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Random Matrix Models

Probability Space: (Ω, Pr,F):

• Gaussian Orthogonal Ensemble (GOE, β = 1):

– Ω = N × N real symmetric matrices

– Pr = “unique” measure that is invariant under

orthogonal transformations and matrix elements are

iid random variables. Explicitly,

Pr(A ∈ B) =

∫

B

e−tr(A2) dA

• Gaussian Unitary Ensemble (GUE, β = 2)

– Ω = N × N (complex) hermitian matrices

– Pr = “unique” measure that is invariant under

unitary transformations and the independent real and

imaginary matrix elements are iid random variables

• Gaussian Symplectic Ensemble (GSE, β = 4)
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Limit Laws: N → ∞
Eigenvalues, which are random variables, are real and with

probability one they are distinct.

If λmax(A) denotes the largest eigenvalue of the random matrix

A, then for each of the three Gaussian ensembles we introduce

the corresponding distribution function

FN,β(t) := Prβ (λmax < t) , β = 1, 2, 4.

The basic limit laws (Tracy-Widom) state thata

Fβ(s) := lim
N→∞

FN,β

(

2σ
√

N +
σs

N1/6

)

, β = 1, 2, 4,

exist and are given explicitly by

aHere σ is the standard deviation of the Gaussian distribution on the off-

diagonal matrix elements.
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F2(s) = det
(

I − KAiry

)

= exp

(

−
∫ ∞

s

(x − s)q2(x) dx

)

where

KAiry
.
=

Ai(x)Ai′(y) − Ai′(x)Ai(y)

x − y

acting on L2(s,∞) (Airy kernel)

and q is the unique solution to the Painlevé II equation

q′′ = sq + 2q3, q(s) ∼ Ai(s) as s → ∞.

(Called the Hastings-McLeod solution.)
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Probability densities

β = 1

β = 2

β = 4

F1(s) = exp

(

−1

2

∫ ∞

s

q(x) dx

)

(F2(s))
1/2 ,

F4(s/
√

2) = cosh

(

1

2

∫ ∞

s

q(x) dx

)

(F2(s))
1/2

.
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RMT Universality Theorems

Do limit laws depend upon the underlying Gaussian assumption on

the probability measure?

To investigate this for unitarily invariant measures (β = 2):

exp
(

−tr(A2)
)

→ exp (−tr(V (A))) .

Bleher & Its chose

V (A) = gA4 − A2, g > 0,

and subsequently a large class of potentials V was analyzed by

Deift/Kriecherbauer/McLaughlin/Venakides/Zhou.

Requires proving new Plancherel-Rotach type formulas for

nonclassical orthogonal polynomials. The proofs use

Riemann-Hilbert methods. Generic behavior is GUE. However,

by tuning V new universality classes will emerge.
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Universality theorems for orthogonal & symplectic invariant

measures:

• Stojanovic analyzed the quartic potential.

• Deift & Gioev considered a class of polynomial potentials

whose equilibrium measure is supported on a single interval.

Their starting point is Widom’s representation of the

correlation kernels for the β = 1, 4 cases in terms of the unitary

(β = 2) correlation kernel plus a correction.

All these results can be summarized by

Generic edge behavior is described by Airy kernel
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Noninvariant RMT Measures

Soshnikov proved that for real symmetric Wigner matricesa

(complex hermitian Wigner matrices) the limiting distribution of

the largest eigenvalue is F1 (respectively, F2). The significance of

this result is that nongaussian Wigner measures lie outside the

“integrable class” (e.g. there are no Fredholm determinant

representations for the distribution functions) yet the limit laws are

the same as in the integrable cases.

aA symmetric Wigner matrix is a random matrix whose entries on and above

the main diagonal are independent and identically distributed random variables

with distribution function F . Soshnikov assumes all odd moments vanish and

even moments are finite satisfying a Gaussian type growth condition.
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Next Largest, Next-next Largest, etc.

Eigenvalue Distributions

Let λ̂
(n)
k denote the rescaled kth eigenvalue measured from the

edge of the spectrum. We are interested in

Fβ(s, k) = lim
n→∞

Prnβ

(

λ̂
(n)
k ≤ s

)

, β = 1, 2, 4.

(k = 1 is the case of largest eigenvalue.) Define

D2(s, λ) = det (I − λKAiry) , 0 ≤ λ ≤ 1,

then

F2(s, k+1)−F2(s, k) =
(−1)k

k !

∂k

∂λk
D2(s, λ)

∣

∣

∣

∣

λ=1−

k ≥ 0, F2(s, 0) := 0

We have a Painlevé representation for D(s, 1).

