Integrable Differential Equations in Random Matrix Theory

A Survey Talk by Craig Tracy UC Davis

From Painlevé to Okamoto
June 9–13, 2008
The University of Tokyo

Determinants, Integrable DEs & RMM

- 1. Historical remarks
- 2. Random Matrix Models (RMM) with unitary symmetry
- 3. RMM with orthogonal symmetry
- 4. Wishart distributions
- 5. RMM and Extended Kernels
- 6. Extension of Largest Eigenvalue Distributions to general β —Dyson's Coulomb gas ensemble.

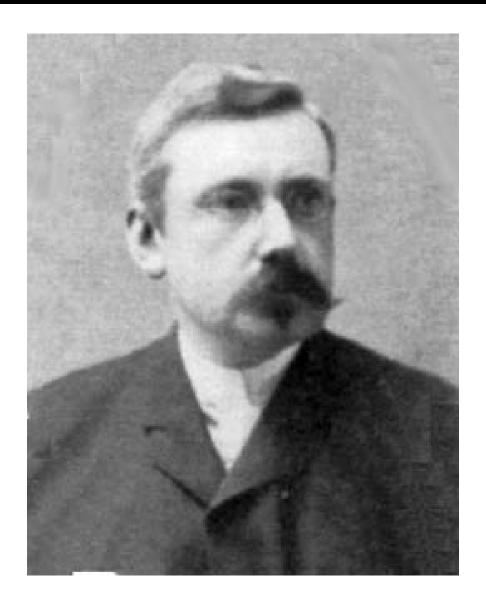


Figure 1: E. Ivar Fredholm, 1866–1927.

Figure 2: Paul Painlevé, 1863–1933.

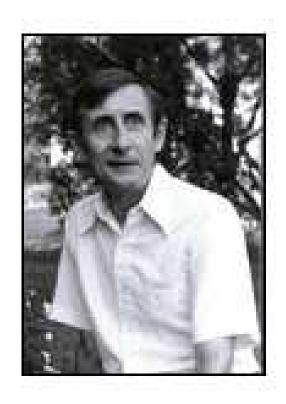


Figure 3: Eugene Wigner & Freeman Dyson

Figure 4: Tai Tsun Wu

Figure 5: Mikio Sato, Tetsuji Miwa & Michio Jimbo

Figure 6: Kazuo Okamoto

§1. HISTORICAL REMARKS

2D Ising Model: First connection between

Toeplitz and Fredholm Dets - Painlevé

Wu, McCoy, T, & Barouch (1973–77) [70]:

$$\lim_{\substack{T \to T_c^{\pm}, R^2 = M^2 + N^2 \to \infty \\ r = R/\xi(T) \text{ fixed}}} \mathbb{E}\left(\sigma_{00}\sigma_{MN}\right) = \begin{cases} \sinh\frac{1}{2}\psi(r) \\ \cosh\frac{1}{2}\psi(r) \end{cases} \times \exp\left(-\frac{1}{4}\int_r^{\infty} \left(\frac{d\psi}{dy}\right)^2 - \sinh^2\psi(y) \, dy\right)$$

where

$$\frac{d^2\psi}{dr^2} + \frac{1}{r}\frac{d\psi}{dr} = \frac{1}{2}\sinh(2\psi), \ \psi(r) \sim \frac{2}{\pi}K_0(r), \ x \to \infty.$$

Note: $y(x) = e^{-\psi(x)}$ is a particular **Painlevé III** transcendent. (See also Widom [69].)

SATO, MIWA & JIMBO, 1977–1980, (see, e.g., [33]) introduced

τ -functions and holonomic quantum fields,

a class of field theories that include the scaling limit of the Ising model and for which the expression of correlation functions in terms of solutions to holonomic differential equations is a general feature^a

These developments led Jimbo-Miwa-Môri-Sato [36] to consider, in 1980, the *Fredholm determinant* and *Fredholm minors* of the operator whose kernel is the familiar **sine kernel**

$$\frac{1}{\pi} \frac{\sin \pi (x - y)}{x - y}$$

on the domain $\mathbb{J}=(a_1,b_1)\cup(a_2,b_2)\cup\cdots\cup(a_n,b_n)$.

Their main interest was the density matrix of the impenetrable Bose gas, and only incidentally, random matrices.

^aA book length account of these developments can be found in PALMER [51].

