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I. Overview

We call Dyson process any invariant process
on ensembles of matrices in which the entries
undergo diffusion.

Dyson Brownian motion: Start with n × n
GUE matrix, let entries independently undergo
Ornstein-Uhlenbeck diffusion. Eigenvalues de-
scribe n curves: Hermite Process.

Let n→∞, scale near the top. Infinitely many
curves, Airy process. Top curve A(τ). From
work of Johansson and Prähoffer & Spohn,
the Airy process is now believed to underly a
large class of growth processes. (1 + 1 KPZ
Universality Class)

Scale the Hermite process in the bulk −→ sine
process.

Evolution of singular values of complex matri-
ces leads to Laguerre process; scaling this at
bottom edge gives Bessel process.



II. Dyson BM: GUE initial conditions

and independent matrix elements inde-

pendently undergo OU diffusion (BM

with a linear drift term):

τ → H(τ)

Transition density is

p(H,H ′; τ2−τ1) := exp

−tr(H − qH ′)2

1− q2


where q = eτ1−τ2 < 1. As τ2 →∞, mea-

sure approaches GUE measure. Each

eigenvalue, viewed as a particle, feels

an external electric field

E(xi) =
∑
i6=j

1

xi − xj
− xi

with equilibrium Coulomb measure (at

β = 2).



For many times τ1 < τ2 < · · · < τm

the density for H(τk) to be infinitesimal

neighborhood of Hk is

e−tr(H2
1)

m∏
j=2

p(Hj, Hj−1, τj − τj−1)

Use HCIZ integral to integrate out uni-

tary parts to obtain determinantal mea-

sure on eigenvalues xj(τ)

This leads to extended kernels (Ey-

nard and Mehta, Johansson, Prähoffer

& Spohn) and by scaling to

extended Hermite kernel, extended

Airy kernel, extended sine kernel,

. . .



III. Airy Process is defined by its finite

dimensional distribution functions

Pr(A(τ1) ≤ ξ1, . . . ,A(τm) ≤ ξm)

This probability given as Fredholm de-

terminant of extended Airy kernel, an

m ×m matrix kernel. Entries Lij(x, y)

given by∫ ∞
0
e−z (τi−τj) Ai(x+ z)Ai(y+ z) dz, i ≥ j,

−
∫ 0

−∞
e−z (τi−τj) Ai(x+ z)Ai(y+ z) dz, i < j

Kij(x, y) = Lij(x, y)χ(ξj,∞)(y).

Probability equals det (I −K).



Remarks
1. For m = 1 extended kernel reduces

to Airy kernel—an integrable kernel in

the sense of A. Its et al.

2. For m = 1 Fredholm determinant is

a τ-function for Painlevé II, ψ.

3. Relationship between the two is

ψ(ξ) =
(
I −KAiry

)−1
Ai(x)|x=ξ

4. Are there integrable differential equa-

tions for m > 1? Answered affirma-

tively by Adler and van Moerbeke

and TW. Equations derived by Adler

and van Moerbeke are of a different

form than those of TW. Might be a

multidimensional version of “sigma rep-

resentations” versus Painlevé represen-

tations.



Set R = K (I −K)−1, then

∂ξk log det (I −K) = Rkk(ξk, ξk)

Kernel not ’integrable’. To find equa-

tions take derivatives. New quantities

arise. Take derivatives of these. Con-

tinue and hope at some point new quan-

tities can be expressed in terms of old.

Unknowns: Five matrix functions of

the ξk. First is

rij = Rij(ξi, ξj).

To define others, let

A = diag (Ai), χ = diag (χ(ξk,∞)),

Q = (I −K)−1A, Q̃ = Aχ(I −K)−1.



Other unknowns are

qij = Qij(ξi), q̃ij = Q̃ij(ξj),

q′ij = Q′ij(ξi), q̃′ij = Q̃′ij(ξj).

Define rx and ry by

(rx)ij = (∂xR)ij(ξi, ξj)

(ry)ij = (∂yR)ij(xi, ξj).

rx and ry are not unknowns.

Set ξ = diag (ξk). Equations are

dr = −r dξ r+ dξ rx + ry dξ,

dq = dξ q′ − r dξ q,

dq̃ = q̃′ dξ − q̃ dξ r,

dq′ = dξ ξ q − (rx dξ+ dξ ry) q+ dξ r q′,

dq̃′ = q̃ ξ dξ − q̃ (dξ ry + rx dξ) + q̃′ r dξ.



Have to show diagonal entries of rx+ry

and off-diagonal entries of rx and ry are

expressible in terms of the unknowns.

