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Figure 1: Paul Painlevé, 1863–1933.
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Basic Definitions

Given n-tuplets of random variables {λ1, . . . , λn}, define the joint

density functions

Pnβ(λ1, . . . , λn) = Cnβ exp

[

−1

2
β

n
∑

i=1

λ2
i

]

∏

i<j

|λi − λj |β

Cnβ are normalization constants and βGOE = 1, βGUE = 2,

βGSE = 4. For λ1 ≥ λ2 ≥ . . . ≥ λn, let

λ̂
(n)
k =

λk −
√

2 n

2−1/2 n−1/6

λ̂
(n)
k is the rescaled kth eigenvalue measured from the edge of the

spectrum. We are interested in

Fβ(s, k) = lim
n→∞

Pnβ

(

λ̂
(n)
k ≤ s

)

, β = 1, 2, 4.
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Universality Theorems

Replace Gaussian ensembles by

Cnβ exp

[

−
n
∑

i=1

Vβ(λi)

]

∏

i<j

|λi − λj |β

where Vβ is a polynomial of even degree (with positive leading

coefficient).

For β = 2 it is a result of Deift-Kriecherbauer-McLaughlin-

Venakides-Zhou and for β = 1, 4 a result of Deift-Gioev that that

the limiting distributions Fβ(s, k) are independent of Vβ . (The

centering and norming constants do depend on Vβ .)

Soshnikov showed, for β = 1, 2, the same universality holds for

Wigner matrices. (Distribution on matrix elements has finite

moments, odd moments zero.)
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Painlevé Representations for Fβ(s, 1)

Tracy-Widom:

F2(s, 1) = exp

[

−
∫

∞

s

(x − s) q2(x)d x

]

F 2
1 (s, 1) = F2(s, 1) exp

[

−
∫

∞

s

q(x)d x

]

F 2
4 (s, 1) = F2(s, 1) cosh2

[

−1

2

∫

∞

s

q(x)d x

]

where q is the solution to Painlevé II

q′′ = xq + 2q3, q(x) ∼ Ai(x), x → ∞
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Figure 2: The TW density functions fβ , β = 1, 2, 4
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Distributions F2(s, k) for Unitary Ensembles

Define

D2(s, λ) = det (I − λKAiry) , 0 ≤ λ ≤ 1,

where KAiry is the Airy kernel

KAiry(x, y) :=
Ai(x)Ai′(y) − Ai′(x)Ai(y)

x − y
on L2(s,∞)

then

F2(s, k+1)−F2(s, k) =
(−1)k

k !

∂k

∂λk
D2(s, λ)

∣

∣

∣

∣

λ=1−

k ≥ 0, F2(s, 0) := 0

We have a Painlevé representation for D(s, 1).

What is the Painlevé representation for D(s, λ)?
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The answer (TW) is remarkably simple:

D2(s, λ) = exp

[

−
∫

∞

s

(x − s) q2(x, λ)d x

]

where q(x, λ) satisfies the same Painlevé II equation but with

boundary condition

q(x, λ) ∼
√

λAi(x), x → ∞.

Thus F2(s, k) are expressible in terms of

q(s, 1),
∂q

∂λ
(s, 1), . . . ,

∂kq

∂λk
(s, 1)

Will same hold for orthogonal and symplectic ensembles?

i.e. Take λ = 1 results and simply make replacement

q(x) = q(x, 1) → q(x, λ) ?

9



A hint that things are not so simple

Forrester-Rains: Eigenvalues of GSEn are distributed like alternate

even eigenvalues of GOE2n+1.

This was conjectured earlier, in edge scaling, by Baik-Rains.

In particular, this says the distribution of next-largest eigenvalue of

GOE (in edge scaling) equals the distribution of the largest

eigenvalue of GSE (in edge scaling).

But this would imply a relationship between

q(s, 1) and
∂q

∂λ
(s, 1)

Very Unlikely!
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Let

D1(s, λ) := lim
Edge Scaling

det (I − λKn,GOE) = det2 (I − λK1,Airy)

D4(s, λ) := lim
Edge Scaling

det (I − λKn,GSE) = det (I − λK4,Airy)

Remarks:

1. Convergence for β = 4 is in trace-class norm. For β = 1

convergence is to the regularized determinant, det2, in the

Hilbert-Schmidt norm (TW).

2.

Fβ(s, k + 1) = Fβ(s, k) +
(−1)k

k!