For $\mathbb{J} = (0, s)$, the **JMMS result** is

$$\det (I - \lambda K_{\text{sine}}) = \exp \left(-\int_0^{\pi s} \frac{\sigma(x; \lambda)}{x} dx\right)$$

where

$$(x\sigma'')^2 + 4(x\sigma' - \sigma)\left(x\sigma' - \sigma + (\sigma')^2\right) = 0$$

with boundary condition

$$\sigma(x,\lambda) = -\frac{\lambda}{\pi} x + \mathcal{O}(x^2), \ x \to 0.$$

- σ is expressible in terms of Painlevé V. An example of the σ -form for Painlevé equations [35, 45].
- OKAMOTO analyzed the τ-function associated to Painlevé equations [45] and produced his famous series of papers Studies on Painlevé equations [46, 47, 48, 49].

- For general J, JMMS [36] obtains a compatible system of nonautonomous Hamiltonian equations generated by Poisson commuting Hamiltonians where the independent variables are the a_j, b_j —i.e. the endpoints of the intervals. (See also HARNAD [28].)
- A simplified derivation of the JMMS equations can be found in TW [59].^a
- Connections with quantum inverse scattering were developed by Its, Korepin and others. (See, e.g., [31, 41].)

^aSee Gangardt [27] for recent developments on the impenetrable Bose gas.

§2. RMM WITH UNITARY SYMMETRY

Many RMM with unitary symmetry come down to the evaluation of Fredholm determinants $\det(I - \lambda K)$ where K has kernel of the form

$$\frac{\varphi(x)\psi(y) - \psi(x)\varphi(y)}{x - y} \chi_{\mathbb{J}}(y)$$

where

$$\mathbb{J} = (a_1, b_1) \cup (a_2, b_2) \cup \cdots \cup (a_n, b_n).$$

Examples:

- Sine kernel: $\varphi(x) = \sin \pi x$, $\psi(x) = \cos \pi x$.
- Airy kernel: $\varphi(x) = \operatorname{Ai}(x), \ \psi(x) = \operatorname{Ai}'(x).$
- Bessel kernel: $\varphi(x) = J_{\alpha}(\sqrt{x}), \ \psi(x) = x\varphi'(x).$
- Hermite kernel: $\varphi(x) = (\frac{N}{2})^{1/4} \varphi_N(x), \psi(x) = (\frac{N}{2})^{1/4} \varphi_{N-1}(x)$ where $\varphi_k(x) = \frac{1}{\sqrt{2^k \, k! \pi^{1/2}}} e^{-x^2/2} \, H_k(x).$

A **general theory** of such Fredholm determinants was developed in TW [61] under the additional hypothesis that

$$m(x)\frac{d}{dx} \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \begin{pmatrix} A(x) & B(x) \\ -C(x) & -A(x) \end{pmatrix} \begin{pmatrix} \varphi \\ \psi \end{pmatrix}$$

where m, A, B and C are polynomials. For example, for the Airy kernel

$$m(x) = 1$$
, $A(x) = 0$, $B(x) = 1$, $C(x) = -x$.

The **basic objects** of the theory are

$$Q_j(x; \mathbb{J}) = (I - K)^{-1} x^j \varphi(x), \ P_j(x; \mathbb{J}) = (I - K)^{-1} x^j \psi(x),$$

and

$$u_{i} = (Q_{i}, \varphi), v_{i} = (P_{i}, \varphi), \tilde{v}_{i} = (Q_{i}, \psi), w_{i} = (P_{i}, \psi)$$

where (\cdot, \cdot) denotes the inner product. The **independent** variables are the endpoints a_j and b_j making up \mathbb{J} .

There are two types of differential equations:

- Universal equations, i.e. equations that hold independently of the differential equations for φ and ψ .
- Equations that depend upon m, A, B and C.

For $K = K_{Airy}$ with $\mathbb{J} = (s, \infty)$, $q(s) := Q_0(s, \mathbb{J})$, $p(s) := P_0(s, \mathbb{J})$, $u = u_0$, $v = v_0$, the general theory reduces to the differential equations

$$\frac{dq}{ds} = p - qu, \quad \frac{dp}{ds} = sq - 2qv + pu,$$

$$\frac{du}{ds} = -q^2, \quad \frac{dv}{ds} = -pq,$$

together with

$$\frac{d}{ds}R(s,s) = -q^2, \quad \frac{d}{ds}\log\det(I - K) = -R(s,s),$$

where R(x, y) is the resolvent kernel of K.

Using the first integral $u^2 - 2v = q^2$, one easily derives that q satisfies the **Painlevé II equation**

$$\frac{d^2q}{ds^2} = sq + 2q^3.$$

This then leads to the distribution of the largest eigenvalue in GUE in the $edge\ scaling\ limit[60]$

$$F_2(x) = \exp\left(-\int_x^\infty (x - y)q(y)^2 dy\right)$$

• **Key features** of the proof are simple expressions for $(m(x) \equiv 1)$

$$[D, (I-K)^{-1}]$$
 and $[M^k, (I-K)^{-1}]$

where D is differentiation with respect to the independent variable and M is multiplication by the independent variable.

