first miraculous identity to reduce sum to one 
term! 

Here’s the identity: 
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First Identity

�

σ∈SN

sgn σ




�

i<j

(p + qξσ(i)ξσ(j) − ξσ(i))

×
ξσ(2)ξ

2
σ(3) · · · ξN−1

σ(N)

(1− ξσ(2)ξσ(3) · · · ξσ(N))(1− ξσ(3) · · · ξσ(N)) · · · (1− ξσ(N))

�

= pN(N−1)/2
(1− ξ1 · · · ξN )

�
i<j(ξj − ξi)�

i(1− ξi)
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I(x, Y, ξ) =
�

i<j

ξj − ξi

p + qξiξj − ξi

1− ξ1 · · · ξN

(1− ξ1) · · · (1− ξN )
�

i

�
ξx−yi−1
i eε(ξi)t

�

•Using this identity we get for m=1 an 
expression for P(x1(t)≤x) as a single N-
dimensional integral with a product 
integrand.  This expression is for finite-N 
ASEP
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P(x1(t) = x) = pN(N−1)/2

�

Cr

· · ·
�

Cr

I(x, Y, ξ) dξ1 · · · dξN

(p �= 0)

Prob(x1(t)=x) = 

Sunday, November 22, 2009



P(x1(t) = x) = pN(N−1)/2

�

Cr

· · ·
�

Cr

I(x, Y, ξ) dξ1 · · · dξN

(p �= 0)

• Sum of N! integrals reduced to one integral

Prob(x1(t)=x) = 
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P(x1(t) = x) = pN(N−1)/2

�

Cr

· · ·
�

Cr

I(x, Y, ξ) dξ1 · · · dξN

(p �= 0)

• Sum of N! integrals reduced to one integral
• Form is not so useful to take N→∞

Prob(x1(t)=x) = 
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P(x1(t) = x) = pN(N−1)/2

�

Cr

· · ·
�

Cr

I(x, Y, ξ) dξ1 · · · dξN

(p �= 0)

• Sum of N! integrals reduced to one integral
• Form is not so useful to take N→∞

• We now expand contour outwards -- only 
residues that contribute come from ξi=1.

Prob(x1(t)=x) = 
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P(x1(t) = x) = pN(N−1)/2

�

Cr

· · ·
�

Cr

I(x, Y, ξ) dξ1 · · · dξN

(p �= 0)

• Sum of N! integrals reduced to one integral
• Form is not so useful to take N→∞

• We now expand contour outwards -- only 
residues that contribute come from ξi=1.
• Can take N→∞ in resulting expression to 

obtain

Prob(x1(t)=x) = 
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σ(S) : =
�

i∈S

i

P(x1(t) = x) =
�

S

pσ(S)−|S|

qσ(S)−|S|(|S|+1)/2
×

�

CR

· · ·
�

CR

I(x, YS , ξ) d|S|ξ

The sum is over all nonempty subsets of Z

When p=0 only one term is nonzero, S={1}.

+
(↑finite)
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Remarks
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• To go beyond the left-most particle, m=1, 
there are new complications

Remarks

Sunday, November 22, 2009



• To go beyond the left-most particle, m=1, 
there are new complications

• These come from the fact that we must 
sum over all xj > xm and all xi < xm.  
Some contours must be small (former) 
and some must be large (latter) to 
obtain convergence of geometric series

Remarks
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• To go beyond the left-most particle, m=1, 
there are new complications

• These come from the fact that we must 
sum over all xj > xm and all xi < xm.  
Some contours must be small (former) 
and some must be large (latter) to 
obtain convergence of geometric series

• This involves finding a new identity

Remarks
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Second Identity
S ranges over subsets of {1, 2, . . . , N}

�

|S|=m

�

i∈S, j∈Sc

p + qξiξj − ξi

ξj − ξi
· (1−

�

j∈Sc

ξj)

= qm

�
N

m

�
(1−

N�

j=1

ξj).

[N ] =
pN − qN

p− q
, [N ]! = [N ] [N − 1] · · · [1],

�
N

m

�
=

[N ]!
[m]! [N −m]!

, (q − binomial coefficient),
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Final series result for case Y = Z+

P (xm(t) ≤ x) = (−1)m
�

k≥m

1
k!

�
k − 1
k −m

�

τ

p(k−m)(k−m+1)/2qkm+(k−m)(k+m−1)/2

×
�

CR

· · ·
�

CR

�

i �=j

ξj − ξi

p + qξiξj − ξi

�

i

1
(1− ξi)(qξi − p)

×
�

i

�
ξx
i eε(ξi)t

�
dξ1 · · · dξk
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Final series result for case Y = Z+

P (xm(t) ≤ x) = (−1)m
�

k≥m

1
k!

�
k − 1
k −m

�

τ

p(k−m)(k−m+1)/2qkm+(k−m)(k+m−1)/2

×
�

CR

· · ·
�

CR

�

i �=j

ξj − ξi

p + qξiξj − ξi

�

i

1
(1− ξi)(qξi − p)

×
�

i

�
ξx
i eε(ξi)t

�
dξ1 · · · dξk

● For p=0 only k=m term is nonzero
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Final series result for case Y = Z+

P (xm(t) ≤ x) = (−1)m
�

k≥m

1
k!

