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Abstract

This paper surveys the largest eigenvalue distributions appearing in random matrix
theory and their application to multivariate statistical analysis.
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1 Random Matrix Models: Gaussian Ensembles

A random matrix model (RMM) is a probability space (Ω, P,F) where the sample space Ω
is a set of matrices. There are three classic finite-N RMM called the Gaussian ensembles

(see, e.g. [23] and for early history [30]):

• Gaussian Orthogonal Ensemble (GOE, β = 1)

– Ω = N × N real symmetric matrices

– P = unique (up to a choice of the mean and variance) measure that is invariant
under orthogonal transformations and the algebraically independent matrix ele-
ments are i.i.d. random variables. Explicitly (for mean zero and a choice of the
variance), the density is

cN exp
(

−tr(A2)/2
)

dA, (1)

where cN is a normalization constant and dA =
∏

i dAii
∏

i<j dAij , the product
Lebesgue measure on the algebraically independent matrix elements.

• Gaussian Unitary Ensemble (GUE, β = 2)

– Ω = N × N hermitian matrices

– P= unique measure (again up to a choice of the mean and variance) that is
invariant under unitary transformations and the algebraically independent real
and imaginary matrix elements are i.i.d. random variables. Again the density is
of the form (1) with dA =

∏

i dAii
∏

i<j dℜ(Aij) dℑ(Aij).

• Gaussian Symplectic Ensemble (GSE, β = 4) (see [23] for a definition)

For A in any of the above Gaussian ensembles, let λ1(A) ≤ · · · ≤ λN (A) := λmax de-
note the eigenvalues of A. These eigenvalues are real and define random variables on the
respective probability spaces. (With probability one the eigenvalues are distinct.) Since
these Gaussian ensembles are defined by invariant measures, one can explicitly compute the
joint distribution of eigenvalues and show that it has the following density with respect to
Lebesgue measure:

Pβ,N (x1, . . . , xN ) = CN,β

∏

1≤i<j≤N

|xi − xj|β
N
∏

i=1

e−βx2

i /2, β = 1, 2, 4,

where CN,β is a known normalization constant [23]. The form of the joint density explains
the usefullness of the β notation.

1.1 Largest eigenvalue distributions Fβ. Painlevé II Representations

Generally speaking, the interest lies in limit laws as N → ∞. As is familiar from the central
limit theorem, to get nontrivial limits one must center and normalize the random variables.
Here the main focus is on the limit law associated with the largest eigenvalue. If

FN,β(t) := Pβ,N (λmax < t) , β = 1, 2, 4,
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denotes the distribution function of the largest eigenvalue, then the basic limit laws [36, 37,
38] state that1

Fβ(x) := lim
N→∞

FN,β

(

2σ
√

N +
σx

N1/6

)

, β = 1, 2, 4,

exist and are given explicitly by

F2(x) = exp

(

−
∫ ∞

x
(y − x)q2(y) dy

)

(2)

where q is the unique solution2 to the Painlevé II equation

d2q

dx2
= xq + 2q3

satisfying the boundary condition3

q(x) ∼ Ai(x) as x → ∞. (3)

It is known [17] that

q(x) =

√

−x

2

(

1 +
1

8x3
+ O(

1

x6
)

)

as x → −∞.

The orthogonal and symplectic distributions [38] are

F1(x) = exp

(

−1

2

∫ ∞

x
q(y) dy

)

(F2(x))1/2 , (4)

F4(x/
√

2) = cosh

(

1

2

∫ ∞

x
q(y) dy

)

(F2(x))1/2 . (5)

Graphs of the densities fβ := dFβ/dx are in Figure 1 and some statistics of Fβ can be found
in the Table 1.