For example, when $K = K_{Airy}$ with $\mathbb{J} = (s, \infty)$ we have $[D, (I - K)^{-1}] \doteq -Q(x)Q(y) + R(x, s)\rho(s, y)$

- Palmer [50] and Harnad & Its [29] have an **isomondromic** deformation approach to these type of kernels.
- Adler, Shiota, & van Moerbeke's [1] Virasoro algebra approach gives directly equations for the resolvent kernel R(s,s).^a
- Given the DE, e.g. P_{II} , one is faced with the **asymptotic** analysis of the solutions which involves finding connection formulae. One approach, the **RH method**, which has its origins in the **isomondromy deformation** methods of Flaschka & Newell [24] and Jimbo, Miwa & Ueno [34] in 1980s, began with the work of Deift & Zhou [15] when they

^aThe connection between these two approaches has been clarified by HARNAD [28] and RUMANOV [56].

proposed a nonlinear version of the classical steepest descent method for oscillatory RH problems. .

• A recent achievement [14] of the RH approach is a proof that as $s \to -\infty$,

$$\log \det(I - K_{Airy}) = -\frac{s^3}{12} - \frac{1}{8} \log s + \kappa + O(s^{-3/2})$$

where

$$\kappa = \frac{1}{24} \log 2 + \zeta'(-1)$$

and $\zeta(s)$ is the Riemann zeta function.

Remark: The first two terms follows from the HASTINGS-MCLEOD [30] solution of P_{II} [60]. The constant κ was conjectured in 1994 [60] and proved in 2006 [14].

• Choup [9] has given explicit Painlevé representations for corrections to edge scaling for both finite n GUE and LUE.

§3. RMM with Orthogonal Symmetry

The added difficulty with RMM with orthogonal symmetry is that the kernels are **matrix kernels** [21, 43, 62, 64, 68]. For example, for finite N GOE the operator is

$$K_{1} = \chi \begin{pmatrix} K_{2} + \psi \otimes \varepsilon \varphi & K_{2}D - \psi \otimes \varphi \\ \varepsilon K_{2} - \varepsilon + \varepsilon \psi \otimes \varepsilon \varphi & K_{2} + \varepsilon \varphi \otimes \psi \end{pmatrix} \chi$$

where

$$K_2 \doteq \sum_{n=0}^{N-1} \varphi_n(x)\varphi_n(y),$$

 ε is the operator with kernel $\frac{1}{2}\text{sgn}(x-y)$, D is the differentiation operator, and χ is the indicator function for the domain \mathbb{J} .

Notation: $A \otimes B \doteq A(x)B(y)$.

The idea of the proof in TW [62] is to factor out the GUE part

$$(I-K_2\chi)$$

and through various determinant manipulations show that the **remaining part is a finite rank perturbation**. Thus one ends up with formulas like

$$\det(I - K_1) = \det(I - K_2 \chi) \det \left(I - \sum_{j=1}^k \alpha_j \otimes \beta_j \right)$$

For the case $\mathbb{J}=(s,\infty)$, an asymptotic analysis shows that as $N\to\infty$ the distribution of the scaled largest eigenvalue in GOE is expressible in terms of the **same** P_{II} function appearing in GUE. The resulting GOE and GSE largest eigenvalue distribution

functions are

$$F_{1}(x) = \exp\left(-\frac{1}{2} \int_{x}^{\infty} q(y) \, dy\right) (F_{2}(x))^{1/2}$$

$$F_{4}(x/\sqrt{2}) = \cosh\left(\frac{1}{2} \int_{x}^{\infty} q(y) \, dy\right) (F_{2}(x))^{1/2}$$

where

$$F_2(x) = \exp\left(-\int_x^\infty (x-y)q(y)^2 dy\right)$$

and q is the Hastings-McLeod solution of P_{II} .

- The edge scaling limit is more subtle for GOE than for GUE or GSE. For GUE and GSE we have convergence in trace norm to limiting operators $K_{2,\text{Airy}}$ and $K_{4,\text{Airy}}$, but for GOE the convergence is to a regularized determinant, i.e. det₂. The subtleness is due to the presence of the ε . The lack of trace norm convergence basically explains why the limit $N \to \infty$ was taken at the end in [62]. The pointwise limit of finite $N K_1$ was worked out by FERRARI [22] and by FORRESTER, NAGAO & HONNER [25]. The convergence at the operator level is in TW [66].
- Recently Ferrari & Spohn [23] gave a different determinantal expression for edge scaling in GOE. It would be interesting to explore further their approach.

