Differential Equations for Dyson Processes

Craig Tracy \& Harold Widom

- Overview
- Dyson Brownian Motion
- Airy Process
- Differential Equations
- Future Directions \& Open Problems

Overview

Dyson process: Any process on ensembles of matrices in which the entries undergo diffusion.

Dyson BM: Entries of finite GUE matrix independently undergo Ornstein-Uhlenbeck diffusion. Eigenvalues describe n curves: Hermite Process.

Let $n \rightarrow \infty$, scale near the top. Infinitely many curves, Airy process. Top curve $A(\tau)$. From work of Johansson and Prähoffer \& Spohn, the Airy process is now believed to underly a large class of growth processes. ($1+1 \mathrm{KPZ}$ Universality Class)

Scale the Hermite process in the bulk \longrightarrow sine process.
Evolution of singular values of complex matrices leads to Laguerre process; scaling this at bottom edge gives Bessel process.

Aztec Diamond A_{n}

Elkies, Kuperberg, Larsen, Propp, ...

- A_{n} : Union of all lattice squares that lie inside $\{|x|+|y| \leq n+1\}$.
- Tile with 2×1 and 1×2 dominoes.
- Checkerboard lattice. Four types of tiles: N, S, E, W.
- Draw lines on $\mathrm{S}, \mathrm{E}, \mathrm{W}$ dominoes. $X_{n}(t)$ is top line.
- The Northern Polar Region (NPR) is exactly the part of the domino tiling that lies above $X_{n}(t)$, and consists only of N -dominoes.

Figure 1: Top Curve $X_{n}(t)$ [Johansson]

Theorem (Johansson) Let $X_{n}(t)$ be the NPR-boundary process and $A(\tau)$ the Airy process, then

$$
\frac{X_{n}\left(2^{-1 / 6} n^{2 / 3} t\right)-n / \sqrt{2}}{2^{-5 / 6} n^{1 / 3}} \rightarrow A(t)-t^{2}
$$

as $n \rightarrow \infty$, in the sense of convergence of finite-dimensional distributions.

The expectation is that the Airy process governs a large class of growth processes which physicists call the KPZ Universality Class. (KPZ=Kardar, Parisi, Zhang).

Dyson BM

GUE initial conditions and independent matrix elements independently undergo OU diffusion:

$$
\tau \rightarrow H(\tau)
$$

Transition density

$$
p\left(H, H^{\prime} ; \tau_{2}-\tau_{1}\right):=\exp \left(-\frac{\operatorname{tr}\left(H-q H^{\prime}\right)^{2}}{1-q^{2}}\right) / Z
$$

$q=e^{\tau_{1}-\tau_{2}}<1$.
As $\tau_{2} \rightarrow \infty$, measure approaches GUE measure.
Each eigenvalue feels an electric field

$$
E\left(x_{i}\right)=\sum_{i \neq j} \frac{1}{x_{i}-x_{j}}-x_{i}
$$

Many times: $\tau_{1}<\tau_{2}<\cdots<\tau_{m}$
With GUE initial conditions the density for $H\left(\tau_{k}\right)$ in neighborhood of H_{k} is

$$
e^{-\operatorname{tr}\left(H_{1}^{2}\right)} \prod_{j=2}^{m} p\left(H_{j}, H_{j-1}, \tau_{j}-\tau_{j-1}\right)
$$

Use HCIZ integral to integrate out unitary parts to obtain determinantal measure on eigenvalues $x_{j}(\tau)$

Leads to extended kernels (Eynard \& Mehta, Johansson, Prähoffer \& Spohn) and by scaling to
extended Airy kernel, extended sine kernel, extended Bessel kernel...