�
k − 1
k −m

�

τ

p(k−m)(k−m+1)/2qkm+(k−m)(k+m−1)/2

×
�

CR

· · ·
�

CR

�

i �=j

ξj − ξi

p + qξiξj − ξi

�

i

1
(1− ξi)(qξi − p)

×
�

i

�
ξx
i eε(ξi)t

�
dξ1 · · · dξk

• Recognize double product as a determinant 
whose entries are a kernel, i.e. K(ξi,ξj)

● For p=0 only k=m term is nonzero
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Final series result for case Y = Z+

P (xm(t) ≤ x) = (−1)m
�

k≥m

1
k!

�
k − 1
k −m

�

τ

p(k−m)(k−m+1)/2qkm+(k−m)(k+m−1)/2

×
�

CR

· · ·
�

CR

�

i �=j

ξj − ξi

p + qξiξj − ξi

�

i

1
(1− ξi)(qξi − p)

×
�

i

�
ξx
i eε(ξi)t

�
dξ1 · · · dξk

• Recognize double product as a determinant 
whose entries are a kernel, i.e. K(ξi,ξj)
• Result can then be expressed as a contour 
integral whose integrand is a Fredholm 
determinant.

● For p=0 only k=m term is nonzero
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• Let K(x,y) be a kernel function

• Fredholm expansion of det(I-λK):

Fredholm determinant  

(−1)n

n!

�
· · ·

�
det (K(ξi, ξj)1≤i,j≤n dξ1 · · · dξn =

�

C
det (I − λK)

dλ

λn+1

•Can then do sum over k (q-Binomial theorem):
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Final expression for mth particle distribution fn.
Step initial condition

Set γ = q − p > 0, τ = p/q < 1 and define an integral operator K on the
circle CR, R� 1

K(ξ, ξ�) = q
ξxeε(ξ)t

p + qξξ� − ξ

P (xm(t/γ) ≤ x) =
�

det (I − λK)
�m−1

k=0 (1− λτk)
dλ

λ

then

where the contour encloses all the singularities 
at λ=0,τ-k, k=0,…,m-1.
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Final expression for mth particle 
distribution function

Step Bernoulli initial condition

K(ξ, ξ�) = q
ξxeε(ξ)t

p + qξξ� − ξ

ρ(ξ − τ)
ξ − 1 + ρ(1− τ)

The expression for the marginal
P(xm(t) ≤ x)

is the same once we replace K by the new K:

⇑
new term
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Asymptotic analysis 

We now transform the operator 
K so that we can perform a 
steepest descent analysis.

Recall that the generic behavior 
for the coalescence of two saddle 
points leads to the Airy function 
Ai(x)

George Airy
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ξ −→ 1− τη

1− η
, τ =

p

q
< 1,

K(ξ, ξ�) −→ K2(η, η�) =
ϕ(η�)

η� − τη

ϕ(η) =
�

1− τη

1− η

�x

e[
1

1−η−
1

1−τη ]

Introduce: K1(η, η�) =
ϕ(τη)
η� − τη

t
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Two Preliminary Results
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Proposition:
Let Γ be any closed curve going around η=1 
once counterclockwise with η=1/τ on the 
outside.  Then the Fredholm determinant of K
(ξ,ξ’) acting on CR has the same Fredholm 
determinant as K1(η,η’)-K2(η,η’) acting on Γ.

Two Preliminary Results
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Proposition:
Let Γ be any closed curve going around η=1 
once counterclockwise with η=1/τ on the 
outside.  Then the Fredholm determinant of K
(ξ,ξ’) acting on CR has the same Fredholm 
determinant as K1(η,η’)-K2(η,η’) acting on Γ.

Proposition:
Suppose the contour Γ is star-shaped with 
respect to η=0.  Then the Fredholm 
determinant of K1 acting on Γ is equal to

∞�

k=0

(1− λτk)

Two Preliminary Results
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Denote by R the resolvent kernel of K1

Factor determinant:
 det(I-λ K)=det(I-λ K1) det(I+K2(I+R))

Set λ=τ-m μ so formula for distr. fn becomes
� ∞�

k=0

(1− µτk) det
�
I + τ−mµK2(I + R)

� dµ

µ

μ runs over a circle of radius > τ
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By a perturbative expansion of R, followed 
by a deformation of operators, we show

det (I + λK2(I + R)) = det (I + µJ)

J(η, η�) =
�

ϕ∞(ζ)
ϕ∞(η�)

ζm

(η�)m+1

f(µ, ζ/η�)
ζ − η

dζ

ϕ∞(η) = (1− η)−x e
ηt

1−η

f(µ, z) =
∞�

k=−∞

τk

1− τkµ
zk

The kernel J(η,η’), which acts on a circle centered 
at 0 with radius less than τ, is analyzed by the 
steepest descent method.
Note:  m now appears inside the kernel!
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Main Result: Step I.C.
We set

σ =
m

t
, c1 = −1+2

√
σ, c2 = σ−1/6(1−

√
σ)2/3, γ = q−p

Theorem (TW). When 0 ≤ p < q we
have

lim
t→∞

P
�

xm(t/γ)− c1t

c2t1/3
≤ s

�
= F2(s)

Theorem also has a current fluctuation formulation
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Thanks to A. Schilling & D. Zeilberger for 
advice with the combinatorial identities
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Thank you 
for your attention
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