Universality Theorems

Though not a part of this survey proper, it's important to mention that these *same* distribution functions (and hence integrable DEs) arise for a much wider class of models than the Gaussian cases discussed here.

Invariant Measures: $e^{-\text{Tr}(A^2)} \longrightarrow e^{-N\text{Tr}(V(A))}$

Unitary:

- BLEHER & ITS [8], $V(x) = \frac{1}{2}tx^2 + \frac{1}{4}gx^4$, g > 0, t < 0.
- Deift, Kriecherbauer, McLaughlin, Venakides, Zhou [12, 13], V real analytic and $V/\log|x| \to +\infty$ as $|x| \to \infty$.

Orthogonal & Symplectic: Deift & Gioev [11], poly. V

Noninvariant Measures:

• Soshnikov [57], Real symmetric and complex Hermitian Wigner matrices.

NEXT LARGEST, NEXT-NEXT LARGEST, . . . EIGENVALUE DISTRIBUTIONS

$$\mathbf{D}_{\beta}(\mathbf{s}, \lambda) := \mathbf{det} (\mathbf{I} - \lambda \mathbf{K}_{\beta, \text{Airy}}), \ \beta = 1, 2, 4, \ 0 \le \lambda \le 1.$$

 $(\det_2 \text{ for } \beta = 1.)$ One needs

$$\frac{\partial^j D_{\beta}(s,\lambda)}{\partial \lambda^j} \bigg|_{\lambda=1}$$

for next largest, next-next largest eigenvalue, etc. distributions.

For $\beta = 2, 4$ there is a **simple answer**: Let

$$q(x) \longrightarrow q(x,\lambda)$$

in $\lambda = 1$ distributions where now q satisfies **same Painlevé II** equation but with boundary condition

$$q(x,\lambda) \sim \sqrt{\lambda} \operatorname{Ai}(x), \quad x \to \infty.$$

Not So for Orthogonal Symmetry!

DIENG [18] proved (see also [19])

$$D_1(s,\lambda) = D_2(s,\tilde{\lambda}) \frac{\lambda - 1 - \cosh \mu(s,\tilde{\lambda}) + \sqrt{\tilde{\lambda}} \sinh \mu(s,\lambda)}{\lambda - 2}$$

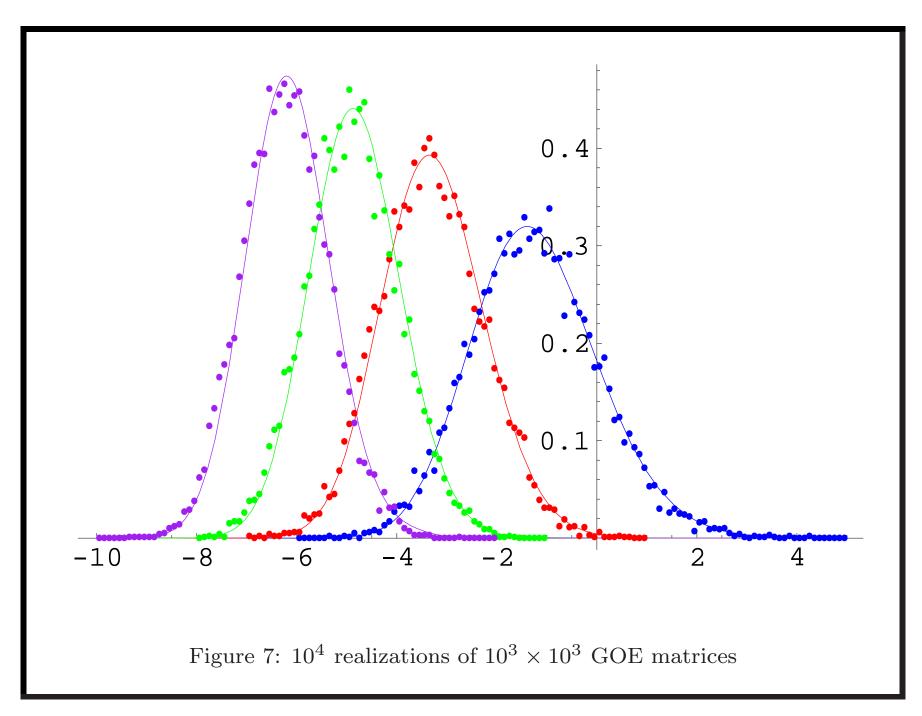
with

$$\mu(s,\lambda) = \int_{s}^{\infty} q(x,\lambda) dx$$
 and $\tilde{\lambda} := 2\lambda - \lambda^{2}$.

