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DEs in Probability

The Gaussian distribution is

Φ(x) =

∫ x

−∞

f(t) dt

/∫ ∞

−∞

f(t) dt

where f satisfies the ODE

df

dx
+ xf = 0, f(0) = 1 .

This is an integrable differential equation.

What exactly is an integrable DE?

This requires we understand what we mean by integrable.

On that subject books are written . . .
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Integrable DEs

In Hamiltonian dynamics there is the well-known concept of

Arnold-Liouville integrability.

Another class of integrable differential equations arise as

integrability conditions for linear total differential equations:

dw = Ωw

where Ω is a matrix of one-forms. Use d2 = 0 to conclude

dΩ = Ω ∧ Ω,

a nonlinear DE the matrix elements of Ω must satisfy.

The classic examples are the six Painlevé equations.
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Consider the linear (matrix) Fuchsian DE

dY

dz
=

∑

ν

Aν

z − aν

Y

We require that as the aν change that the monodromy matrices of

the fundamental solution matrix Y (z) are independent of the aν ’s.

This requires Aν = Aν(a).

One extends the DE to a system

dY = Ω(z, a)Y

where d is exterior differentiation with respect to z and the aν ’s.

The Schlesinger equations—nonlinear DEs for Aν = Aν(a)— are

then the integrablity conditions on Ω.

For the simplest case of 2 × 2 matrices with four singularities at 0,

1, t, and ∞, the Schlesinger equations can be reduced to the single

Painlevé VI equation.
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In fact all of the six Painlevé equations arise from isomondromy

considerations but the other five require we consider linear DEs

with irregular singular points.

Paul Painlevé (with help from Gambier) came to the equations

bearing his name from the classification of nonlinear ODEs

d2w

dz2
= R(

dw

dz
, w, z)

that have the property (now called the Painlevé property) that the

only moveable singularities are poles. The classification gives 50

canonical types of which six are essentially new transcendental

functions (the irreducibility property). These new six types are

now called the Painlevé equations.

They have many nice properties, e.g. one can solve nonlinear

connection problems and are closely related to certain

Riemann-Hilbert problems.
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Painlevé Equations in Probability

• 2-point scaling functions of the 2D Ising model are expressed in

terms of PIII (1976: Wu, McCoy, Tracy, Barouch).

• The Gaudin distribution in GUE (bulk scaling) is expressed in

terms of PV (1980: Jimbo, Miwa, Môri, Sato) .

• The distribution function for the largest eigenvalue (edge

scaling) in the three ensembles GOE, GUE and GSE are

expressed in terms of PII (1994–96: Tracy, Widom), e.g.

F2(t) = exp

(

−

∫ ∞

t

(x− t)ψ(x)2 dx

)

where

ψ′′ = xψ + 2ψ3, ψ(x) ∼ Ai(x), x→ ∞.

Note: Above distributions are all expressible in terms of Fredholm

determinants, e.g. F2 = det(I −KAiry).
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Dyson BM

GUE initial conditions and independent matrix elements

independently undergo Ornstein-Uhlenbeck diffusion:

τ → H(τ).

Transition density

p(H,H ′; τ2 − τ1) := exp

(

−
tr(H − qH ′)2

1 − q2

)

/Z

q = eτ1−τ2 < 1.

As τ2 → ∞, measure approaches GUE measure.

Each eigenvalue feels an electric field

E(xi) =
∑

i 6=j

1

xi − xj

− xi
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Many times: τ1 < τ2 < · · · < τm

With GUE initial conditions the density for H(τk) in neighborhood

of Hk is

e−tr(H2

1
)

m
∏

j=2

p(Hj , Hj−1, τj − τj−1)

Use HCIZ integral to integrate out unitary parts to obtain

determinantal measure on eigenvalues xj(τ)

Leads to extended kernels (Eynard & Mehta, Johansson,

Prähoffer & Spohn) and by scaling to

extended Airy kernel, extended sine kernel, extended Bessel

kernel. . .
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Airy Process

Defined by the distribution functions

Pr(A(τ1) ≤ ξ1, . . . , A(τm) ≤ ξm)

Probability expressed as a Fredholm determinant of extended Airy

kernel, an m×m matrix kernel. Entries Lij(x, y) given by
∫ ∞

0

e−z (τi−τj) Ai(x+ z) Ai(y + z) dz, i ≥ j,

−

∫ 0

−∞

e−z (τi−τj) Ai(x+ z) Ai(y + z) dz, i < j

Kij(x, y) = Lij(x, y)χ(ξj ,∞)(y).