∂k

∂λk
D

1/2
β (s, λ)

∣

∣

∣

∣

λ=1

, β = 1, 4,

with Fβ(s, 0) := 0.
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Painlevé Representations for D1 and D4

Momar Dieng proved the following:

D4(s, λ) = D2(s, λ) cosh2

(

µ(s, λ)

2

)

D1(s, λ) = D2(s, λ̃)
λ − 1 − coshµ(s, λ̃) +

√

λ̃ sinhµ(s, λ̃)

λ − 2

with

µ(s, λ) :=

∫

∞

s

q(x, λ)d x and λ̃ := 2 λ − λ2

In the symplectic case the prescription q(x, 1) → q(x, λ) is valid;

whereas for the orthogonal case, a new formula appears.

Note, in the orthogonal case, that D2 and q are evaluated at λ̃.
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Two Corollaries

I.

D1(s, λ) = D4(s, λ̃)

(

1 −
√

λ

2 − λ
tanh

µ(s, λ̃)

2

)2

II.

(−1)n

n!

∂n

∂ λn
D

1/2
4 (s, λ)

∣

∣

∣

∣

λ=1

=

[

− 1

(2 n + 1)!

∂2 n+1

∂ λ2 n+1
+

1

(2 n)!

∂2 n

∂ λ2 n

]

D
1/2
1 (s, λ)

∣

∣

∣

∣

λ=1

which implies (and gives a new proof of)

F4(s, k) = F1(s, 2k), k ≥ 1.
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Simulations
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Figure 3: 104 realizations of 103
× 103 GOE matrices
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Applications to Wishart Distribution

Let X denote an n × p data matrix whose rows are independent

Np(0, Σ) random variables. The matrix

1

n
XtX,

called the sample covariance matrix, is said to have Wishart

distribution Wp(n, Σ). The null case corresponds to the choice

Σ = id. Let λ1 > · · · > λn denote the eigenvalues of XtX .

Results of Johnstone for k = 1 and Soshnikov for k > 1 show that

in the null case, as n, p → ∞, n/p → γ, 0 ≤ γ < ∞
λk − µnp

σnp

D−→ F1(s, k)

with explicit expressions for the centering and norming constants.
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Further Developments for Wishart

Distribution

1. El Karoui in null case for the largest eigenvalue, proves the limit

law for 0 ≤ γ ≤ ∞. This requires additional estimates to allow

γ = ∞. Soshnikov’s theorem for k > 1 has not been extended to

the γ = ∞ case.

2. Soshnikov removes Gaussian assumption on the distribution of

the matrix elements of X and only requires odd moments are zero

and even moments satisfy a Gaussian type bound. Then for the

null case and under the restriction that as n, p → ∞ that

n − p = O(p1/3)

we get the same limit law described by F1(s, k).
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Remarks on the Proof for the Orthogonal

Ensemble

One of the main ideas of TW was to rewrite the the 2 × 2 matrix

K1,n with operator entries so that the det(I − K1,n) was equal to

the determinant of an operator of the form

(I − K2,n) (I − B)

where

B = rank two operator

Once in this form the determinant of the first factor gives, in the

edge scaling limit, the distribution F2 while the determinant of the

second factor gives

µ(s, 1) = exp

[

−
∫

∞

s

q(x, 1) dx

]

The same method worked in the case of GSE.
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Try same idea for the λ-dependent determinants

For GSE everything remains pretty much the same and the result,

in the end, is simply replacing

q(x, 1) → q(x, λ)

However, if one follows directly the proof for the orthogonal case,
one finds the operator B is not of finite rank. That is,

det (I − λK1,n) = det (I − λK2,n) det (I − B)

but B is not of finite rank (and hence unable to relate to q). What

Dieng showed was that a different factorization works provided one

factors out I − λ̃K2,n, λ̃ = 2λ − λ2, i.e.

det(I − λK1,n) = det
(

I − λ̃K2,n

)

det(I − B)

where now
B = rank three operator
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Open Problems and Future Directions

1. TW used WKB to find x → −∞ asymptotics of
(

∂kq

∂λk

)

(x, 1), k ≥ 1.

Develop a RH approach to this general problem for Painlevé

functions.

2. TW showed

F2(s) ∼
τ0

(−s)1/8
exp(s3/12), s → −∞.

The constant τ0 is conjectured to equal

eζ′(−1) 21/24.

3. Lift restriction

n − p = O(p1/3)

in Soshnikov’s Wishart universality theorem.
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4. For Wishart distribution, the problem is to go beyond the null

case Σ = id.

(a) Baik, Ben Arous, Peche have solved this problem in the

complex case when Σ is a finite rank perturbation of the

identity. A key feature of their analysis is the use of the

Harish-Chandra/Iyzykson-Zuber integral. It is an important

remark that their results are expressible in terms of the

basic Painlevé II function q.

(b) The difficulty in the real case is lack of an analog to the

HCIZ integral. This is a fundamental problem.
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Thank You for your Attention
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