Note evaluation at $\tilde{\lambda}$ in above. For $\lambda = 1$ this reduces to TW [62].

From this follows distribution functions for next-largest, next-next largest, etc. for GOE universality class in terms of Painlevé II function q and derivatives

$$\left. \frac{\partial^k q(x,\lambda)}{\partial \lambda^k} \right|_{\lambda=1}$$



§4. Wishart Distributions

If

$$A = X^T X$$

where the $n \times p$ matrix X is $N_p(0, I_n \otimes \Sigma)$, $\Sigma > 0$, then A is said to have **Wishart distribution** with n degrees of freedom and covariance Σ . The Wishart distribution [4, 44] is the multivariate generalization of the χ^2 -distribution. We will say A is $W_p(n, \Sigma)$.

The quantity $\frac{1}{n}A$ is also called the **sample covariance matrix**.

EIGENVALUES OF A WISHART MATRIX

Theorem: If A is $W_p(n, \Sigma)$, $n \ge p$, the **joint density function** for the eigenvalues ℓ_1, \ldots, ℓ_p of A is

$$c_{p,n,\Sigma} \prod_{j=1}^{p} \ell_j^{(n-p-1)/2} \prod_{j < k} |\ell_j - \ell_k| \times \int_{\mathcal{O}(p)} e^{-\frac{1}{2} \operatorname{tr}(\Sigma^{-1} Q L Q^T)} dQ,$$

where $L = \text{diag}(\ell_1, \dots, \ell_p)$ and dQ is normalized Haar measure.

Corollary: If A is $W_p(n, I_p)$, then the integral over the orthogonal group in the previous theorem is

$$e^{-\frac{1}{2}\sum_{j}\ell_{j}}$$
.

• One is interested in **limit laws** as $n, p \to \infty$. For $\Sigma = I_p$, Johnstone [38] proved, using RMT methods, for centering and scaling constants

$$\mu_{np} = \left(\sqrt{n-1} + \sqrt{p}\right)^{2},$$

$$\sigma_{np} = \left(\sqrt{n-1} + \sqrt{p}\right) \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{p}}\right)^{1/3}$$

that

$$\frac{\ell_1 - \mu_{np}}{\sigma_{np}}$$

converges in distribution as $n, p \to \infty$, $n/p \to \gamma < \infty$, to the **GOE largest eigenvalue distribution** F_1 .

- El Karoui [39] has extended the result to $\gamma \leq \infty$. The case $p \gg n$ appears, for example, in microarray data.
- Soshnikov [58] and Péché [53] have **removed the** Gaussian assumption.

• For $\Sigma \neq I_p$, the difficulty in establishing limit theorms comes from the integral

$$\int_{\mathcal{O}(p)} e^{-\frac{1}{2}\operatorname{tr}(\Sigma^{-1}Q\Lambda Q^T)} (dQ).$$

Using **zonal polynomials**, infinite series expansions have been derived for this integral, but these expansions are difficult to analyze and converge slowly [44].

• For complex Gaussian data matrices X similar density formulas are known for the eigenvalues of X^*X . Limit theorems for $\Sigma \neq I_p$ are known since the analogous group integral, now over the unitary group, is known explicitly—the Harish Chandra—Itzykson—Zuber integral. See the work of Baik, Ben Arous & Péché [5, 6] and El Karoui [40].

The BBP phase transition.

• These RMT developments have had recent application to the analysis of **genetic data**; in particular, determining if the samples are from a homogeneous population [52].

§5. RMM & Extended Kernels

Airy Process: The Airy process $\mathcal{A}(\tau)$, introduced by Prähoffer & Spohn [54] and Johansson [37], is a continuous stochastic process whose distribution functions are given by

$$\mathbb{P}\left(\mathcal{A}(\tau_1) < a_1, \dots, \mathcal{A}(\tau_m) < a_m\right) = \det\left(I - K\right)$$

for $\tau_1 < \cdots < \tau_m$. Here K is the operator with $m \times m$ matrix kernel (K_{ij}) where

$$K_{ij}(x,y) = L_{ij}(x,y)\chi_{(a_j,\infty)}(y)$$

$$L_{ij}(x,y) = \begin{cases} \int_0^\infty e^{-z(\tau_i - \tau_j)} \operatorname{Ai}(x+z) \operatorname{Ai}(y+z) dz & i \ge j, \\ -\int_{-\infty}^0 e^{-z(\tau_i - \tau_j)} \operatorname{Ai}(x+z) \operatorname{Ai}(y+z) dx & i < j \end{cases}$$

For m=1 this reduces to the Airy kernel (independent of τ).