Probability equals det (I −K).
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Remarks

1. For m = 1 extended kernel reduces to Airy kernel—an integrable

kernel in the sense of A. Its et al.. Not ‘integrable’ for m > 1.

2. For m = 1 Fredholm determinant is a τ -function for Painlevé II,

ψ.

3. Relationship between the two is

ψ(ξ) = (I −KAiry)
−1 Ai(x)|x=ξ

4. Integrable differential equations for m > 1? Answered

affirmatively by Adler and van Moerbeke and TW.
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Set R = K (I −K)−1, then

∂ξk
log det (I −K) = Rkk(ξk, ξk)

Unknowns: Five matrix functions of the ξk. First is

rij = Rij(ξi, ξj).

To define others, let

A = diag (Ai), χ = diag (χ(ξk,∞)),

Q = (I −K)−1A, Q̃ = Aχ(I −K)−1.

Other unknowns are

qij = Qij(ξi), q̃ij = Q̃ij(ξj),

q′ij = Q′
ij(ξi), q̃′ij = Q̃′

ij(ξj).
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Define rx and ry by

(rx)ij = (∂xR)ij(ξi, ξj)

(ry)ij = (∂yR)ij(xi, ξj).

rx and ry are not unknowns.

Set ξ = diag (ξk). Equations are

dr = −r dξ r + dξ rx + ry dξ,

dq = dξ q′ − r dξ q,

dq̃ = q̃′ dξ − q̃ dξ r,

dq′ = dξ ξ q − (rx dξ + dξ ry) q + dξ r q′,

dq̃′ = q̃ ξ dξ − q̃ (dξ ry + rx dξ) + q̃′ r dξ.
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Diagonal entries of rx + ry and off-diagonal entries of rx and ry are

expressible in terms of the unknowns. Here is where the τk enter.

Let τ = diag (τk) and Θ the matrix with all entries equal to one.

rx + ry = −qΘ q̃ + r2 + [τ, r],

[τ, rx − ry] = q′ Θ q̃ − qΘ q̃′ + [r, rx + ry] + [ξ, r].

To prove these we used the Airy commutators

[D, L] = −AΘA+ [τ, r]
[

D2 −M ,L
]

= 0

When m = 1 these equations reduce (q̃ = q = ψ,

q̃′ = q′ = dψ/dξ + rψ) to the single Painlevé II equation

d2ψ

dξ2
= ξψ + 2ψ3
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Remarks

Adler & van Moerbeke used their DEs to derive τ → ∞

asymptotics for

Pr (A(0) ≤ ξ1, A(τ) ≤ ξ2)

F2(ξ1)F2(ξ2)
= 1 +

c2(ξ1, ξ2)

τ2
+

c4(ξ1, ξ2)

τ4
+ O(τ−6)

and Widom derived the same asymptotic expansion directly from

the Fredholm determinant representation. The important feature is

that c2 and c4 are expressible in terms of the Painlevé II function

ψ, e.g.

c2(ξ1, ξ2) = u(ξ1)u(ξ2), u(ξ) =

∫ ∞

ξ

ψ2(x) dx
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These same methods, e.g. perturbation expansion of DEs or

expansion of Fredholm determinant, show that the matrix

Painlevé function q

q(ξ) =





ψ(ξ1) 0

0 ψ(ξ2)



+

1

τ





0 −u(ξ1)ψ(ξ2)

ψ(ξ1)u(ξ2) 0



 + O(τ−2)

That is, matrix Painlevé q is decoupling in τ → ∞ asymptotics to

scalar Painlevé II.
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Open Problems for Airy System

1. Are equations deformation equations for some isomondromy

problem and is Fredholm determinant the associated τ -function in

sense of Jimbo-Miwa-Ueno?

2. We proved compatibility for small m using Maple. Give general

conceptual proof. Difficulty lies with the conditions determining rx

and ry.

3. Systematize large τ asymptotics. Find small τ expansions.
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We have systems of PDEs that determine the Fredholm

determinant of

• Extended Hermite kernel

• Extended Sine kernel

• Extended Bessel kernel

They are more complicated than the extended Airy system. Each

requires a special trick. Adler & van Moerbeke also have system of

DEs for extended Hermite kernel.
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Higher Universality Classes

1. Airy kernel arises as a fold singularity: coalescence of two saddle

points

2. Pearcey kernel (Brézin & Hikami, Okounkov & Reshetikhin,

Bleher & Kuijlaars) arises as a cusp singularity: coalescence of

three saddle points.

3. General Problem:

Singularity −→ Diffraction Integral −→ Kernel −→ Process
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