1.1.1 Tail behavior of Fβ

The asymptotics for Fβ(x) as x → +∞ follows straightforwardly from (2)–(5). To state the
results it is first convenient to introduce

F (x) = exp

(

−1

2

∫ ∞

x
(y − x)q(y)2 dy

)

,

E(x) = exp

(

−1

2

∫ ∞

x
q(y) dy

)

1Here σ is the standard deviation of the Gaussian distribution on the off-diagonal matrix elements. For
the normalization we’ve chosen, σ = 1/

√
2; however, other choices are common.

2That such a unique solution exists is a nontrivial fact first proved by Hastings and McLeod [17]; and
for this reason, q is often called the Hastings-McLeod solution. See [13] for a detailed account of Painlevé
transcendents.

3Ai is the Airy function.
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Figure 1: Largest eigenvalue densities fβ(x) = dFβ/dx, β = 1, 2, 4 where Fβ are defined in
(2), (4) and (5).

so that

F1(x) = E(x)F (x), F2(x) = F (x)2, and F4(x/
√

2) =
1

2

(

E(x) +
1

E(x)

)

F (x).

Then as x → +∞

F (x) = 1 − e−
4

3
x3/2

32πx3/2

(

1 + O(
1

x3/2
)

)

,

E(x) = 1 − e−
2

3
x3/2

4
√

πx3/2

(

1 + O(
1

x3/2
)

)

from which the asymptotics for Fβ follows.

The asymptotics as x → −∞ is much more difficult and the complete solution was only
recently achieved for β = 1, 2, 4 [3]. We quote the final results and refer the reader to [3]
for a history of this problem. As x → −∞

F1(x) = τ1
e
− 1

24
|x|3− 1

3
√

2
|x|3/2

|x|1/16

(

1 − 1

24
√

2|x|3/2
+ O(|x|−3)

)

,

F2(x) = τ2
e−

1

12
|x|3

|x|1/8

(

1 +
3

26|x|3 + O(|x|−6)

)

,

F4(x/
√

2) = τ4
e
− 1

24
|x|3+ 1

3
√

2
|x|3/2

|x|1/16

(

1 +
1

24
√

2|x|3/2
+ O(|x|−3)

)

where
τ1 = 2−11/48e

1

2
ζ′(−1), τ2 = 21/24eζ′(−1), τ4 = 2−35/48e

1

2
ζ′(−1)

and ζ ′(−1) = −0.1654211437 . . . is the derivative of the Riemann zeta function evaluated
at −1.
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Table 1: The mean (µβ), variance (σ2
β), skewness (Sβ) and kurtosis (Kβ) of Fβ . The

high-precision numbers are courtesy of Michael Prähofer.

β µβ σ2
β Sβ Kβ

1 -1.206 533 574 1.607 781 034 0.293 464 524 0.165 242 938
2 -1.771 086 807 0.813 194 792 0.224 084 203 0.093 448 087
4 -2.3069 0.5177 0.1655 0.0492

1.1.2 Numerical evaluation of Fβ

Particularly for applications to data analysis, it is useful to have numerical evaluations of
the distributions Fβ . Chapter 7 of Dieng’s Ph.D. thesis [12] gives MATLAB

TM code to
evaluate and plot these distributions. Tables of the Hastings-McLeod solution to Painlevé
II and F1,2 can be found on Prähofer’s homepage [31].4 A different approach [6] to the
numerical evaluation of Fβ is based on the Fredholm determinant representations for Fβ

(see, e.g. [39]).

1.2 Next-largest, next-next largest, etc. eigenvalue distributions

There exist Painlevé II type representations for the limiting distributions of the next-largest
eigenvalue (λN−1), next-next largest eigenvalue (λN−2), etc. The unitary case was examined
some time ago [37] but only recently did Dieng [11] derive limiting distributions for the
orthogonal and symplectic cases. It should be remarked that the results in the orthogonal
case were somewhat surprising. Figure 2 displays simulations for the four largest eigenvalues
of N = 1000 GOE matrices and their respective limiting distributions.

2 Universality Theorems

A natural question is to what extent do the above limit laws depend upon the Gaussian
and invariance assumptions for the probability measure?