Extended kernels are more difficult than "integrable kernels" in unitary ensembles. Nevertheless, it is possible to find (complicated!) systems of integrable differential equations: See ADLER & VAN MOERBEKE [2, 3] and TW [65, 67].

Much analysis remains to be done on these equations

§6. Dyson's Hermite β Ensemble

Dyson's Hermite β ensemble H_n^{β} is defined by the probability density

$$\mathbb{P}_{\beta}(\lambda_1, \dots, \lambda_n) = \frac{1}{Z_{n,\beta}} e^{-\beta \sum_k \lambda_k^2/4} \prod_{j < k} |\lambda_j - \lambda_k|^{\beta}$$

When $\beta = 1, 2$ or 4 this is the joint density of eigevaules in GOE, GUE and GSE, respectively. Building on earlier work of DUMITRIU & EDELMAN[20], RAMÍREZ, RIDER & VIRÁG [55] proved the following theorem:

Define the stochastic Airy operator

$$\mathcal{H}_{\beta} = -\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}} b_x'$$

where b'_x is white noise.

Theorem[55]: With probability one, for each $k \geq 0$ the set of eigenvalues of \mathcal{H}_{β} has a well-defined (k+1)st lowest element $\Lambda_k(\beta)$. Moreover, let $\lambda_{\beta,1} \geq \lambda_{\beta,2} \geq \cdots$ denote the eigenvalues of the Hermite β -ensemble H_n^{β} . Then the vector

$$\left(n^{1/6}(2\sqrt{n}-\lambda_{\beta,\ell})\right)_{\ell=1,\ldots,k}$$

converges in distribution as $n \to \infty$ to $(\Lambda_0(\beta), \Lambda_1(\beta), \dots, \Lambda_{k-1}(\beta))$. Thus

$$F_{\beta}(x) = \mathbb{P}\left(-\Lambda_0(\beta) < x\right), \beta > 0$$

generalizes the largest eigenvalue distributions to general β

OPEN PROBLEM: For $\beta = 1, 2$ and 4 we can express F_{β} in terms of a solution to P_{II} . Is there a corresponding relation to integrable differential equations for general β ?

TO PROFESSOR OKAMOTO

HAPPY 60TH BIRTHDAY!

References

- [1] M. Adler, T. Shiota and P. van Moerbeke, Random matrices, Virasoro algebras and noncommutative KP, *Duke Math. J.* **94** (1998), 379–431
- [2] M. Adler and P. van Moerbeke, The spectrum of coupled random matrices, Ann. of Math. 149 (1999), 921–976.
- [3] M. Adler and P. van Moerbeke, PDEs for the joint distribution of the Dyson, Airy and sine processes, Ann. Probab. **33** (2005), 1326–1361.
- [4] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, third edition, John Wiley & Sons, Inc., 2003.
- [5] J. Baik, G. Ben Arous, and S. Péché, Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, *Ann. Probab.* **33** (2005), 1643–1697.
- [6] J. Baik, Painlevé formulas of the limiting distributions for

- nonnull complex sample covariance matrices, Duke Math. J. 133 (2006), 205–235.
- [7] P. Bleher and B. Eynard, Double scaling limit in random matrix models and a nonlinear hierarchy of differential equations, *J. Phys. A: Math. Gen.* **36** (2003), 3085–3105.
- [8] P. Bleher and A. Its, Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model, *Ann. of Math.* **150** (1999), 185–266.
- [9] L. Choup, Edgeworth expansion of the largest eigenvalue distribution function of GUE and LUE, *Int. Math. Res. Not.* (2006), Art. ID 61049, 32 pp.
- [10] P. A. Clarkson and J. B. McLeod, A connection formula for the second Painlevé transcendent, *Arch. Rational Mech. Anal.* **103** (1988), 97–138.
- [11] P. Deift and D. Gioev, Universality at the edge of the spectrum for unitary, orthogonal and symplectic ensembles of random

- matrices, Comm. Pure Appl. Math. **60** (2007), 867–910.
- [12] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, *Commun. Pure Appl. Math.* **52** (1999), 1335–1425.
- [13] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, Strong asymptotics of orthogonal polynomials with respect to exponential weights, *Commun. Pure Appl. Math.* **52** (1999), 1491–1552.
- [14] P. Deift, A. Its and I. Krasovsky, Asymptotics of the Airy-kernel determinant, Comm. Math. Phys. **278** (2008), 643–678.
- [15] P. A. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, *Ann. of Math.* **137** (1995), 295–368.
- [16] P. A. Deift and X. Zhou, Asymptotics for the Painlevé II