What is the Painlevé representation for D(s, λ)?
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The answer (TW) is remarkably simple:

D2(s, λ) = exp

[

−
∫ ∞

s

(x − s) q2(x, λ)d x

]

where q(x, λ) satisfies the same Painlevé II equation but with

boundary condition

q(x, λ) ∼
√

λAi(x), x → ∞.

Thus F2(s, k) are expressible in terms of

q(s, 1),
∂q

∂λ
(s, 1), . . . ,

∂kq

∂λk
(s, 1)

Will same hold for orthogonal and symplectic ensembles?

i.e. Take λ = 1 results and simply make replacement

q(x) = q(x, 1) → q(x, λ) ?
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Let

D1(s, λ) := lim
Edge Scaling

det (I − λKn,GOE) = det2 (I − λK1,Airy)

D4(s, λ) := lim
Edge Scaling

det (I − λKn,GSE) = det (I − λK4,Airy)

Remarks:

1. Convergence for β = 4 is in trace-class norm. For β = 1

convergence is to the regularized determinant, det2, in the

Hilbert-Schmidt norm (TW).

2.

Fβ(s, k + 1) = Fβ(s, k) +
(−1)k

k!

∂k

∂λk
D

1/2
β (s, λ)

∣

∣

∣

∣

λ=1

, β = 1, 4,

with Fβ(s, 0) := 0.
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Painlevé Representations for D1 and D4

Momar Dieng proved the following:

D4(s, λ) = D2(s, λ) cosh2

(

µ(s, λ)

2

)

D1(s, λ) = D2(s, λ̃)
λ − 1 − coshµ(s, λ̃) +

√

λ̃ sinhµ(s, λ̃)

λ − 2

with

µ(s, λ) :=

∫ ∞

s

q(x, λ)d x and λ̃ := 2 λ − λ2

In the symplectic case the prescription q(x, 1) → q(x, λ) is valid;

whereas for the orthogonal case, a new formula appears.

Note, in the orthogonal case, that D2 and q are evaluated at λ̃.
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104 realizations of 103 × 103 GOE matrices
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Appearance of Limit Laws Outside of RMT

Major breakthrough when Baik, Deift, Johansson proved that

the limiting distribution of the length of the longest increasing

subsequence in a random permutation is F2.

Random permutation of {1, 2, . . . , 10}:

σ = {3, 7, 10,5, 9,6,8, 1, 4, 2}, ℓ10(σ) = 4

Patience Sorting Algorithm (Aldous, Diaconis)

2

4 6

1 5 9

3 7 10 8
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BDJ Theorem:

lim
n→∞

Pr

(

ℓn − 2
√

n

n1/6
≤ x

)

= F2(x)

and with convergence of moments, e.g.

E(ℓn) = 2
√

n +

∫ ∞

−∞

xf2(x) dx n1/6 + o(n1/6)

= 2
√

n − 1.7710868074 n1/6 + o(n1/6)

A simulation with 100 trials for n = 105 gives an average number of

piles per trial

621.96

which should be compared with the asymptotic expected value

620.389

The 2
√

n term alone gives 632.456.
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Key Points in the Proof of the BDJ Theorem

• Gessel proved (uses RSK and Jacobi-Trudi identity for sλ)

∑

n≥0

Pr(ℓn ≤ k)
t2n

n!
= det(Tk(ϕ))

where Tk(ϕ) is a k × k Toeplitz matrix with symbol

ϕ(z) = et(z+1/z).

• Use Case/Geronimo-Borodin/Okounkov identity that relates a

Toeplitz determinant to a Fredholm determinant of an operator

on ℓ2({0, 1, . . .})
∑

n≥0

Pr(ℓn ≤ k)
t2n

n!
= det(I − Kk)
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Specifically, ϕ = ϕ+ϕ−, then

Kk(i, j) =
∑

ℓ≥0

(ϕ−/ϕ+)k+i+ℓ+1 (ϕ+/ϕ−)−k−j−ℓ−1

• Show Kk → KAiry in trace class norm: Use saddle point

method on Fourier coefficients appearing in CGBO identity.

Find

Nontrivial limit only when two saddle points coalesce

Airy function generic behavior

KAiry(x, y) =

∫ ∞

0

Ai(x + z)Ai(y + z) dz

The one-third scaling is a direct result of this coalescence—viz.

the cubic power in the Airy function integral:

Ai(z) =
1

2πi

∫

C

eξ3/3−zξ dξ
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• A dePoissonization lemma to get limit theorem.