2.1 Invariant Ensembles

A more general class of invariant RMM results by replacing the Gaussian measures with

d PN (A) = cN,β exp (−βtr(V (A))/2) dA

where V is a polynomial of even degree and positive leading coefficient. This implies that
the joint density for the eigenvalues is

Pβ,V,N (x1, . . . , xN ) = CV,N,β

∏

1≤i<j≤N

|xi − xj|β
N
∏

i=1

e−βV (xi)/2, β = 1, 2, 4, (6)

4Note that the Hastings-McLeod solution in the Prähofer tables is denoted u(s) and in the notation here
u(s) = −q(s).
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Figure 2: A histogram of the four largest (centered and normalized) eigenvalues for 104

realizations of 103 × 103 GOE matrices. Solid curves are the limiting distributions from
[11]. Figure a courtesy of Momar Dieng.

where CV,N,β is a normalization constant [23]. Unitary ensembles (β = 2) are technically
simpler than the orthogonal and symplectic ensembles (β = 1, 4), but both require for
general V powerful Riemann-Hilbert methods [10] for the asymptotic analysis. The main
conclusions from these studies for the limiting distribution of the largest eigenvalue are

Theorem. There exist constants z
(β)
N and s

(β)
N such that

lim
N→∞

Pβ,V,N

(

λmax − z
(β)
N

s
(β)
N

≤ t

)

= Fβ(t), β = 1, 2, 4,

where the Fβ are given by (2), (4) and (5).

The results for the unitary case (β = 2) are due to Deift, Kriecherbaur, McLaughlin,
Venakides and Zhou [9] and the orthogonal/symplectic results are recent work of Deift and
Gioev [8]. The universality theorem for special case V (A) = 1

4A4 − gA2 is due to Bleher
and Its [5] (β = 2) and Stojanovic [35] (β = 1). These deep theorems broadly extend the
domain of attraction of the Fβ limit laws. Deift’s ICM 2006 lecture [7] is a recommended
overview for these developments.

2.2 Wigner Ensembles

Wigner matrices are RMM of complex hermitian or real symmetric N × N matrices H

H =
1√
N

(Aij)
N
i,j=1

where Aij , 1 ≤ i < j ≤ N are i.i.d. complex or real random variables with distribution
µ. The diagonal matrix elements are i.i.d. real random variables independent of the off-
diagonal elements. The diagonal probability distribution is centered, independent of N and
has finite variance. They are called Wigner matrices since Wigner in 1955 first studied the
limiting distribution of the empirical spectral measure under the assumption that µ has
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finite variance. The limiting spectral measure is the famous Wigner semicircle distribution.
We denote the Wigner measure on the space of either complex Hermitian or real symmetric
N × N matrices by PW,N

Except in the case of the Gaussian distribution, the Wigner ensembles define non-
invariant measures. For this reason no explicit formulas for the joint distribution of eigen-
values, such as (6) for invariant measures, are known. Thus the techniques used to prove
universality theorems have a completely different flavor.

Soshnikov [32] proved, under the additional assumptions that µ is symmetric (all odd
moments are zero) and the distribution decays as at least as fast as a Gaussian distribution
together with a normalization on the variances,5 the following universality statement for
the largest eigenvalue λmax of Wigner random matrices

Theorem.
lim

N→∞
PW,N

(

λmax ≤ 1 +
x

2N2/3

)

= Fβ(x)

with β = 1 for real symmetric matrices and β = 2 for complex hermitian matrices.

The importance of Soshnikov’s theorem is the universality of Fβ has been established
for ensembles for which the “integrable” techniques, e.g. Fredholm theory, Riemann-Hilbert
methods, Painlevé theory, are not directly applicable. Current research [29] is exploring the
relaxation of the symmetry constraint on the underlying distribution µ.

3 Multivariate Statistical Analysis

As Johnstone [22] remarked:

It is a striking feature of the classical theory of multivariate statistical analysis
that most of the standard techniques—principal components, canonical correla-
tions, multivariate analysis of variance (MANOVA), discriminant analysis and
so forth—are founded on the eigenanalysis of covariance matrices.

