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The Central Limit Theorem

Carl F. Gauss was the first to use the normal law (or Gaussian)

Φ(x) =
1√
2π

∫ x

−∞

exp(−t2/2) dt

as a bona fide distribution function. Earlier, A. De Moivre in his

“Doctrine of Chances” (1733) had shown the normal law is a good

approximation to the binomial distribution. However, it was Pierre

S. Laplace (1820) who gave the first CLT.

In modern notation: X1, . . . , Xn are discrete-valued independent

and identically distributed random variables. Set µ = E(Xi) and

σ2 = Var(Xi), then

Pr

(

Sn − nµ

σ
√

n
≤ x

)

→ Φ(x), n → ∞

where Sn = X1 + · · · + Xn.
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Important features of Laplace’s proof

• Introduced the characteristic function E(eitSn) and

used Laplace’s method for approximating integrals

• He made the important observation that the limit law

depended only upon µ and σ of the underlying

distribution. (Universality).

Laplace’s ideas were further developed by Poisson, Dirichlet,

Cauchy and others. The St. Petersburg School of probability

(Chebyshev, Markov, Lyapunov, . . . ) relaxed the conditions of

identically distributed as well as the important assumption of

independence. This includes the important “method of moments”

The final form is attributed to Lindeberg, Feller and Levy where

necessary and sufficient conditions are given for convergence to the

normal law.

3



Eigenvalues vs. Independent Normals

Top: 50 × 50 real symmetric matrix with indep. N(0, 1) entries.

Bottom: 50 N(0, 1) independent random variables.
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Same 50 × 50 real symmetric matrix with indep. N(0, 1) entries.

Note spacing is unlike eigenvalue spacing.
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Random Matrix Models

Probability Space: (Ω, Pr,F):

• Gaussian Orthogonal Ensemble (GOE, β = 1):

– Ω = N × N real symmetric matrices

– Pr = “unique” measure that is invariant under

orthogonal transformations and matrix elements are

iid random variables. Explicitly,

Pr(A ∈ B) =

∫

B

e−tr(A2) dA

• Gaussian Unitary Ensemble (GUE, β = 2)

– Ω = N × N (complex) hermitian matrices

– Pr = “unique” measure that is invariant under

unitary transformations and the independent real and

imaginary matrix elements are iid random variables

• Gaussian Symplectic Ensemble (GSE, β = 4)
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Write matrix n × n

A = UDU∗

U orthogonal for GOE, unitary for GUE, etc.

D is diagonal matrix with eigenvalues λj as entries

The induced density on eigenvalues is

P (λ1, . . . , λn) = cn,β

∏

1≤j<k≤n

|λj − λk|β e−
P

j
λ2

j

β =















1 GOE

2 GUE

4 GSE

Vandermonde to the β power =⇒ level repulsion
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Limit Laws: N → ∞
Eigenvalues, which are random variables, are real and with

probability one they are distinct.

If λmax(A) denotes the largest eigenvalue of the random matrix

A, then for each of the three Gaussian ensembles we introduce

the corresponding distribution function

FN,β(t) := Prβ (λmax < t) , β = 1, 2, 4.

The basic limit laws (Tracy-Widom) state thata

Fβ(s) := lim
N→∞

FN,β

(

2σ
√

N +
σs

N1/6

)

, β = 1, 2, 4,

exist and are given explicitly by

aHere σ is the standard deviation of the Gaussian distribution on the off-

diagonal matrix elements.
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F2(s) = det (I − KAiry)

= exp

(

−
∫ ∞

s

(x − s)q2(x) dx

)

where

KAiry
.
=

Ai(x)Ai′(y) − Ai′(x)Ai(y)

x − y

acting on L2(s,∞) (Airy kernel)

and q is the unique solution to the Painlevé II equation

q′′ = sq + 2q3, q(s) ∼ Ai(s) as s → ∞.

(Called the Hastings-McLeod solution.)
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F1(s) = exp

(

−1

2

∫ ∞

s

q(x) dx

)

(F2(s))
1/2 ,

F4(s/
√

2) = cosh

(

1

2

∫ ∞

s

q(x) dx

)

(F2(s))
1/2

.
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104 realizations of 103 × 103 GOE matrices
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Density of largest, next-largest, next-next largest, etc. eigenvalues

(Dieng). Eigenvalues have been normalized. Distribution F (s, k)

given in terms of Painlevé functions and derivatives.

11



RMT Universality Theorems

Do limit laws depend upon the underlying Gaussian assumption on

the probability measure?