The BDJ Theorem resulted in a burst of activity relating the

distribution functions of RMT to problems in combinatorics,

representation theory of the symmetric group, growth processes

and determinantal random fields

Cast of Players

M. Adler, D. Aldous, J. Baik, P. Bleher, T. Bodineau,

A. Borodin, P. Deift, P. Diaconis, P. Ferrari, P. Forrester,

J. Gravner, T. Imamura, A. Its, K. Johannson, J. Martin,

K. McLaughlin, N. O’Connell, A. Okounkov, G. Olshanski,

M. Prähoffer, E. Rains, N. Reshetikhin, T. Sasamoto,

A.Soshnikov, H. Spohn, C. Tracy, P. van Moerbeke,

H. Widom, . . .
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From Brownian Motion to the Airy Process

t → Bt

is a Gaussian process: Fix t1 < t2 < · · · < tm,

(Bt1 , Bt2 , . . . , Btm
)

is a multivariate Gaussian, e.g.

Pr (Bt ≤ x) = Φ(x)

The Airy Process (Prähoffer & Spohn, Johansson)

t → At

is the process underlying F2, e.g.

Pr (At ≤ x) = F2(x)
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Dyson BM

GUE initial conditions and independent matrix elements of a

Hermitian matrix H independently undergo Ornstein-Uhlenbeck

diffusion

t → Ht.

Transition density

p(H, H ′; t2 − t1) := exp

(

− tr(H − qH ′)2

1 − q2

)

/Z

q = et1−t2 < 1.

As t2 → ∞, measure approaches GUE measure.

Each eigenvalue feels an electric field

E(xi) =
∑

i 6=j

1

xi − xj
− xi
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Many times: t1 < t2 < · · · < tm

With GUE initial conditions the density for Ht in neighborhood of

Hk at time t = tk is

e−tr(H2

1
)

m
∏

j=2

p(Hj , Hj−1, tj − tj−1)

Use HCIZ integral to integrate out unitary parts to obtain

determinantal measure on eigenvalues xj(t)

Focus on the largest eigenvalue

t → xmax(t)

In edge scaling limit obtain

t → At
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Airy Process

Defined by the distribution functions

Pr(At1 ≤ ξ1, . . . , Atm
≤ ξm)

Probability expressed as a Fredholm determinant of extended Airy

kernel, an m × m matrix kernel. Entries Lij(x, y) given by
∫ ∞

0

e−z (ti−tj) Ai(x + z) Ai(y + z) dz, i ≥ j,

−
∫ 0

−∞

e−z (ti−tj) Ai(x + z) Ai(y + z) dz, i < j

Kij(x, y) = Lij(x, y) χ(ξj ,∞)(y).

Probability equals det (I − K).
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Aztec Diamond An
Elkies, Kuperberg, Larsen, Propp, . . .

An: Union of all lattice squares that lie inside {|x| + |y| ≤ n + 1}.

•
• •

• • •
• • •

• •
•

A3 with checkerboarding
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‡ Tile with 2 × 1 and 1 × 2 dominoes.

‡ Checkerboard lattice. Four types of tiles: N, S, E, W.

• =

N

•
=

S • =

W

• =

E

‡ Xn(t) is top line.

‡ The Northern Polar Region (NPR) is exactly the part of the

domino tiling that lies above Xn(t), and consists only of

N-dominoes.

24



Figure 1: Top Curve Xn(t) [Johansson]

25



Random Tilings Research Group
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Theorem (Johansson) Let Xn(t) be the NPR-boundary process

and At the Airy process, then

Xn(2−1/6n2/3t) − n/
√

2

2−5/6n1/3
→ At − t2,

as n → ∞, in the sense of convergence of finite-dimensional

distributions.

Remark: Johansson derives an extended kernel for the distribution

functions and shows convergence to the extended Airy kernel.
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Random 3D Young Diagram

Okounkov and Reshetikhin
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Pearcey Process

Brézin & Hikami (1998), Aptekarev, Bleher, Kuijlaars (2004–05),

Okounkov & Reshetikhin (2003–05), Tracy & Widom (2004–05),

Adler & van Moerbeke(2005)

Airy functions (fold singularity) −→
Pearcey functions (cusp singularity)

Saddle point analysis: Airy is coalescence of two saddle points

whereas Pearcey arises from the coalescence of three saddle points
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Take b =
√

n, τk → τc + τk/
√

n, then in the limit n → ∞, the

operator K converges to the to KPearcey whose kernel, extended

Pearcey kernel, has i, j entry

− 1

4π2

∫

C

∫ i∞

−i∞

e−s4/4+τjs2/2−ys+t4/4−τit
2/2+xt dsdt

s − t

The t contour C consists of the rays from ±∞eiπ/4 to 0 and the

rays from 0 to ±e−iπ/4. For m = 1 and τ1 = 0 this reduces to the

Pearcey kernel of Brézin & Hikami.

Open Problem: Prove the existence of an actual limiting process

consisting of infinitely many paths, with correlation functions and

spacing distributions described by the extended Pearcey kernel. For

each fixed time that there is a limiting random point field follows

from a theorem of Lenard. But the construction of the

time-dependent random point field is still open.
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Henry
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