Here is where the τk enter. Let τ =

diag (τk) and Θ the matrix with all en-

tries equal to one. Commutators

[D, L] = −AΘA+ [τ, L],
[D2 −M, L] = 0.

From these can derive

rx + ry = −qΘ q̃+ r2 + [τ, r],

[τ, rx−ry] = q′Θ q̃−qΘ q̃′+[r, rx+ry]+[ξ, r].

When m = 1 these equations reduce

(q̃ = q = ψ, q̃′ = q′ = dψ/dξ + rψ) to

the single Painlevé II equation

d2ψ

dξ2
= ξψ+ 2ψ3



Remarks

Adler and van Moerbeke used their

DEs to derive τ →∞ asymptotics for

Pr (A(0) ≤ ξ1, A(τ) ≤ ξ2)

F2(ξ1)F2(ξ2)
= 1+

c2(ξ1, ξ2)

τ2
+

c4(ξ1, ξ2)

τ4
+ O(τ−6)

and Widom derived the same asymp-

totic expansion directly from the Fred-

holm determinant representation. The

important feature is that c2 and c4 are

expressible in terms of the Painlevé II

function ψ, e.g.

c2(ξ1, ξ2) = u(ξ1)u(ξ2), u(ξ) =
∫ ∞
ξ

ψ2(x) dx



These same methods, e.g. perturba-

tion expansion of DEs or expansion of

Fredholm determinant, show that the

matrix Painlevé function q

q(ξ) =

 ψ(ξ1) 0
0 ψ(ξ2)

 +

1

τ

 0 −u(ξ1)ψ(ξ2)
ψ(ξ1)u(ξ2) 0

+O(τ−2)

That is, matrix Painlevé q is decou-

pling in τ → ∞ asymptotics to scaler

Painlevé II.



Open Problem for Extended Airy

System of DEs

1. Are equations deformation equa-

tions for some isomondromy problem

and is Fredholm determinant the asso-

ciated τ-function in sense of Jimbo-

Miwa-Ueno?

2. We proved compatibility for small

m using Maple. Give general concep-

tual proof. Difficulty lies with the con-

ditions determing rx and ry.

3. Systemize large τ asymptotics. Find

small τ expansions. Both might be use-

ful in applications. (Numerics is easy

when expressed in terms of Painlevé II

ψ.)



We have systems of PDEs that deter-

mine the Fredholm determinant of

• Extended Hermite kernel

• Extended Sine kernel

• Extended Bessel kernel

They are more complicated than the

extended Airy system. Each requires

a special trick. Adler and van Mo-

erbeke also have system of DEs for

extended Hermite kernel.

Extended Hermite kernel (Johansson,

Eynard-Mehta) has entries Lij(x, y):

n−1∑
k=0

e(k−n) (τi−τj)ϕk(x)ϕk(y) if i ≥ j,

−
∞∑
k=n

e(k−n) (τi−τj)ϕk(x)ϕk(y) if i < j.



Set

ϕ = (2n)1/4ϕn, ψ = (2n)1/4ϕn−1,

and define

Q = (I −K)−1ϕ, P = (I −K)−1ψ,

Q̃ = ϕχ (I −K)−1, P̃ = ψχ (I −K)−1.

Unknowns rij = Rij(ξi, ξj) and q, q̃, p, p̃

given by

qij = Qij(ξi), q̃ij = Q̃ij(ξj),

pij = Pij(ξi), p̃ij = P̃ij(ξj),

q′ij = Q′ij(ξi), q̃′ij = Q̃ij(ξj),

p′ij = P ′ij(ξi), p̃′ij = P̃ ′ij(ξj).



Equations

dr = −r dξ r+ dξ rx + ry dξ,

dq = dξ q′ − r dξ q,

dq̃ = q̃′ dξ − q̃ dξ r,

dq′ = dξ (ξ2 − 2n− 1) q −

(rx dξ+ dξ ry) q+ dξ r q′,

dq̃′ = q̃ (ξ2 − 2n− 1) dx−

q̃ (dξ ry + rx dξ) + q̃′ r dξ,

dp = dξ p′ − r dξ p,

dp̃ = p̃′ dξ − p̃ dξ r,

dp′ = dξ (ξ2 − 2n+ 1) p−

(rx dξ+ dξ ry) p+ dξ r p′,

dp̃′ = p̃ (ξ2 − 2n+ 1) dξ −

p̃ (dξ ry + rx dξ) + p̃′ r dξ.



Commutators with eτ(D −M) and

e−τ(D+M).

Case m = 1. Can eliminate q and p,

arrive at

d3r

dξ3
= 4(ξ2 − 2n)

dr

dξ
− 4ξr − 6

dr
dξ

2

.

Integrates to Painlevé IV.


