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Data Matrices

and
Principal Component Analysis (PCA)

Suppose in some measurement (experiment) we have p variables

X1, X2, . . . , Xp

Theoretically, the Xk are random variables. The observed data on

Xk can be viewed as a vector xk ∈ R
n. We form a p×n data matrix

X =











←− x1 −→
...

←− xp −→











• Astrophysics example: “In Orion A we have mapped 32

molecular transitions in the 3 mm wavelength band . . . .” Each

“map” contains 360 pixels. Here p = 32 and n = 360.
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• Human Gene Structure: Properties of p = 38 genes at n = 400

locations in Europe.

• Finance: Twenty years of stock returns in the S&P 500. Here

p = 500 and n is the number of data points on an individual

stock.

The idea of PCA (Hotelling, 1933; see Johnstone [6])

• Reduce dimensionality: W =
∑

k vkXk by requiring

var(W ) =
∑

k,k′

vkcov(Xk, Xk′)vk′

have maximum variance. Vector v is the 1st principal

component vector. Then choose successive linear combinations

that are orthogonal to previously chosen and maximize

variance.

ℓj = max
{

vT Σv : vT vj′ = 0, j′ < j, |v| = 1
}
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Sample Covariance Matrix

Use data matrix X to get p× p sample covariance matrix

S =
1

n
XT X

and look for sample principle components:

Sv̂j = ℓ̂j v̂j

Spreading of sample eigenvalues

Take n = p = 10 for Wishart distribution: X1, . . . , Xp follow a

p-variate Gaussian distribution with Σ = 1:

ℓ̂j = .003, .036, .095, .16, .30, .51, .78, 1.12, 1.40, 3.07

On the basis of this data, might (erroneously!) conclude population

eigenvalues are quite different from each other (they all equal 1).
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This spreading of the eigenvalues is the statistics version of

Wigner semicircle

or as its called here

Marčenko-Pastur limit density

gMP (t) =

√

(b+ − t)(t− b−)

2πγt
, b± = (1±√γ)2

where p/n→ γ as n, p→∞. When n = p the density is supported

on the interval [0, 4].

Question: Suppose one sees a largest sample eigenvalue of 4.25. Is

this consistent with an identity covariance matrix? (It lies outside

the M-P support.)
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• H0 : Σ = I. The null hypothesis.

• HA : Σ 6= I. The alternative hypothesis.

Want

P

(

ℓ̂1 > t|H0 = Wp(n, I)
)

Theorem (Johnstone [5]):

P

(

ℓ̂1 ≤ µnp + σnps|H0 = Wp(n, I)
)

−→ F1(s)

where

µnp =
(

√

n− 1/2 +
√

p− 1/2
)2

σnp =
(

√

n− 1/2 +
√

p− 1/2
)

(

1
√

n− 1/2
+

1
√

p− 1/2

)1/3
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What is F1 ?

F1 is one of three distributions first discovered by Harold Widom

and C.T. [13, 14] in the context of the distribution of the largest

eigenvalue in

GOE, GUE, and GSE

F2(s) = exp

(

−
∫ ∞

s

(x− s)q(x)2 dx

)

F1(s)
2 = F2(s) exp

(

−
∫ ∞

s

q(x) dx

)

q′′ = sq + 2q3, Painlevé II equation

q(s) ∼ Ai(s) as s→∞
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Appearance of F1 also in double Wishart : Two independent

Wishart matrices A ∼Wp(n1, I) and B ∼Wp(n2, I). Appears in

• Canonical correlation analysis

William Chen, of the IRS, computed tables of the exact

distribution in the double Wishart

mc = (n1 − p− 1)/2, nc = (n2 − p− 1)/2

Johnstone compared this with the TW approximation which is a

limit theorem

n, p→∞,
p

n
→ γ <∞

The agreement is good. (See next slide.)

In the earlier example, the TW approximation yields a 6% chance

of seeing a value more extreme that 4.25 even if “no structure” is

present.
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Further Developments for Wishart
Distribution

• Johnstone [5], El Karoui [7, 8], Choup [3]: Second-order

accuracy
∣

∣

∣
P
(

nℓ̂1 ≤ µnp + σnps|H0

)

− Fβ(s)
∣

∣

∣
≤ Cp−2/3

• El Karoui in null case for the largest eigenvalue, proves the

limit law for 0 ≤ γ ≤ ∞. This requires additional estimates to

allow γ =∞.

• Soshnikov [12] removes Gaussian assumption on the

distribution of the matrix elements of X and only requires odd

moments are zero and even moments satisfy a Gaussian type

bound. Then for Σ = I with under the restriction that as

n, p→∞ that

n− p = O(p1/3)
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we get the same limit law described by F1.

• Note Added: Péché [11] has removed this restriction on

γ := lim p/n.

• Beyond the Null Hypothesis: If A ∼Wp(n, Σ), then joint

eigenvalue density

cp,n,Σ

p
∏

j=1

l
(n−p−1)/2
j

∏

j<k

|lj − lk| ×

∫

O(p)

e−
1

2
tr(Σ−1QLQT ) dQ,

where L = diag(l1, . . . , lp) and dQ is normalized Haar measure.

Difficulty is the integral
∫

O(p)

e−
1

2
tr(Σ−1QLQT ) dQ
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For complex data above integral is replaced by
∫

U(p)

e−
1

2
tr(Σ−1ULU∗) dU

This integral can be evaluated in terms of determinants:

Harish Chandra–Itzykson–Zuber integral.

• Spiked population data:

Eigenvalues of Σ : λ1 > 1 = λ2 = · · · = λp

When can we detect λ1 from the data? It depends! Baik, Ben

Arous, Péché [1, 2] describe a phase transition for

population covariance matrices of above form (special case of

their theorem). For real data, see conjectures of Patterson,

Price and Reich [10].
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C.N. Yang Institute for

Theoretical Physics

Happy 40th Birthday!
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