High Dimensional Data Matrices and

Random Matrices
Craig A. Tracy
UC Davis
YITP @ 40
May 3, 2007

Data Matrices
 AND
 Principal Component Analysis (PCA)

Suppose in some measurement (experiment) we have p variables

$$
X_{1}, X_{2}, \ldots, X_{p}
$$

Theoretically, the X_{k} are random variables. The observed data on X_{k} can be viewed as a vector $x_{k} \in \mathbb{R}^{n}$. We form a $p \times n$ data matrix

$$
X=\left(\begin{array}{ccc}
\longleftarrow & x_{1} & \longrightarrow \\
& \vdots & \\
\longleftarrow & x_{p} & \longrightarrow
\end{array}\right)
$$

- Astrophysics example: "In Orion A we have mapped 32 molecular transitions in the 3 mm wavelength band" Each "map" contains 360 pixels. Here $p=32$ and $n=360$.
- Human Gene Structure: Properties of $p=38$ genes at $n=400$ locations in Europe.
- Finance: Twenty years of stock returns in the S\&P 500. Here $p=500$ and n is the number of data points on an individual stock.

The idea of PCA (Hotelling, 1933; see Johnstone [6])

- Reduce dimensionality: $W=\sum_{k} v_{k} X_{k}$ by requiring

$$
\operatorname{var}(W)=\sum_{k, k^{\prime}} v_{k} \operatorname{cov}\left(X_{k}, X_{k^{\prime}}\right) v_{k^{\prime}}
$$

have maximum variance. Vector v is the 1st principal component vector. Then choose successive linear combinations that are orthogonal to previously chosen and maximize variance.

$$
\ell_{j}=\max \left\{v^{T} \Sigma v: v^{T} v_{j^{\prime}}=0, j^{\prime}<j,|v|=1\right\}
$$

Sample Covariance Matrix

Use data matrix X to get $p \times p$ sample covariance matrix

$$
S=\frac{1}{n} X^{T} X
$$

and look for sample principle components:

$$
S \hat{v}_{j}=\hat{\ell}_{j} \hat{v}_{j}
$$

Spreading of sample eigenvalues
Take $n=p=10$ for Wishart distribution: X_{1}, \ldots, X_{p} follow a p-variate Gaussian distribution with $\Sigma=1$:

$$
\hat{\ell}_{j}=.003, .036, .095, .16, .30, .51, .78,1.12,1.40,3.07
$$

On the basis of this data, might (erroneously!) conclude population eigenvalues are quite different from each other (they all equal 1).

This spreading of the eigenvalues is the statistics version of

> Wigner semicircle
or as its called here
Marčenko-Pastur limit density

$$
g^{M P}(t)=\frac{\sqrt{\left(b_{+}-t\right)\left(t-b_{-}\right)}}{2 \pi \gamma t}, b_{ \pm}=(1 \pm \sqrt{\gamma})^{2}
$$

where $p / n \rightarrow \gamma$ as $n, p \rightarrow \infty$. When $n=p$ the density is supported on the interval $[0,4]$.

Question: Suppose one sees a largest sample eigenvalue of 4.25. Is this consistent with an identity covariance matrix? (It lies outside the M-P support.)

- $H_{0}: \Sigma=I$. The null hypothesis.
- $H_{A}: \Sigma \neq I$. The alternative hypothesis.

Want

$$
\mathbb{P}\left(\hat{\ell}_{1}>t \mid H_{0}=W_{p}(n, I)\right)
$$

Theorem (Johnstone [5]):

$$
\mathbb{P}\left(\hat{\ell}_{1} \leq \mu_{n p}+\sigma_{n p} s \mid H_{0}=W_{p}(n, I)\right) \longrightarrow F_{1}(s)
$$

where

$$
\begin{aligned}
& \mu_{n p}=(\sqrt{n-1 / 2}+\sqrt{p-1 / 2})^{2} \\
& \sigma_{n p}=(\sqrt{n-1 / 2}+\sqrt{p-1 / 2})\left(\frac{1}{\sqrt{n-1 / 2}}+\frac{1}{\sqrt{p-1 / 2}}\right)^{1 / 3}
\end{aligned}
$$

What is F_{1} ?

F_{1} is one of three distributions first discovered by Harold Widom and C.T. $[13,14]$ in the context of the distribution of the largest eigenvalue in

GOE, GUE, and GSE

$$
\begin{aligned}
F_{2}(s) & =\exp \left(-\int_{s}^{\infty}(x-s) q(x)^{2} d x\right) \\
F_{1}(s)^{2} & =F_{2}(s) \exp \left(-\int_{s}^{\infty} q(x) d x\right) \\
q^{\prime \prime} & =s q+2 q^{3}, \text { Painlevé II equation } \\
q(s) & \sim \operatorname{Ai}(s) \text { as } s \rightarrow \infty
\end{aligned}
$$

Appearance of F_{1} also in double Wishart : Two independent Wishart matrices $A \sim W_{p}\left(n_{1}, I\right)$ and $B \sim W_{p}\left(n_{2}, I\right)$. Appears in

- Canonical correlation analysis

William Chen, of the IRS, computed tables of the exact distribution in the double Wishart

$$
m_{c}=\left(n_{1}-p-1\right) / 2, \quad n_{c}=\left(n_{2}-p-1\right) / 2
$$

Johnstone compared this with the TW approximation which is a limit theorem

$$
n, p \rightarrow \infty, \quad \frac{p}{n} \rightarrow \gamma<\infty
$$

The agreement is good. (See next slide.)
In the earlier example, the TW approximation yields a 6% chance of seeing a value more extreme that 4.25 even if "no structure" is present.

