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Oriented Digital Boiling (ODB)

Interface:
{(z,y) "z €Z,y < h(x)},t=0,1,2,...
Height function rules:

1. hy < hypyq.

2. If hy(x — 1) > he(x),
then hyy1(z) = hi(x — 1).

3. Else, hyy1(x) = hi(x) + 1 with prob ps.

Alternatively, toss p,—coins in advance to get
indep. Bernoulli rv's e, ;. Think of the points
(z,t) for which e, = 1 as marked. Then

h¢(x) = max{h;_1(x —1),hy_1(x) +ext-1}

We will assume that the initial state is hg(z) =
O if £ = 0, otherwise —o0.

Eventually: p i.i.d., with d.f. F.



Path description

A space—time point (z,t),z < t, has backwards
lightcone:

L(x,t) ={@,t):0<2' <z, 2’ <t <a'+t—zx}.

Let H be the longest sequence (x1,t1), ..., (x, tr)
of marked points such that

2. xp—wi—1+ 1<t — 1.



Alternatively, let m=t¢t—x and n=x+ 1, and
A a random m xn matrix with Bernoulli entries
eij, where P(g; ; = 1) = p;. Label columns as
usual, but rows started at the bottom. Then
H = H(m,n) is the longest sequence of 1's in
A, with

column index non—decreasing and row
index strictly increasing

Then
hi(x) = H(m,n)

This is often called a last passage property.
From now on, we formulate all the results for
H, with n = am.
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“Remembrance of Things Past”

Ulam’'s problem of estimating the longest
increasing subsequence in a random permuta-
tion of length n.

Strong Law Type Results: Hammersley (1972),
Logan—Shepp, Vershik—Kerov (1977), & Aldous—
Diaconis (1995)

Fluctuations: Baik—Deift—Johansson (1999)

Methods: subadditivity, exclusion process rep-
resentation, random Young tableaux, RMT tech-
niques (including Riemann-Hilbert).



The largest increasing sequence in a random
(0,1)—matrix: Seppaldinen (1998), limiting shape:
h
im )

t—00 t
Johansson (1999—2000) computed the fluctu-
ations in (universal regime of) this limit law,
by a RMT approach

, x/t constant

The disordered case, when p, are initially cho-
sen at random, is related to the Seppalainen—
Krug model (1999).



T he main theorem for the
homogeneous case

Assume p; = p.

If 0<a< (1—p)/p, then define
c = 2Vayp(1-p)+ 1 -a)p,
g = a Y2 (p(1-p))°x

2/3
((1—04)\/p(1—p)+(1—2p)\/5) :

Then, as m — oo,

H—cm
P < F
(g.m1/3_8>_> 2(8)7

where

Fa(s) =exp (= [ (o~ 9)a(a)?dr )
and q solves

' = sq+2¢3, q(s) ~ Ai(s) as s — co.
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Main steps in proving the theorem

1. dual RSK algorithm gives a bijection be-
tween (0,1)—matrices with k 1's and pairs
(P,Q) such that P! and @Q are semistan-
dard Young tableaux (of the same shape)
of size k. Most importantly, the length of
the first row in P is H = hs(x). This gives,

with » = p/(1 — p),
P(h(x) <h) = (1—p)™ Y rPdy(m)dy(n).

ACP
0(ON)<h

dy(m) = #SSYT's of shape A

using integers {1,...,m}

2. Gessel's theorem (1990) & Borodin—Okounkov
identity (1999) then establish the connec-
tions between the sum above and determi-
nants of matrices and operators, the final
result being

P(hi(z) < h) = det(I — K),



where K : (2 — (2 is given by its (j,k)—
entry

Y (/o) ht i1/ 0-) h—k—r—1-
(=0

K; product of two matrices: (j, k)—entries

at(h) = 2m/(1+m)” (2 — 1)™ x
—mthtitk g,

() = = [A4r) " G-
ym—h=j=k=2 4,

The contours for both integrals go around
the origin once counterclockwise; in the
second integral 1 is inside and —r—1is out-
side.

3. Scaling:

h=cm—|—sm1/3,j=m1/3$,/€=m1/3’y



and compute integrals asymptotically. Use
the steepest descent method:

e [ woO saddles points coincide. Location
determines c

e Double zero, hence the m!/3 scaling.

e Variance normalization determined by co-
efficient of third derivative

e Limit is a Fredholm determinant with
Airy kernel.

e [ he main technical effort is in estab-
lishing trace—class convergence of the
approximations.



Another Connection with Random
Matrices.

