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Oriented Digital Boiling (ODB)

Interface:

{(x, y) : x ∈ Z, y ≤ ht(x)} , t = 0,1,2, . . .

Height function rules:

1. ht ≤ ht+1.

2. If ht(x− 1) > ht(x),

then ht+1(x) = ht(x− 1).

3. Else, ht+1(x) = ht(x) + 1 with prob px.

Alternatively, toss px–coins in advance to get

indep. Bernoulli rv’s εx,t. Think of the points

(x, t) for which εx,t = 1 as marked. Then

ht(x) = max{ht−1(x− 1),ht−1(x) + εx,t−1}.

We will assume that the initial state is h0(x) =

0 if x = 0, otherwise −∞.

Eventually: px i.i.d., with d.f. F .
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Path description

A space–time point (x, t), x ≤ t, has backwards

lightcone:

L(x, t) = {(x′, t′) : 0 ≤ x′ ≤ x, x′ ≤ t′ < x′+t−x}.

Let H be the longest sequence (x1, t1), . . . , (xk, tk)

of marked points such that

1. xi−1 ≤ xi,

2. xi − xi−1 + 1 ≤ ti − ti−1.
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Alternatively, let m = t− x and n = x+ 1, and
A a random m×n matrix with Bernoulli entries
εi,j, where P (εi,j = 1) = pj. Label columns as
usual, but rows started at the bottom. Then
H = H(m,n) is the longest sequence of 1’s in
A, with

column index non–decreasing and row
index strictly increasing

Then

ht(x) = H(m,n)

This is often called a last passage property .
From now on, we formulate all the results for
H, with n = αm.
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“Remembrance of Things Past”

Ulam’s problem of estimating the longest

increasing subsequence in a random permuta-

tion of length n.

Strong Law Type Results: Hammersley (1972),

Logan–Shepp, Vershik–Kerov (1977), & Aldous–

Diaconis (1995)

Fluctuations: Baik–Deift–Johansson (1999)

Methods: subadditivity, exclusion process rep-

resentation, random Young tableaux, RMT tech-

niques (including Riemann-Hilbert).
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The largest increasing sequence in a random

(0,1)–matrix: Seppäläinen (1998), limiting shape:

lim
t→∞

ht(x)

t
, x/t constant

Johansson (1999–2000) computed the fluctu-

ations in (universal regime of) this limit law,

by a RMT approach

The disordered case, when px are initially cho-

sen at random, is related to the Seppäläinen–

Krug model (1999).
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The main theorem for the
homogeneous case

Assume px ≡ p.

If 0 < α < (1− p)/p, then define

c = 2
√
α
√
p(1− p) + (1− α)p,

g = α−1/2 ( p(1− p) )1/6 ×(
(1− α)

√
p(1− p) + (1− 2p)

√
α

)2/3
.

Then, as m→∞,

P

(
H − cm
g ·m1/3

≤ s
)
→ F2(s),

where

F2(s) = exp
(
−
∫ ∞
s

(x− s)q(x)2 dx

)
and q solves

q′′ = sq + 2q3, q(s) ∼ Ai(s) as s→∞.
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Main steps in proving the theorem

1. dual RSK algorithm gives a bijection be-

tween (0,1)–matrices with k 1’s and pairs

(P,Q) such that P t and Q are semistan-

dard Young tableaux (of the same shape)

of size k. Most importantly, the length of

the first row in P is H = ht(x). This gives,

with r = p/(1− p),

P (ht(x) ≤ h) = (1−p)mn
∑
λ∈P
`(λ)≤h

r|λ|dλ(m)dλ′(n).

dλ(m) = #SSYT’s of shape λ

using integers {1, . . . ,m}

2. Gessel’s theorem (1990) & Borodin–Okounkov

identity (1999) then establish the connec-

tions between the sum above and determi-

nants of matrices and operators, the final

result being

P (ht(x) ≤ h) = det(I −Kh),
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where Kh : `2 → `2 is given by its (j, k)–

entry

∞∑
`=0

(ϕ−/ϕ+)h+j+`+1(ϕ+/ϕ−)−h−k−`−1.

Kh product of two matrices: (j, k)–entries

a+
jk(h) =

1

2πi

∫
(1 + rz)n (z − 1)m ×

z−m+h+j+k dz,

a−jk(h) =
1

2πi

∫
(1 + rz)−n (z − 1)−m ×

zm−h−j−k−2 dz.

The contours for both integrals go around

the origin once counterclockwise; in the

second integral 1 is inside and −r−1 is out-

side.

3. Scaling:

h = cm+ sm1/3, j = m1/3x, k = m1/3y



and compute integrals asymptotically. Use

the steepest descent method:

• Two saddles points coincide. Location

determines c

• Double zero, hence the m1/3 scaling.

• Variance normalization determined by co-

efficient of third derivative

• Limit is a Fredholm determinant with

Airy kernel.

• The main technical effort is in estab-

lishing trace–class convergence of the

approximations.