To investigate this for unitarily invariant measures (β = 2):

exp
(

−tr(A2)
)

→ exp (−tr(V (A))) .

Bleher & Its chose

V (A) = gA4 − A2, g > 0,

and subsequently a large class of potentials V was analyzed by

Deift/Kriecherbauer/McLaughlin/Venakides/Zhou.

Requires proving new Plancherel-Rotach type formulas for

nonclassical orthogonal polynomials. The proofs use

Riemann-Hilbert methods. Generic behavior is GUE. However,

by tuning V new universality classes will emerge.
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Universality theorems for orthogonal & symplectic invariant

measures:

• Stojanovic analyzed the quartic potential.

• Deift & Gioev considered a class of polynomial potentials

whose equilibrium measure is supported on a single interval.

Their starting point is Widom’s representation of the

correlation kernels for the β = 1, 4 cases in terms of the unitary

(β = 2) correlation kernel plus a correction.

All these results can be summarized by

Generic edge behavior is described by law Fβ
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Noninvariant RMT Measures

Soshnikov proved that for real symmetric Wigner matricesa

(complex hermitian Wigner matrices) the limiting distribution of

the largest eigenvalue is F1 (respectively, F2). The significance of

this result is that nongaussian Wigner measures lie outside the

“integrable class” (e.g. there are no Fredholm determinant

representations for the distribution functions) yet the limit laws are

the same as in the integrable cases.

aA symmetric Wigner matrix is a random matrix whose entries on and above

the main diagonal are independent and identically distributed random variables

with distribution function F . Soshnikov assumes F is even and all moments are

finite.
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Applications to Wishart Distribution

Let X denote an n × p data matrix whose rows are independent

Np(0, Σ) random variables. The matrix

1

n
XtX,

called the sample covariance matrix, is said to have Wishart

distribution Wp(n, Σ). The null case: Σ = id.

Let ℓ̂1 > · · · > ℓ̂n denote the eigenvalues of XtX—sample

covariance eigenvalues. Johnstone for k = 1 and Soshnikov for

k > 1 show, for the null case, as n, p → ∞, n/p → γ, 0 ≤ γ < ∞

ℓ̂k − µnp

σnp

D−→ F1(s, k)

with explicit expressions for the centering and norming constants.
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Further Developments for Wishart

Distribution

1. Johnstone, El Karoui, Choup: Second-order accuracy
∣

∣

∣
P
(

nℓ̂1 ≤ µnp + σnps|H0

)

− Fβ(s)
∣

∣

∣
≤ Cp−2/3

µnp =

(

√

n − 1

2
+

√

p − 1

2

)2

σnp =

(

√

n − 1

2
+

√

p − 1

2

)





1
√

n − 1
2

+
1

√

p − 1
2





1/3

2. El Karoui in null case for the largest eigenvalue, proves the limit

law for 0 ≤ γ ≤ ∞. This requires additional estimates to allow

γ = ∞. Soshnikov’s theorem for k > 1 has not been extended to

the γ = ∞ case.
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3. Soshnikov removes Gaussian assumption on the distribution of

the matrix elements of X and only requires odd moments are zero

and even moments satisfy a Gaussian type bound. Then for the

null case and under the restriction that as n, p → ∞ that

n − p = O(p1/3)

we get the same limit law described by F1(s, k).

4. Beyond the Null Hypothesis: If A ∼ Wp(n, Σ), then joint

eigenvalue density

cp,n,Σ

p
∏

j=1

l
(n−p−1)/2
j

∏

j<k

|lj − lk| ×

∫

O(p)

e−
1

2
tr(Σ−1QLQT ) dQ,

where L = diag(l1, . . . , lp) and dQ is normalized Haar measure.
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Difficulty is the integral
∫

O(p)

e−
1

2
tr(Σ−1QLQT ) dQ

For complex data above integral is replaced by
∫

U(p)

e−
1

2
tr(Σ−1ULU∗) dU

This integral can be evaluated in terms of determinants: Harish

Chandra–Itzykson–Zuber integral.

Baik, Ben Arous, Péché describe a phase transition for

population covariance matrices of the form (k = 1 case of their

theorem)

Σp = diag (ℓ1, 1, . . . , 1) ,

the spiked population model.
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p

n
→ γ, µ := (1 +

√
γ)2, σ := (1 +

√
γ) (1 +

√

γ−1)1/3

n2/3
(

ℓ̂1 − µ
)

/σ =⇒







F2 ℓ1 < 1 +
√

γ

F̃2 ℓ1 = 1 +
√

γ

where F̃2 is related to F2.

