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Abstract

We study the crystal structure on categories of graded modules over algebras which
categorify the negative half of the quantum Kac-Moody algebra associated to a symmetriz-
able Cartan data. We identify this crystal with Kashiwara’s crystal for the corresponding
negative half of the quantum Kac-Moody algebra. As a consequence, we show the sim-
ple graded modules for certain cyclotomic quotients carry the structure of highest weight
crystals, and hence compute the rank of the corresponding Grothendieck group.
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1 Introduction

In [KL09, KL08a] a family R of graded algebras was introduced that categorifies the inte-
gral form AU−

q := AU−
q (g) of the negative half of the quantum enveloping algebra Uq(g)

associated to a symmetrizable Kac-Moody algebra g. The grading on these algebras equips
the Grothendieck group K0(R−pmod) of the category of finitely-generated graded projec-
tive R-modules with the structure of a Z[q, q−1]-module, where qr[M ] := [M{r}], and M{r}
denotes a graded module M with its grading shifted up by r. Natural parabolic induction
and restriction functors give K0(R−pmod) the structure of a (twisted) Z[q, q−1]-bialgebra.
In [KL09, KL08a] an explicit isomorphism of twisted bialgebras was given between AU−

q and
K0(R−pmod).

Several conjectures were also made in [KL09, KL08a]. One conjecture that remains un-
solved is the so called cyclotomic quotient conjecture which suggests a close connection be-
tween certain finite dimensional quotients of the algebras R and the integrable representation
theory of quantum Kac-Moody algebras. While this conjecture has been proven in finite
and affine type A by Brundan and Kleshchev [BK09], very little is known in the case of an
arbitrary symmetrizable Cartan datum. Here we show that simple graded modules for these
cyclotomic quotients carry the structure of highest weight crystals. Hence we identify the
rank of the corresponding Grothendieck group with the rank of the integral highest weight
representation, thereby laying to rest a major component of the cyclotomic conjecture.

To explain these results more precisely, suppose we are given a symmetrizable Cartan
datum where I is the index set of simple roots. The algebras R have a diagrammatic de-
scription and are determined by the symmetrizable Cartan datum of g together with some
extra parameters. In the literature these algebras have been called Khovanov-Lauda algebras,
Khovanov-Lauda-Rouquier algebras, quiver Hecke algebras, and quiver nilHecke algebras.

For each ν ∈ N[I] the block R(ν) of the algebra R admits a finite dimensional quotient
RΛ(ν) associated to a highest weight Λ, called a cyclotomic quotient. These quotients were
conjectured in [KL09, KL08a] to categorify the ν-weight space of the integral version of the
irreducible representation V (Λ) of highest weight Λ for Uq(g), in the sense that there should
be an isomorphism

V (Λ)C ⊕
ν∈N[I]K0(R

Λ(ν)−pmod)C,∼=
//

where K0(R
Λ(ν)−pmod)C denotes the complexified Grothendieck group of the category of

graded finitely generated projective RΛ(ν)-modules. A special case of this conjecture was
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INTRODUCTION 3

proven in type A by Brundan and Stroppel [BS08]. The more general conjecture was proven
in finite and affine type A by Brundan and Kleshchev [BK08, BK09]. They constructed an
isomorphism

RΛ(ν) HΛ
ν

∼=
// ,

where HΛ
ν is a block of the cyclotomic affine Hecke algebra HΛ

m as defined in [AK94, BM93,
Che87]. This isomorphism induces a new grading on blocks of the cyclotomic affine Hecke
algebra. This has led to the definition of graded Specht modules for cyclotomic Hecke alge-
bras [BKW09], the construction of a homogeneous cellular basis for the cyclotomic quotients
RΛ(ν) in type A [HM09], the introduction of gradings in the study of q-Schur algebras [Ari09],
and an extension of the generalized LLT conjecture to the graded setting [BK09].

Ariki’s categorification theorem gave a geometric proof that the sum of complexified
Grothendieck groups of cyclotomic Hecke algebras HΛ

m at an Nth root of unity over C,
taken over all m ≥ 0, was isomorphic to the highest weight representation V (Λ) of U(ŝlN )
[Ari96], see [Ari99, Ari02, AM00, Mat99] and also [Gro94, LLT96]. Grojnowski gave a purely
algebraic proof of this result, parameterizing the simple HΛ

m-modules in terms of crystal data
of highest weight crystals [Gro99].

Brundan and Kleshchev’s proof of the cyclotomic quotient conjecture in type A utilized
the isomorphism between the graded algebras RΛ(ν) and blocks of the cyclotomic affine
Hecke algebra, allowing them to extend Grojnowski’s crystal theoretic classification of simples
of the ungraded affine Hecke algebra to the graded setting. By keeping careful track of
the gradings, Brundan and Kleshchev were able to extend Ariki’s theorem to the graded
setting, thereby proving the cyclotomic quotient conjecture in type A, as well as identifying
the indecomposable projective modules for RΛ

ν with the Kashiwara-Lusztig canonical basis
for V (Λ). Indeed, the algebras RΛ(ν) were originally called cyclotomic quotients in [KL09]
because they were expected to be graded extensions of the cyclotomic Hecke algebras for all
types.

The study of cyclotomic quotients outside of type A has been hindered by the lack of
explicit bases for the algebras RΛ(ν). Some explicit calculations of cyclotomic quotients
RΛ(ν) were made for level one and two representations [RTG], but it is not clear how to
extend these results to all representations. The algebras R(ν) have a PBW basis that aid in
computations. No such basis is known for the algebras RΛ(ν).