Another Connection with Random

Matrices.

In GUE (Tracy-Widom, 1993) The largest eigen-
value λmax obeys the limit law

P
(
(λmax −

√
2n ) ·

√
2n1/6 ≤ s

)
→ F2(s),

as s→∞.

The limit laws for the largest eigenvalue in
GOE and GSE (Tracy-Widom, 1996) also arise
as limit laws for increasing path problems
(Baik-Rains, 2000) and associated growth pro-
cesses (Baik-Rains, Prähofer-Spohn)

No known intuitive connection between largest
eigenvalues and increasing paths without us-
ing the RSK correspondence. With RSK Jo-
hansson (2000) has given a discrete orthog-
onal polynomial ensemble approach to in-
creasing subsequence problems. In this formu-
lation one has discrete analogues of the distri-
bution of the largest eigenvalue.
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Inhomogeneous ODB

Now assume that A is an m×n random matrix
with P (εij = 1) = pj. Here pj are i.i.d., with
P (pj ≤ x) = F (x), where F : [0,1] → [0,1]
is a distribution function. (H is the longest
increasing path of 1’s in A.)

This corresponds to a random environment
version of ODB: every x ∈ Z decides before the
dynamics starts, at random according to F , on
the probabilities of its coin flips.

• Time constant can be explicitly determined
in terms of F .

• Quenched and annealed fluctuations differ.

• If the right tails of F are sufficiently thin,
there is a composite (or glassy) regime for
small α = n/m. This regime can be iden-
tified with a different fluctuations scaling.

Lemma: Once p1, . . . , pn are determined, the
distribution of H does not depend on their or-
der.
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Time Constant

p has distr fn F and 〈·〉 is integration w.r.t. dF .

b := max supp dF,

c := c(α, F ) = lim
m→∞

H

m
.

Define the following critical values:

αc :=

〈
p

1− p

〉−1

α′c :=

〈
p(1− p)

(b− p)2

〉−1

.

Theorem: If b = 1, then c(α, F ) = 1 for all α,
while if b < 1, then

c(α, F ) =


b+ α(1− b)

〈
p
b−p

〉
if α ≤ α′c,

a+ α(1− a)
〈

p
a−p

〉
if α′c ≤ α ≤ αc,

1 if αc ≤ α.
Here a = a(α, F ) ∈ [b,1] is the unique solution
to

α

〈
p(1− p)

(a− p)2

〉
= 1.
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Fluctuations, quenched case, pure regime:

Theorem: Assume that b < 1 and α′c < α <
αc. Then there exists a sequence of random

variables cn ∈ σ{p1, . . . , pn} and a constant g 6=
0 (both depending on α) such that, as m→∞,

P

(
H − cnm
g ·m1/3

≤ s | p1, . . . , pn

)
→ F2(s),

almost surely, for any fixed s. The proof is a

uniform version of the proof for fixed p.

Fluctuations, annealed case, pure regime:

Theorem Assume that b < 1 and α′c < α < αc.
Let a be as before and

τ2 = Var

(
(1− a)p

a− p

)
.

Then, as m→∞,

H − cm
τ
√
α ·m1/2

d−→ N(0,1).
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Fluctuations, composite regime: Assume

(a technical condition and) that

1− F (b− x) ∼ Kxη, as x→ 0,

for some K and η > 2. Then α′c > 0. Assume

also that b < 1 and α < α′c, and let

τ2 = b(1− b)
(

1

α
−

1

α′c

)
.

Theorem: As m→∞,

P

(
H − cnm+ 2τ

√
n

τ ·
√
n

≤ s | p1, . . . , pn

)
→ Φ(s),

almost surely, for any fixed s.

Theorem: For s > 0, as m→∞,

P

(
H − cm
γ · n1−1/η

≤ s
)
→ e−s

η
,

where γ = (Kα)−1/η (1− α/α′c
)
.
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Why are the fluctuations
increased?

The maximal increasing path has a nearly ver-

tical segment of length asymptotic to (1 −
α/α′c)m in (or near) the column of A which

uses the largest probability p1. Therefore, this

vertical part of the path dominates the fluc-

tuations, as the rest presumably has o(
√
m)

fluctuations. (These are most likely not of the

order exactly m1/3 as they correspond to the

critical case α = α′c.) The variables in the

p1–column are Bernoulli with variances about

b(1 − b), thus the contribution of the vertical

part to the variance is about

(b(1− b)(1− α/α′c)m)1/2 = τ
√
n.

Annealed fluctuations are governed by p1 since

cn = c−
(

1− α/α′c
)

(b− p1) + o(b− p1).
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Future directions, open problems

• What happens in either critical case?

• Is this approach suitable for determining

large deviation rates?

• What happens for different growth mod-

els or different initial states? For example,

nothing is known about the (two–sided)

DB given by

ht+1(x) = max{ht(x−1), ht(x+1), ht(x)+εx,t}.
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