Airy Process

Defined by the distribution functions

$$
\operatorname{Pr}\left(A\left(\tau_{1}\right) \leq \xi_{1}, \ldots, A\left(\tau_{m}\right) \leq \xi_{m}\right)
$$

Probability expressed as a Fredholm determinant of extended Airy kernel, an $m \times m$ matrix kernel. Entries $L_{i j}(x, y)$ given by

$$
\begin{gathered}
\int_{0}^{\infty} e^{-z\left(\tau_{i}-\tau_{j}\right)} \operatorname{Ai}(x+z) \operatorname{Ai}(y+z) d z, \quad i \geq j, \\
-\int_{-\infty}^{0} e^{-z\left(\tau_{i}-\tau_{j}\right)} \operatorname{Ai}(x+z) \operatorname{Ai}(y+z) d z, i<j \\
K_{i j}(x, y)=L_{i j}(x, y) \chi_{\left(\xi_{j}, \infty\right)}(y) . \\
\text { Probability equals } \operatorname{det}(I-K) .
\end{gathered}
$$

Remarks

1. For $m=1$ extended kernel reduces to Airy kernel—an integrable kernel in the sense of A. Its et al.. Not 'integrable' for $m>1$.
2. For $m=1$ Fredholm determinant is a τ-function for Painlevé II, ψ.
3. Relationship between the two is

$$
\psi(\xi)=\left.\left(I-K_{\text {Airy }}\right)^{-1} \operatorname{Ai}(x)\right|_{x=\xi}
$$

4. Integrable differential equations for $m>1$? Answered affirmatively by Adler and van Moerbeke and TW.

Set $R=K(I-K)^{-1}$, then

$$
\partial_{\xi_{k}} \log \operatorname{det}(I-K)=R_{k k}\left(\xi_{k}, \xi_{k}\right)
$$

Unknowns: Five matrix functions of the ξ_{k}. First is

$$
r_{i j}=R_{i j}\left(\xi_{i}, \xi_{j}\right) .
$$

To define others, let

$$
\begin{gathered}
A=\operatorname{diag}(\mathrm{Ai}), \quad \chi=\operatorname{diag}\left(\chi_{\left(\xi_{k}, \infty\right)}\right), \\
Q=(I-K)^{-1} A, \quad \tilde{Q}=A \chi(I-K)^{-1} .
\end{gathered}
$$

Other unknowns are

$$
\begin{array}{ll}
q_{i j}=Q_{i j}\left(\xi_{i}\right), & \tilde{q}_{i j}=\tilde{Q}_{i j}\left(\xi_{j}\right), \\
q_{i j}^{\prime}=Q_{i j}^{\prime}\left(\xi_{i}\right), & \tilde{q}_{i j}^{\prime}=\tilde{Q}_{i j}^{\prime}\left(\xi_{j}\right) .
\end{array}
$$

Define r_{x} and r_{y} by

$$
\begin{aligned}
\left(r_{x}\right)_{i j} & =\left(\partial_{x} R\right)_{i j}\left(\xi_{i}, \xi_{j}\right) \\
\left(r_{y}\right)_{i j} & =\left(\partial_{y} R\right)_{i j}\left(x_{i}, \xi_{j}\right)
\end{aligned}
$$

r_{x} and r_{y} are not unknowns.
Set $\xi=\operatorname{diag}\left(\xi_{k}\right)$. Equations are

$$
\begin{aligned}
d r & =-r d \xi r+d \xi r_{x}+r_{y} d \xi \\
d q & =d \xi q^{\prime}-r d \xi q \\
d \tilde{q} & =\tilde{q}^{\prime} d \xi-\tilde{q} d \xi r \\
d q^{\prime} & =d \xi \xi q-\left(r_{x} d \xi+d \xi r_{y}\right) q+d \xi r q^{\prime} \\
d \tilde{q}^{\prime} & =\tilde{q} \xi d \xi-\tilde{q}\left(d \xi r_{y}+r_{x} d \xi\right)+\tilde{q}^{\prime} r d \xi
\end{aligned}
$$

Diagonal entries of $r_{x}+r_{y}$ and off-diagonal entries of r_{x} and r_{y} are expressible in terms of the unknowns. Here is where the τ_{k} enter. Let $\tau=\operatorname{diag}\left(\tau_{k}\right)$ and Θ the matrix with all entries equal to one.