In GUE (Tracy-Widom, 1993) The largest eigen-
value Amax obeys the limit law

P ((Amax — v2n) - V2n1/® < 5) — Pa(s),

daS s — O0.

The limit laws for the largest eigenvalue in
GOE and GSE (Tracy-Widom, 1996) also arise
as limit laws for increasing path problems
(Baik-Rains, 2000) and associated growth pro-
cesses (Baik-Rains, Prahofer-Spohn)

No known intuitive connection between largest
eigenvalues and increasing paths without us-
ing the RSK correspondence. With RSK Jo-
hansson (2000) has given a discrete orthog-
onal polynomial ensemble approach to in-
creasing subsequence problems. In this formu-
lation one has discrete analogues of the distri-
bution of the largest eigenvalue.



Inhomogeneous ODB

Now assume that A is an m X n random matrix
with P(g;; = 1) = p;. Here p; are i.i.d., with
P(p; < z) = F(z), where I : [0,1] — [0, 1]
is a distribution function. (H is the longest
increasing path of 1's in A.)

This corresponds to a random environment
version of ODB: every x € Z decides before the
dynamics starts, at random according to F', on
the probabilities of its coin flips.

e [ime constant can be explicitly determined
in terms of F'.

e Quenched and annealed fluctuations differ.

e If the right tails of F' are sufficiently thin,
there is a composite (or glassy) regime for
small @« = n/m. This regime can be iden-
tified with a different fluctuations scaling.

Lemma: Once p1,...,pn are determined, the
distribution of H does not depend on their or-
der.
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Time Constant

p has distr fn F and (-) is integration w.r.t. dF.

b = maxsupp dF,
_ H
¢c = c¢(a, F) = |lim —.
m—>OOm

Define the following critical values:
—1
_p
<1 - p>

- <p(1—p)>1
© b-p)?2/

Theorem: If b =1, then c¢(o, F') = 1 for all «,
while if b < 1, then

( b+a(1—b)<%> if o <o,

c(a, F') = 4 a—l—a(l—a)<ap%p> if al. < a < ag,
L 1 if O S .

Here a = a(a, ') € [b, 1] is the unique solution

to
p(1—p)\ _
a<(a—p)2> = 1.

8%
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Fluctuations, quenched case, pure regime:

Theorem: Assume that b < 1 and o, < a <
ac. T hen there exists a sequence of random

variables ¢, € o{p1,...,pn} and a constant g #
0 (both depending on «) such that, as m — oo,

H —cym
P( ]??,/3 §8|p17°°'7pn>_>F2(8)7
g-m

almost surely, for any fixed s. The proof is a
uniform version of the proof for fixed p.

Fluctuations, annealed case, pure regime:

Theorem Assume that b < 1 and ol < a < ac.
Let a be as before and

72:Var<(1_a)p>.

a—p

Then, as m — oo,

H —cm

T\/a-ml/Q

4, N(0,1).
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Fluctuations, composite regime: Assume
(a technical condition and) that

1—-F(b—-—x2)~ K", as x — 0,

for some K and n > 2. Then al > 0. Assume
also that b< 1 and a < o, and let

1 1
72 =b(1 —b) <———,>.
a o
Theorem: As m — oo,
(H—cnm—I—QT\/ﬁ
P
TN

almost surely, for any fixed s.

SS | plv"'7pn> _>CD(8)7

Theorem: For s > 0, as m — oo,

P H —cm < s —>e_8n,
,y_nl—l/n

where v = (Ka) /7 (1 —a/dl).

13



Why are the fluctuations
INnCreased?

The maximal increasing path has a nearly ver-
tical segment of length asymptotic to (1 —
a/al)m in (or near) the column of A which
uses the largest probability p1. Therefore, this
vertical part of the path dominates the fluc-
tuations, as the rest presumably has o(y/m)
fluctuations. (These are most likely not of the
order exactly m1/3 as they correspond to the
critical case a = «al.) The variables in the
pi1—column are Bernoulli with variances about
b(1 — b), thus the contribution of the vertical
part to the variance is about

(b(1 —b)(1 — a/a)ym)/? = r/n.

Annealed fluctuations are governed by pq since
en=c—(1-aja;)(b—p1)+olb—p1).
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Future directions, open problems
e What happens in either critical case?

e Is this approach suitable for determining
large deviation rates?

e \What happens for different growth mod-
els or different initial states? For example,

nothing is known about the (two—sided)
DB given by

ht—|—1($) = max{ht(x—l), ht(CU—I-].), ht($)+5x,t}-
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