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Random Matrix Models (RMM)

RMM=Probability space (£2,P,F), Q=set of
matrices, P = probability measure

e Gaussian Orthogonal Ensemble (3 =1)
— 2 = N x N real symmetric matrices

— P = "“unique” measure that is invari-
ant under orthogonal transformations &
matrix elements are iid rv’s.

e Gaussian Unitary Ensemble (8 = 2)
— 2 = N x N hermitian matrices

— P= “unique” measure that is invariant
under unitary transformations & real and
imaginary matrix elements are iid rv’'s.

e Gaussian Symplectic Ensemble (8 = 4)
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Expected Values

f:Q2—C,

B(f) = | f(1) ap(a1)

Suppose f(M) depends only on the eigenvalues
of M.

Finite N Gaussian Ensembles (3 =1,2,4)

Eng(f) = CNﬁ/_o:O"'/_o:Of(xla---amN)x

_B5 .2
|A(:c1,...,a:N)|ﬁe 227 dgq - - -da

where A is the Vandermonde determinant.

ENﬁ(O; J) := probability no eigenvalues lie in J

Here f(z1,...,zn) = xj(z1) - xs(zN)-



Example: J = (¢, 00)

FN,B(t) = Prob (Amax <1t)
Eng(0,J)

Gaudin, Dyson, Mehta showed for 3 =1,2,4

det (I — Kyp)
integral operator on J

Eng(0; J)1?
Kng

(scalar kernel, matrix kernel)

For g = 2 the kernel of the operator Ky 5 is

e(x)Y(y) — Y(x)e(y)
T —y

ene 2 Hy ()
CN€_$2/2HN—1(5U)

()
P(x)



Edge Scaling Limit (Limiting Laws)

Density of eigenvalues decays exponentially fast
around

20V N
Surprisingly (Bai and Yin, ...),
A N
im Amax(V) _ 20, a.s.
N—o0 v N

Need scale of fluctuations. Define scaled ran-
dom variable
Amax = 20V N +

(o)
N1/6

Famous N1/6 known to Wigner. (Bowick &
Brézin, Forrester, Widom & CT, ...)

CLAIM:

Prob (Amax < t) = Prob (A < s5) — Fg(s)
where t = 20v/N + 05/N1/6, N — 0o, s fixed.

5



THEOREM:(Widom, CT)

Fno(t) — F>(s) (edge scaling limit)
Fo(s) det (I — Kjpy)

= exp (— /:O(az — 8)q%(z) dac)

where
d' = sq+2¢> (Prp)
q(s) ~ Ai(s) as s - ©

Remarks:

e 5(s) is the P;; 7-function of Okamoto,
Jimbo and Miwa.

e ¢ with above boundary condition exists. Ex-
istence & asymptotics as s — —oo by Hast-
ings, Clarkson, MclLeod, Deift, Zhou,. ..



CASES =1 and =4

In these two cases

Eg(0; J)? = det (I — Ky )

the operator KN,ﬂ IS a 2 X2 matrix with oper-
ator entries. For Gaussian ensembles and J a
union of open intervals—general case worked
out by Widom and CT. Specializing to the case

J = (t,00)

and in the edge scaling limit

Fyg(t) — Fg(s), 8=1,4,

Fi(s)? = exp (- [ a(@)de) Fals)

Fa(s/v2)2 = cosh (é / > a(2) d:z;) Fo(s)

where ¢ is the P;; function and F>(s) the lim-
iting distribution function for g = 2.



Probability densities

0.5
0.4
0.3
0.2/

0.1

Probability densities of scaled largest

eigenvalue g =1,2,4

dFy

fﬁ(s) — s



PATIENCE SORTING
D. Aldous and P. Diaconis

Shuffle a deck of cards {1,2,..., N}

Rules of the game

Turn over first card.

Turn over second card. If second card is
of higher rank, start new pile to the right
of the first card. Otherwise place second
card on top of first card.

Turn over third card. If third card is of
higher rank than either first or second card,
start a new pile to the right of the second
card. Otherwise place third card on top
of card of higher rank. If both first and
second are of higher rank, place third card
on the smaller ranked card.

Continue playing game until no more cards.

Object of game is to get a minimum num-
ber of piles.



A shuffled deck of cards

{i1,90,...,iN}
is a permutation o of {1,2,..., N}. Let

In (o)

equal the number of piles at the end of the
game.

CLAIM: /(o) is the length of the longest in-
creasing subsequence in the permutation o.

1
(12345 6 7 89 10 11 12
7= 32 4 1 76 9 8 11

7 9
4 10 12 11

O wN =
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CONNECTION WITH RSK and RMT

For permutations RSK is a bijection

o+ (P,Q)

P and @ are SYTs of same shape A\ N. For
previous example

c=(532411012769811)
A=(5,3,3,1) 12 and

1 4 6 8 11 1 4 6 7 12
2 7 9 2 8 10
P = 3 10 12 Q= 3 9 11
5 5
Furthermore,

¢y (o) = # boxes in first row
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G| = G@Gessel, | BO|= Borodin & Okounkov

BDJ|= Baik, Deift & Johansson

J| = Johansson

—t tY
Z Prob ({n(o) <n)—
N=0

= e tdet (Tn(p)), o(z) = eViEH1/2) [G

= det (I — Kp), B = Discrete Bessel |BO

— det (I — Kpjry) = F2(s)

Arrow means set

BDJ, BO, J

n = [2vt + st1/]

and let ¢t — oo such that s is fixed.
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This implies (dePoissonization)

Theorem(Baik-Deift-Johansson)

(o) — 2V N
N1/6 <

lim Prob(

N—o0

) — Fo(s)

SYMMETRIZED RANDOM
PERMUTATIONS

Look at random permutations that are invo-
lutions and fixed point free. Ask for limiting
laws of random variables for longest increas-
ing subsequences and longest decreasing sub-
sequences.