$$
\begin{gathered}
r_{x}+r_{y}=-q \Theta \tilde{q}+r^{2}+[\tau, r] \\
{\left[\tau, r_{x}-r_{y}\right]=q^{\prime} \Theta \tilde{q}-q \Theta \tilde{q}^{\prime}+\left[r, r_{x}+r_{y}\right]+[\xi, r]}
\end{gathered}
$$

To prove these we used the Airy commutators

$$
\begin{aligned}
{[D, L] } & =-A \Theta A+[\tau, r] \\
{\left[D^{2}-M, L\right] } & =0
\end{aligned}
$$

When $m=1$ these equations reduce $(\tilde{q}=q=\psi$, $\left.\tilde{q}^{\prime}=q^{\prime}=d \psi / d \xi+r \psi\right)$ to the single Painlevé II equation

$$
\frac{d^{2} \psi}{d \xi^{2}}=\xi \psi+2 \psi^{3}
$$

Remarks

Adler \& van Moerbeke used their DEs to derive $\tau \rightarrow \infty$ asymptotics for

$$
\begin{gathered}
\frac{\operatorname{Pr}\left(A(0) \leq \xi_{1}, A(\tau) \leq \xi_{2}\right)}{F_{2}\left(\xi_{1}\right) F_{2}\left(\xi_{2}\right)}=1+\frac{c_{2}\left(\xi_{1}, \xi_{2}\right)}{\tau^{2}}+ \\
\frac{c_{4}\left(\xi_{1}, \xi_{2}\right)}{\tau^{4}}+\mathrm{O}\left(\tau^{-6}\right)
\end{gathered}
$$

and Widom derived the same asymptotic expansion directly from the Fredholm determinant representation. The important feature is that c_{2} and c_{4} are expressible in terms of the Painlevé II function ψ, e.g.

$$
c_{2}\left(\xi_{1}, \xi_{2}\right)=u\left(\xi_{1}\right) u\left(\xi_{2}\right), u(\xi)=\int_{\xi}^{\infty} \psi^{2}(x) d x
$$

These same methods, e.g. perturbation expansion of DEs or expansion of Fredholm determinant, show that the matrix Painlevé function q

$$
\begin{gathered}
q(\xi)=\left(\begin{array}{ll}
\psi\left(\xi_{1}\right) & 0 \\
0 & \psi\left(\xi_{2}\right)
\end{array}\right)+ \\
\frac{1}{\tau}\left(\begin{array}{ll}
0 & -u\left(\xi_{1}\right) \psi\left(\xi_{2}\right) \\
\psi\left(\xi_{1}\right) u\left(\xi_{2}\right) & 0
\end{array}\right)+\mathrm{O}\left(\tau^{-2}\right)
\end{gathered}
$$

That is, matrix Painlevé q is decoupling in $\tau \rightarrow \infty$ asymptotics to scalar Painlevé II.

Open Problems for Airy System

1. Are equations deformation equations for some isomondromy problem and is Fredholm determinant the associated τ-function in sense of Jimbo-Miwa-Ueno?
2. We proved compatibility for small m using Maple. Give general conceptual proof. Difficulty lies with the conditions determining r_{x} and r_{y}.
3. Systemize large τ asymptotics. Find small τ expansions.

We have systems of PDEs that determine the Fredholm determinant of

- Extended Hermite kernel
- Extended Sine kernel
- Extended Bessel kernel

They are more complicated than the extended Airy system. Each requires a special trick. Adler \& van Moerbeke also have system of DEs for extended Hermite kernel.

Higher Universality Classes

1. Airy kernel arises as a fold singularity: coalescence of two saddle points
2. Pearcey kernel (Brézin \& Hikami, Okounkov \& Reshetikhin, Bleher \& Kuijlaars) arises as a cusp singularity: coalescence of three saddle points.
3. General Problem:

Singularity \longrightarrow Diffraction Integral \longrightarrow Kernel \longrightarrow Process

