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DATA MATRICES

AND
PRINCIPAL COMPONENT ANALYSIS (PCA)

Suppose in some measurement (experiment) we have p variables
X1, X0, ., X,

Theoretically, the X are random variables. The observed data on
X} can be viewed as a vector x € R". We form a p x n data matrix
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e Astrophysics example: “In Orion A we have mapped 32

molecular transitions in the 3 mm wavelength band ....” Each
“map” contains 360 pixels. Here p = 32 and n = 360.




e Human Gene Structure: Properties of p = 38 genes at n = 400
locations in Europe.

e Finance: Twenty years of stock returns in the S&P 500. Here
p = 500 and n is the number of data points on an individual
stock.

The idea of PCA (Hotelling, 1933; see Johnstone [6])
e Reduce dimensionality: W = ), v X}, by requiring

var(W) = Z ’Uk;COV<Xk;, Xk/)vk/
k,k’

have maxzimum variance. Vector v is the 1st principal
component vector. Then choose successive linear combinations
that are orthogonal to previously chosen and maximize

variance.

{; = max {UTZU ; UTUj/ =0,5 <j,|v| = 1}




SAMPLE COVARIANCE MATRIX

Use data matrix X to get p X p sample covariance matrix

1
S=-X"X
n

and look for sample principle components:

Svj p— Ejvj

Spreading of sample eigenvalues

Take n = p = 10 for Wishart distribution: Xi,..., X, follow a

p-variate Gaussian distribution with > = 1:

A

0; = .003, .036, .095, .16, .30, .51, .78, 1.12, 1.40, 3.07

On the basis of this data, might (erroneously!) conclude population

eigenvalues are quite different from each other (they all equal 1).




This spreading of the eigenvalues is the statistics version of
Wigner semicircle

or as its called here

Marcenko-Pastur limit density

gMP(t) _ \/(b—l— B t)(t B b—)
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where p/n — v as n,p — oo. When n = p the density is supported
on the interval [0, 4].

Question: Suppose one sees a largest sample eigenvalue of 4.25. Is
this consistent with an identity covariance matrix? (It lies outside
the M-P support.)




o Hy:>X = 1. The null hypothesis.
o H,:> # 1. The alternative hypothesis.

Want
P (21 > t|H0 = Wp(n, I))

Theorem (Johnstone [5)):

P (21 < Hnp + Unp5|H0 — Wp(”v I)) - Fl(S)

(Vo—1/2+ p_1/2)2
(V=124 p—1

1/3
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WHAT 1S F} ?

F is one of three distributions first discovered by Harold Widom
and C.T. [13, 14] in the context of the distribution of the largest

eigenvalue in

GOE, GUE, and GSE

exp (— / "1 — 8)q(x)? d:v)

Fu(s) exp (— / @) dac)

sq + 2q¢°, Painlevé II equation

Ai(s) as s — o0




Appearance of I} also in double Wishart : Two independent
Wishart matrices A ~ W,,(n1,1) and B ~ W, (no,I). Appears in

e Canonical correlation analysis

William Chen, of the IRS, computed tables of the exact
distribution in the double Wishart

me=(mn1—p—1)/2, n.=(ny—p—1)/2

Johnstone compared this with the TW approximation which is a

limit theorem

p
n,p—oo, — —7v57<X0
n

The agreement is good. (See next slide.)

In the earlier example, the TW approximation yields a 6% chance
of seeing a value more extreme that 4.25 even if “no structure” is

present.




Table vs. Approx at 95th %tile; mc = (q—p-1)/2; nc = (h—-g—p-1)/2
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FURTHER DEVELOPMENTS FOR WISHART
DISTRIBUTION

e Johnstone [5], El Karoui [7, 8], Choup [3]: Second-order

accuracy

‘P (nél < fnp + ans\H()) — F5(5)| < Cp~2/3

El Karoui in null case for the largest eigenvalue, proves the
limit law for 0 < v < oo. This requires additional estimates to
allow v = oc.

Soshnikov [12] removes Gaussian assumption on the
distribution of the matrix elements of X and only requires odd
moments are zero and even moments satisty a Gaussian type
bound. Then for > = I with under the restriction that as

n,p — oo that

n—p=0(p'"?




we get the same limit law described by F3.

e Note Added: Péché [11] has removed this restriction on
v = limp/n.

e Beyond the Null Hypothesis: If A ~ W, (n,), then joint
eigenvalue density

p
cpas [JU" P2 T 1y — ]
j=1

j<k
/ o~ H(=71QLAT) g
O(p)

where L = diag(ly,...,[,) and d@ is normalized Haar measure.

Difficulty is the integral

/ o3 (=71QLQT) 4o
O(p)




For complex data above integral is replaced by

/ e_% tr(S"1ULU™) dU
U(p)

This integral can be evaluated in terms of determinants:
HARISH CHANDRA-ITZYKSON—ZUBER integral.

Spiked population data:

Eigenvaluesof X : Ay > 1= Xg=--- =),

When can we detect A1 from the data? It depends! Baik, Ben
Arous, Péché [1, 2| describe a PHASE TRANSITION for
population covariance matrices of above form (special case of

their theorem). For real data, see conjectures of Patterson,
Price and Reich [10].
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