- equation, Commun. Pure Appl. Math. 48 (1995), 277–337.
- [17] P. Desrosiers and P. J. Forrester, Relationships between τ -functions and Fredholm determinant expressions for gap probabilities in random matrix theory, *Nonlinearity* **19** (2006), 1643–1656.
- [18] M. Dieng, Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations, *Int. Math. Res. Not.* **37** (2005), 2263–2287.
- [19] M. Dieng and C. A. Tracy, Application of random matrix theory to multivariate statistics, preprint, arXiv:math.PR/0603543.
- [20] I. Dumitriu and A. Edelman, Matrix models for beta ensembles,
 J. Math. Phys. 43 (2002), 5830–5847.
- [21] F. J. Dyson, Correlations between eigenvalues of a random matrix, Commun. Math. Phys. 19 (1970), 235–250.
- [22] P. L. Ferrari, Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues, *Commun. Math. Phys.* **252** (2004),

77 - 109.

- [23] P. L. Ferrari and H. Spohn, A determinantal formula for the GOE Tracy-Widom distribution, *J. Phys. A: Math. Gen.* **38** (2005), L557–L561.
- [24] H. Flaschka and A. C. Newell, Monodromy- and spectrum-preserving deformations I, Commun. Math. Phys. **76** (1980), 65–116.
- [25] P. J. Forrester, T. Nagao and G. Honner, Correlations for the orthogonal-unitary and symplectic-unitary transistions at the soft edge and hard edges, *Nucl. Phys. B* **553** (1999), 601–643.
- [26] P. J. Forrester and N. S. Witte, τ-function evaluation of gap probabilities in orthogonal and symplectic matrix ensembles, Nonlinearity 15 (2002), 937–954.
- [27] D. M. Gangardt, Universal correlations of trapped one-dimensional impenetrable bosons, *J. Phys. A: Math. Gen.* **37** (2004), 9335–9356.

- [28] J. Harnad, On the bilinear equations for Fredholm determinants appearing in random matrices, J. Nonlinear Math. Phys. 9 (2002), 530–550.
- [29] J. Harnad and A. R. Its, Integrable Fredholm operators and dual isomonodromic deformations, *Commun. Math. Phys.* **226** (2002), 497–530.
- [30] S. P. Hastings and J. B. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, *Arch. Rational Mech. Anal.* **73** (1980), 31–51.
- [31] A. R. Its, A. G. Izergin, V. E. Korepin and N. A. Slavnov, Differential equations for quantum correlations, *Int. J. Mod. Physics* **B4** (1990), 333–365.
- [32] A. R. Its and A. A. Kapaev, The nonlinear steepest descent approach to the asymptotics of the second Painlevé transcendent in the complex domain, in *MathPhys Odyssey 2001: Integrable*

- Models and Beyond, eds. M. Kashiwara and T. Miwa, Birkhäuser, 2002, pp. 273–311.
- [33] M. Jimbo, Introduction to holonomic quantum fields for mathematicians, *Theta functions—Bowdoin 1987, Part I*, 379–390, Proc. Sympos. Pure Math., 49, Part 1, Amer. Math. Soc. Providence, RI, 1989.
- [34] M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, *Physica D* **2** (1981), 306–352.
- [35] M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, *Physica D* **2** (1981), 407–448.
- [36] M. Jimbo, T. Miwa, Y. Môri and M. Sato, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, *Physica D* **1** (1980), 80–158.
- [37] K. Johansson, Discrete polynuclear growth processes and

- determinantal processes, Commun. Math. Phys. **242** (2003), 277–329.
- [38] I. M. Johnstone, On the distribution of the largest eigenvalue in principal component analysis, *Ann. Stat.* **29** (2001), 295–327.
- [39] N. El Karoui, On the largest eigenvalue of Wishart matrices with identity covariance when n, p and p/n tend to infinity, arXiv: math.ST/0309355.
- [40] N. El Karoui, Tracy-Widom limit for the largest eigenvalue of a large class of complex Wishart matrices, arXiv: math.PR/0503109.
- [41] V. E. Korepin, N. M. Bogoliubov and A. G. Izergin, *Quantum Inverse Scattering Method and Correlation Functions*, Cambridge University Press, 1993.
- [42] B. M. McCoy, C. A. Tracy and T. T. Wu, Painlevé functions of the third kind, J. Math. Phys. 18 (1977), 1058–1092.
- [43] M. L. Mehta, A note on correlations between eigenvalues of a