Baik and Rains show limiting laws are now
F,(s) and Fy(s), respectively.
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RANDOM WORDS
Homogeneous: Widom & CT, Johansson,
Inhomogeneous: Its, Widom & CT.

Words of length N are formed from letters from
an alphabet of fixed size k.

wW=Dbcaadccaa, N=9, k=4

Letters occur independently but with possibly
different probabilities p;. Interested in length
/n(w) of longest weakly increasing subsequence
in word w.

Version of RSK for words leads to measure

A
sx(p1,p2,.-)f

on partitions. Here s, are the Schur functions
and f>‘ is the number of SYTs of shape .

Stanley was led to this same measure for gen-
eralized riffle shuffles generalizing work of Bayer
and Diaconis.
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Order the p;

pP1 > P2 > - 2 Dk

Decompose alphabet into subsets A¢,A4-,...such
that p; = p; if and only if « and j belong to the
same A,. Set ko = |Aal.

Theorem: The limiting distribution as N — o
for the appropriately centered and normalized
random variable £ is related to the distri-
bution function for the eigenvalues &; in the
direct sum of mutually independent ko X ko
GUEs conditioned on the eigenvalues satisfying

Z\/E&;=0

For all p; distinct and N — oo

p; 1
E(ly) =N O(—=
Gy p1+j;pl_pj-|— (\/N)
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GROWTH PROCESSES

Long history, but Johansson first to find the
limiting laws involving distributions Fi(s). Since
then work by Prahofer & Spohn; Gravner, Widom,
& CT and possibly other works in progress.

Prob (w(i,j) = k) = (1 — q) ¢*

B e . (M,N)

My ny = up/right paths from (1,1) to (M, N)

G(M7N) — maxﬂ'EﬂM,N Z ’U)(’L,])
(4,5)€em
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Theorem(Johansson) For each q € (0,1), v >

1, and s e R
. G([yN],N) — Nw(v,q) .
N TP ( o(v,q)N1/3 = 8) =20

where w and o are explicitly given functions of
v and q.

Johansson: Restricted geometries lead to Fi(s)

Prahofer & Spohn using the symmetrized ran-
dom permutations work of Baik & Rains have
shown in a certain polynuclear growth model
that the universality class 3 = 2 is associated
with growth from a single droplet and g =1
class is associated with growth from a flat sub-
strate, i.e. limiting distribution is Fy(s).
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Discrete Time and Space Growth Models

Oriented Digital Boiling
Gravner, Widom, CT

Introduce a height function hs(z) with rules

(2)
(22)

(i44)

hi(z) < hyyq1(x)

If hi(x — 1) > h(x),

then hy41(xz) = ht(z — 1)
Otherwise, then independently
of other sites and other times,
hiy1(x) = ht(x) + 1 with probp
hiy1(x) = ht(x) with prob 1 — p.
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Space-Time and Path Description

...................................................................................

L
Time )<
/

- N

Yellow is the (discrete) backwards light cone
of the point (z,t) = (3,7). The length of the
longest increasing path (weakly increasing in z
coordinate and strongly increasing in ¢t coor-
dinate) through the nucleation events starting
at the initial box and ending at the box with
coordinates (z,t) is the height of the surface
at (z,t), i.e. hy(xz). The Length of the path
is defined as the number of nucleation events
the path passes through counting the initial
nucleation event at ¢t = 0.
19



Transform backwards light cone into a random
(0,1)-matrix of size (t—z) x (zx + 1). Relate
via dual RSK to Young tableaux. (At this
point equivalent to a first passage model of
Seppadldinen as shown by Johansson.)
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HeI gt e ght Function: time=1000

500/
400
300/
200/

100}

200 400 600 800 1000
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Hei ght

580
575+
570+
565

560!

Hei ght Function; tine=1000
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Summary of Results: (Work in Progress)

(1) Fix z and let t — oco. Will get “random
word” type behavior. Simplest case is x = 0
where it is gaussian—simple random walk.

(2) Let £ — oo and t — oo such that

pe=z/t <1
is fixed. Then we have three possibilities:

(a) For p < pc the fluctuations are described by
F>(s), i.e. for an explicit constants b = b(p),

¢ = c(p)

hi(x) — bt
Prob ( 1/3 < s) — F5(s)

(b) For p = pc the limit

Prob (hi(z) —t < —mn) = pe(n),n=-1,0,1,2,...

exists and is nonzero for all n > —1.

(c) For p > p. there are no fluctuations, i.e.
Prob (hy(z) =t+1) —> 1
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HENRY COHN, NOAM ELKIES, AND JAMES PROPP

Figurg 1. A random domino tiling of an Aztec diamond of order 64.

Arctic Circle Theorem - Cohn, Elkies, Propp

Johansson showed fluctuations around limiting
circle are F».
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Relationship to the KPZ Universality
Class
KPZ=Kardar, Parisi, Zhang

Let hi(x) = the position of the growing inter-
face at time t and position x

oh A
a—tt =vAh+ 7 (Vh)? + n(z, t)

Remarks:

(i) First term: relaxation of the interface by a
surface tension v.

(ii) Second term: nonlinear growth
(iii) Noise n(x,t) has a gaussian distribution.

Conjecture: (Prahofer, Spohn, among oth-
ers) For all D = 1 growth models in the KPZ
Universality class we require self-similar macro-
scopic shape. If the limiting ray has nonzero
curvature, then the conjectured fluctuations
are F5. If the limiting ray has zero curvature,
then the conjectured fluctuations are Fj.
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