Table vs. Approx at 95th \%tile; $m \mathrm{c}=(\mathrm{q}-\mathrm{p}-1) / 2 ; \mathrm{nc}=(\mathrm{n}-\mathrm{q}-\mathrm{p}-1) / 2$

Further Developments for Wishart Distribution

- Johnstone [5], El Karoui [7, 8], Choup [3]: Second-order accuracy

$$
\left|P\left(n \hat{\ell}_{1} \leq \mu_{n p}+\sigma_{n p} s \mid H_{0}\right)-F_{\beta}(s)\right| \leq C p^{-2 / 3}
$$

- El Karoui in null case for the largest eigenvalue, proves the limit law for $0 \leq \gamma \leq \infty$. This requires additional estimates to allow $\gamma=\infty$.
- Soshnikov [12] removes Gaussian assumption on the distribution of the matrix elements of X and only requires odd moments are zero and even moments satisfy a Gaussian type bound. Then for $\Sigma=I$ with under the restriction that as $n, p \rightarrow \infty$ that

$$
n-p=\mathrm{O}\left(p^{1 / 3}\right)
$$

we get the same limit law described by F_{1}.

- Note Added: Péché [11] has removed this restriction on $\gamma:=\lim p / n$.
- Beyond the Null Hypothesis: If $A \sim W_{p}(n, \Sigma)$, then joint eigenvalue density

$$
\begin{aligned}
c_{p, n, \Sigma} & \prod_{j=1}^{p} l_{j}^{(n-p-1) / 2} \prod_{j<k}\left|l_{j}-l_{k}\right| \times \\
& \int_{\mathcal{O}(p)} \mathrm{e}^{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} Q L Q^{T}\right)} d Q
\end{aligned}
$$

where $L=\operatorname{diag}\left(l_{1}, \ldots, l_{p}\right)$ and $d Q$ is normalized Haar measure. Difficulty is the integral

$$
\int_{\mathcal{O}(p)} \mathrm{e}^{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} Q L Q^{T}\right)} d Q
$$

For complex data above integral is replaced by

$$
\int_{\mathcal{U}(p)} \mathrm{e}^{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} U L U^{*}\right)} d U
$$

This integral can be evaluated in terms of determinants:
Harish Chandra-Itzykson-Zuber integral.

- Spiked population data:

Eigenvalues of $\Sigma: \lambda_{1}>1=\lambda_{2}=\cdots=\lambda_{p}$
When can we detect λ_{1} from the data? It depends! Baik, Ben Arous, Péché $[1,2]$ describe a Phase transition for population covariance matrices of above form (special case of their theorem). For real data, see conjectures of Patterson, Price and Reich [10].
C.N. Yang Institute for Theoretical Physics

Happy 40th Birthday!

References

[1] J. Baik, G. Ben Arous, and S. Péché, Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab. 33 (2005), 1643-1697.
[2] J. Baik, Painlevé formulas of the limiting distributions for nonnull complex sample covariance matrices, Duke Math. J. 133 (2006), 205-235.
[3] L. Choup, Edgeworth expansion of the largest eigenvalue distribution function of GUE and LUE, Int. Math. Res. Not. (2006), Art. ID 61049, 32 pp.
[4] M. Dieng and C. A. Tracy, Application of random matrix theory to multivariate statistics, preprint, arXiv:math.PR/0603543.
[5] I. M. Johnstone, On the distribution of the largest eigenvalue in principal component analysis, Ann. Stat. 29 (2001), 295-327.
[6] I. M. Johnstone, High dimensional statistical inference and
random matrices, arXiv: math.ST/0611589.
[7] N. El Karoui, On the largest eigenvalue of Wishart matrices with identity covariance when n, p and p / n tend to infinity, arXiv: math.ST/0309355.
[8] N. El Karoui, Tracy-Widom limit for the largest eigenvalue of a large class of complex Wishart matrices, arXiv: math.PR/0503109.
[9] R. J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley \& Sons, Inc., 1982.
[10] N. Patterson, A. L. Price and D. Reich, Population structure and eigenanalysis, PLoS Genetics 2 (2006), 2074-2093.
[11] S. Péché, Universality at the soft edge for some white sample covariance matrices ensembles, preprint, arXiv:0705.1701.
[12] A. Soshnikov, A note on universality of the distribution of the largest eigenvalue in certain sample covariance matrices, J. Statistical Physics 108 (2002), 1033-1056.
[13] C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Phys. Letts. B 305 (1993), 115-118; Commun. Math. Phys. 159 (1994), 151-174.
[14] C. A. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Commun. Math. Phys. 177 (1996), 727-754.