- random matrix, Commun. Math. Phys. 20 (1971), 245–250.
- [44] R. J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley & Sons, Inc., 1982.
- [45] K. Okamoto, On the τ -function of the Painlevé equations, Physica **2D** (1981), 525–535.
- [46] K. Okamoto, Studies on the Painlevé equations. I. Sixth Painlevé equation P_{VI} , Ann. Mat. Pura Appl. **146** (1987), 337–381.
- [47] K. Okamoto, Studies on the Painlevé equations. II. Fifth Painlevé equation P_V , Japan. J. Math. 13 (1987), 47–76.
- [48] K. Okamoto, Studies on the Painlevé equations. III. Second and fourth Painlevé equations, P_{II} and P_{IV} , Math. Ann. **275** (1986), 221-255.
- [49] K. Okamoto, Studies on the Painlevé equations. IV. Third Painlevé equation P_{III} , Funkcial. Ekvac. **30** (1987), 305–332.
- [50] J. Palmer, Deformation analysis of matrix models, *Physica D* 78

- (1994), 166-185.
- [51] J. Palmer, *Planar Ising Correlations*, Progress in Mathematical Physics, Vol. 49, Birkhäuser, 2007.
- [52] N. Patterson, A. L. Price and D. Reich, Population structure and eigenanalysis, PLOS Genetics, 2 (2006), 2074–2093.
- [53] S. Péché, Universality results for the largest eigenvalues of some sample covariance matrix ensembles, preprint, arXiv:0705.1701.
- [54] M. Prähofer and H. Spohn, Scale invariance of the PNG droplet and the Airy process, *J. Stat. Phys.* **108** (2002), 1071–1106.
- [55] J. A. Ramírez, B. Rider and B. Virág, Beta ensembles, stochastic Airy spectrum, and a diffusion, preprint, arXiv:math.PR/0607331.
- [56] I. Rumanov, The correspondence between Tracy-Widom and Adler-Shiota- van Moerbeke approaches in random matrix theory: The Gaussian case, J. Math. Phys. **49** (2008), Article # 043503.

- [57] A. Soshnikov, Universality at the edge of the spectrum in Wigner random matrices, *Commun. Math. Phys.* **207** (1999), 697–733.
- [58] A. Soshnikov, A note on universality of the distribution of the largest eigenvalue in certain sample covariance matrices, *J. Statistical Physics* **108** (2002), 1033–1056.
- [59] C. A. Tracy and H. Widom, Introduction to random matrices, in Geometric and Quantum Aspects of Integrable Systems, ed.
 G. F. Helminck, Lecture Notes in Physics, Vol. 424,
 Springer-Verlag, Berlin, 1993, 103–130.
- [60] C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, *Phys. Letts. B* **305** (1993), 115–118; *Commun. Math. Phys.* **159** (1994), 151–174.
- [61] C. A. Tracy and H. Widom, Fredholm determinants, differential equations and matrix models, *Commun. Math. Phys.* **163** (1994), 33–72.
- [62] C. A. Tracy and H. Widom, On orthogonal and symplectic

- matrix ensembles, Commun. Math. Phys. 177 (1996), 727–754.
- [63] C. A. Tracy and H. Widom, Asymptotics of a class of solutions to the cylindrical Toda equations, *Commun. Math. Phys.* **190** (1998), 697–721.
- [64] C. A. Tracy and H. Widom, Correlation functions, cluster functions and spacing distributions for random matrices, *J. Statistical Phys.* **92** (1998), 809–835.
- [65] C. A. Tracy and H. Widom, Differential equations for Dyson processes, Commun. Math. Phys. **252** (2004), 7–4.
- [66] C. A. Tracy and H. Widom, Matrix kernels for the Gaussian orthogonal and symplectic ensembles, *Ann. Inst. Fourier*, *Grenoble* **55** (2005), 2197–2207.
- [67] C. A. Tracy and H. Widom, The Pearcey process, *Commun. Math. Phys.* **263** (2006), 381–400.
- [68] H. Widom, On the relation between orthogonal, symplectic and unitary matrix ensembles, *J. Statistical Phys.* **94** (1999), 347–363.

- [69] H. Widom, On the solution of a Painlevé III equation, Math. Phys. Anal. Geom. 3 (2000), 375–384.
- [70] T. T. Wu, B. M. McCoy, C. A. Tracy and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, *Phys. Rev.* **B13** (1976), 316–374.