Thus it is not surprising that the methods of random matrix theory have important applica-
tions to multivariate statistical analysis. We now survey some of these recent developments
drawing heavily on Johnstone’s 2006 ICM lecture [21]. We have also benefited from the
unpublished survey by Péché [28].

3.1 Principal Component Analysis (PCA)

Recall that in PCA with p variables one distinguishes between the population eigenvalues

ℓj, which are the eigenvalues of the underlying p × p covariance matrix

Σ = (Cov(Xk,Xk′))1≤k,k′≤p ,

and the sample eigenvalues ℓ̂j, which are the (random) eigenvalues of the sample covariance
matrix

S =
1

n
XXT .

5For real symmetric matrices the normalization is EW,N (H2

ij) = 1

4
, 1 ≤ i < j ≤ N and for complex

hermitian matrices EW,N (ℜ(Hij)
2) = EW,N (ℑ(Hij)

2) = 1

8
.
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Here X is the p × n data matrix and n is the number of observations of the p variables.
(A column of X represents one observation of the p variables.) Since the parameters of the
underlying probability model describing the random variables X1,. . . , Xp are unknown, the
problem is to deduce properties of Σ from the observed sample covariance matrix S.

The simplest model is to assume X = (X1, . . . ,Xp) is a p-variate Gaussian distribution
Np(µ,Σ) and the data matrix X is formed by n independent draws X1,. . . , Xn. (For
simplicity we consider µ = 0.) The p × p matrix A = XXT is said to have p-variate
Wishart distribution on n degrees of freedom, Wp(n,Σ). We denote the eigenvalues of A

by l1 ≥ l2 ≥ · · · lp ≥ 0 (so lj = nℓ̂j). The joint distribution of the eigenvalues lj has been
known for some time (e.g. Muirhead [24], Theorem 3.2.18) and is complicated by the fact
it involves an integral over the orthogonal group O(p).

3.2 Testing the Null Hypothesis

The null hypothesis H0 is the statement that there are no correlations amongst the p
variables, i.e. Σ = I. Under H0 all the population eigenvalues equal one, but as been known
for some time6 there is a “spread” in the sample eigenvalues ℓ̂j. To assess whether “large”
observed eigenvalues justify rejecting the null hypothesis, we need an approximation to the
the null hypothesis distribution of the largest sample eigenvalue,

P

(

ℓ̂1 > t|H0 = Wp(n, I)
)

. (7)

This approximation is provided by the following theorem of Johnstone [20].

Theorem.
P

(

nℓ̂1 ≤ µnp + σnpx|H0

)

−→ F1(x)

where the limit is n → ∞, p → ∞ such that p/n → γ ∈ (0,∞), F1 is the largest eigenvalue
distribution (4), and the centering and norming constants are

µnp =

(

√

n − 1

2
+

√

p − 1

2

)2

, (8)

σnp =
(√

n +
√

p
)





1
√

n − 1
2

+
1

√

p − 1
2





1/3

. (9)

Several remarks are in order.

1. The appearance of the fractions 1
2 in µnp and σnp appear to improve the rate of

convergence to F1 to “second-order accuracy” [21]. With this choice of constants,
F1 provides a good approximation for rather small values of p. (See Johnstone’s
comparisons with the tables of Chen [21].)

2. El Karoui [14] shows the theorem holds more generally as

p/n → γ ∈ [0,∞].