If ℓ1 > 1 +
√

γ,

n1/2
(

ℓ̂1 − µ(ℓ1)
)

/σ(ℓ1) =⇒ N(0, 1)

with

µ(ℓ1) = ℓ1

(

1 +
γ

ℓ1 − 1

)

, σ2(ℓ1) = ℓ21

(

1 − γ

(ℓ1 − 1)2

)

Below the BBP phase transition the distribution of ℓ̂1 is unchanged

regardless of the value of ℓ1.
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Remarks concerning the BBP phase transition:

1. For real data, Baik & Silverstein and Paul show the existence

of a phase transition at the same value

1 +
√

γ

and give a distributional normal law for ℓ1 > 1 +
√

γ. One

expects an F1 law below, but no theorem!

2. Patterson, Price & Reich use these results to construct

statistical tests to determine if the samples from genetic data

are from a population that has structure; that is, can the

samples be regarded as randomly chosen from a homogeneous

population (null hypothesis), or does the data imply that the

population is not genetically homogeneous.

3. See Johnstone’s 2006 ICM lecture for further details and

references.

20



Appearance of Limit Laws Outside of RMT

Major breakthrough when Baik, Deift, Johansson proved that

the limiting distribution of the length of the longest increasing

subsequence in a random permutation is F2.

Random permutation of {1, 2, . . . , 10}:

σ = {3, 7, 10,5, 9,6,8, 1, 4, 2}, ℓ10(σ) = 4

Patience Sorting Algorithm (Aldous, Diaconis)

2

4 6

1 5 9

3 7 10 8
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BDJ Theorem:

lim
n→∞

Pr

(

ℓn − 2
√

n

n1/6
≤ x

)

= F2(x)

and with convergence of moments, e.g.

E(ℓn) = 2
√

n +

∫ ∞

−∞

xf2(x) dx n1/6 + o(n1/6)

= 2
√

n − 1.7710868074 n1/6 + o(n1/6)

A simulation with 100 trials for n = 105 gives an average number of

piles per trial

621.96

which should be compared with the asymptotic expected value

620.389

The 2
√

n term alone gives 632.456.
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Key Points in the Proof of the BDJ Theorem

• Gessel proved (uses RSK and Jacobi-Trudi identity for sλ)

∑

n≥0

Pr(ℓn ≤ k)
t2n

n!
= det(Tk(ϕ))

where Tk(ϕ) is a k × k Toeplitz matrix with symbol

ϕ(z) = et(z+1/z).

• Use Case/Geronimo-Borodin/Okounkov identity that relates a

Toeplitz determinant to a Fredholm determinant of an operator

on ℓ2({0, 1, . . .})
∑

n≥0

Pr(ℓn ≤ k)
t2n

n!
= det(I − Kk)
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Specifically, ϕ = ϕ+ϕ−, then

Kk(i, j) =
∑

ℓ≥0

(ϕ−/ϕ+)k+i+ℓ+1 (ϕ+/ϕ−)−k−j−ℓ−1

• Show Kk → KAiry in trace class norm: Use saddle point

method on Fourier coefficients appearing in CGBO identity.

Nontrivial limit only when two saddle points coalesce

Airy function generic behavior

KAiry(x, y) =

∫ ∞

0

Ai(x + z)Ai(y + z) dz

The one-third scaling is a direct result of this coalescence—viz.

the cubic power in the Airy function integral:

Ai(z) =
1

2πi

∫

C

eξ3/3−zξ dξ

• A dePoissonization lemma to get limit theorem.
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The BDJ Theorem resulted in a burst of activity relating the

distribution functions of RMT to problems in combinatorics,

representation theory of the symmetric group, growth processes

and determinantal random fields

Cast of Players

M. Adler, D. Aldous, J. Baik, P. Bleher, T. Bodineau,

A. Borodin, P. Deift, P. Diaconis, P. Ferrari, P. Forrester,

J. Gravner, T. Imamura, A. Its, K. Johannson, J. Martin,

K. McLaughlin, N. O’Connell, A. Okounkov, G. Olshanski,

M. Prähoffer, E. Rains, N. Reshetikhin, T. Sasamoto,

A.Soshnikov, H. Spohn, C. Tracy, P. van Moerbeke,

H. Widom, . . .

But that is another story . . .

THANK YOU FOR YOUR ATTENTION
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