6For Σ = I , the density of eigenvalues of S follows the Marčenko-Pastur distribution, a generalization of
the Wigner semicircle distribution.
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Table 2: Values of x for given P(χ1 ≥ x) where χ1 has distribution F1.

x P(χ1 ≥ x)

2.02345 .01
1.59776 .02
1.33321 .03
1.13706 .04
0.97931 .05
0.84633 .06
0.73069 .07
0.62792 .08
0.53508 .09
0.45014 .10

3. For complex data matrices with Σ = I, there are corresponding limit theorems where
now convergence is to F2 [18, 20].

4. Soshnikov [33] and Péché [27] have removed the assumption of Gaussian samples.
They assume that the matrix elements Xij of the data matrix X are independent
random variables with a common symmetric distribution whose moments grow not
faster than the Gaussian ones. We refer the reader to [27] for a description of the
centering and norming constants. Limit theorems for complex data matrices are also
proved.

5. To summarize, given the centering and norming constants (8) and (9) together with
tables such as Table 2, one has a good approximation to the null distribution function
(7).

3.3 Spiked Populations: BBP Phase Transition

As mentioned above, an essential difficulty in extending the above limit laws for ℓ̂1 when the
A = XXT ∈ Wp(n,Σ), Σ 6= I, is the presence of a certain integral over the orthogonal group
O(p) in the joint distribution of eigenvalues of A. In the case of complex Wishart matrices,
the corresponding integral in the joint distribution of eigenvalues is over the unitary group
U(p) which, fortunately, can be explicitly evaluated by use of the Harish-Chandra-Itzykson-
Zuber formula, see, e.g. [40].

We now describe the limit theorem of Baik, Ben Arous and Péché [2] where they consider
the complex Wishart ensemble with the p × p covariance matrix

Σ = diag (ℓ1, . . . , ℓr, 1, . . . , 1) .

For ease of exposition of their results, we consider r = 1 with ℓ1 > 1. As before we consider
the limit

p → ∞, n → ∞ such that
p

n
→ γ ≥ 1. (10)

9



Define
wc = 1 +

√
γ .

Theorem. With Σ as above (r = 1), let ℓ̂1 denote the largest eigenvalue of the sample
covariance matrix.

• If 1 ≤ ℓ1 < wc, then in the limit (10)

P

(

n2/3

σ

(

ℓ̂1 − µ
)

≤ x

)

−→ F2(x),

where F2 is given by (2) and

µ = (1 +
√

γ)2, σ = (1 +
√

γ)(1 +
1√
γ

)1/3.

• If π1 > wc, then in the limit (10)

P

(

n1/2

σ1

(

ℓ̂1 − µ1)
)

≤ x

)

−→ Φ(x),

where Φ is the standard normal distribution and

µ1 = ℓ1

(

1 +
γ

ℓ1 − 1

)

, σ1 = ℓ2
1

(

1 − γ

(ℓ1 − 1)2

)

.

Remarks:

1. The BBP theorem “shows that a single eigenvalue of the true covariance Σ may dras-
tically change the limiting behavior of the largest eigenvalue of sample covariance
matrices. One should understand the above result as the statement that the eigen-
values exiting the support of the Marchenko-Pastur distribution form a small bulk of
eigenvalues. This small bulk exhibits the same eigenvalue statistics as the eigenvalues
of a non-normalized GUE (resp. GOE) matrix” [28].

2. If π1 = wc the limiting distribution is a generalization of F2 expressible in terms of
the same Painlevé II function q [1].

3. For real Wishart matrices, Paul [25] shows that if π1 > wc is simple, then ℓ̂1 exhibits
Gaussian fluctuations.

4. El Karoui [15] finds a large class of complex Wishart matrices Wp(Σ, n) which have a

F2 limit law for ℓ̂1.

5. Patterson, Price and Reich [26] have applied these results to problems of population
structure arising from genetic data. See Harding [16] for an application in economics.
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4 Conclusions

In this note we have surveyed some basic properties of the largest eigenvalue distributions
Fβ , their appearance as limit laws for large classes of random matrix models as well as their
application to principal component analysis. We mention that these same distributions play
an analogous role in canonical correlations [22] as they do in PCA. Though not discussed in
these notes, the same Fβ appear as limit laws for certain problems in combinatorial theory
related to growth processes [4, 18]. (For a recent review of these topics see [34].)
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