In the symmetric case the algebras R are related to Lusztig’s geometric categorification
using perverse sheaves. Following Ringel [Rin90], Lusztig gave a geometric interpretation of
U−
q = U−

q (g) [Lus90a, Lus90b, Lus91], see also [Lus93, Lus98]. This gave rise to a canonical
basis for U−

q . Kashiwara defined a crystal basis of U−
q for certain simple Lie algebras [Kas90b]

and later proved its existence for all symmetrizable Kac-Moody algebras [Kas91, Kas90a]; the
affine type A case was proven by Misra and Miwa [MM90]. Kashiwara also constructed the
so-called global crystal basis of U−

q [Kas91, Kas93, Kas90a]. Grojnowski and Lusztig [GL93]
proved that the global crystal basis and the canonical basis are the same. The Kashiwara-
Lusztig canonical basis of U−

q is a basis with remarkable positivity and integrality properties,
and gives rise to bases in all irreducible integrable Uq(g)-representations.

Varagnolo and Vasserot constructed an isomorphism between Ext-algebras of simple per-
verse sheaves on Lusztig quiver varieties [VV09] and the algebras R(ν) is the symmetric case,
proving a conjecture from [KL09]. Consequently, one can identify indecomposable projec-
tives for the algebras R with simple perverse sheaves on Lusztig quiver varieties and the

3
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Kashiwara-Lusztig canonical basis for AU−
q . Rouquier has also announced a similar result.

One should be able to deduce a classification of graded simple modules for the algebras
RΛ(ν) in the symmetric case using results of [KL09] and [VV09] together with Kashiwara
and Saito’s geometric construction of crystals [KS97], but the details of this argument have
not appeared. We expect that cyclotomic quotients RΛ(ν) should also have a geometric
interpretation in terms of Nakajima quiver varieties [Nak94].

In this paper we determine the size of the Grothendieck group for arbitrary cyclotomic
quotients RΛ(ν) associated to a symmetrizable Cartan datum. Rather than working geo-
metrically, our methods are based strongly on the algebraic treatment of the affine Hecke
algebra and its cyclotomic quotients introduced by Grojnowski [Gro99]. This approach ex-
tended Kleshchev’s results for the symmetric groups [Kle95, Kle96, Kle97], and utilizes earlier
results of Vazirani [Vaz99, Vaz02] and Grojnowski-Vazirani [GV01]. Kleshchev’s book con-
tains an excellent exposition of Grojnowski’s approach in the context of degenerate affine
Hecke algebras [Kle05]. The idea is to introduce a crystal structure on categories of modules,
interpreting Kashiwara operators module theoretically. To apply this approach to the study
of algebras R(ν), rather than working with projective modules, we work over an algebraically
closed field and utilize a Z[q, q−1]-bilinear pairing

(, ) : K0(R(ν)−pmod) ×G0(R(ν)−fmod) → Z[q, q−1], (1.1)

where G0(R(ν)−fmod) denotes the Grothendieck group of the category of finite dimensional
graded R(ν)-modules. This allows us to focus our attention on the graded simple modules for
R(ν) and its cyclotomic quotients RΛ(ν), rather than the indecomposable projective modules.

We study the crystal graph structure whose nodes are the graded simple R(ν) modules
(up to grading shift) taken over all ν ∈ N[I]. By identifying this crystal graph with the
Kashiwara crystal B(∞) associated to U−

q we are able to define a crystal structure on the

set of graded simple modules for the cyclotomic quotients RΛ(ν) and show that it is the
crystal graph B(Λ). This allows us to view cyclotomic quotients of the algebras R(ν) as a
categorification of the integrable highest weight representation V (Λ) of U+

q , proving part of
the cyclotomic quotient conjecture from [KL09] in the general setting. This does not prove
the entire cyclotomic quotient conjecture as our isomorphism is only an isomorphism of U+

q -
modules, not of Uq(g)-modules. Furthermore, one would also like to see an identification of
the simple RΛ(ν)-modules with the dual basis of the Kashiwara-Lusztig canonical basis, or
dual canonical basis, for V (Λ).

All of the results in this paper should extend to Rouquier’s version of algebras R(ν) associ-
ated to Hermitian matrices, at least for those Hermitian matrices leading to graded algebras.
We also believe that these results will fit naturally within Khovanov and Lauda’s framework
of categorified quantum groups [Lau08, KL08b], as well as Rouquier’s 2-representations of
2-Kac-Moody algebras [CR08, Rou08].

We have recently received a preprint from Kleshchev and Ram [KR09] where they describe
all irreducible representations of algebras R(ν) in finite type from Lyndon words. Their work
generalizes the fundamental work of [BZ77, Zel80] who parameterized and constructed the
simple modules for the affine Hecke algebra in type A with generic parameter in terms of
U−(gl∞).

We end the introduction with a brief outline of the article, highlighting other results to
be found herein. In Section 1.1 we review the definition and key properties of the algebras
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THE ALGEBRAS R(ν) 5

R(ν). In Section 2 we study various functors defined on the categories of graded modules over
the algebras R(ν). In particular, Section 2.3 introduces the co-induction functor and proves
several key results. In Section 3 we look at the morphisms induced by these functors on the
Grothendieck rings.

Section 4 contains a brief review of crystal theory. Of key importance is the result of
Kashiwara and Saito [KS97], recalled in Section 4.2, characterizing the crystal B(∞). In
Section 5 we introduce crystal structures on the category of modules over algebras R(ν) and
their cyclotomic quotients RΛ(ν). After a detailed study of this crystal data in Section 6,
these crystals are identified as the crystals B(∞) and B(Λ) in Section 7.

Acknowledgments: We thank Ian Grojnowski for suggesting this project and for many helpful
discussions. We also thank Mikhail Khovanov for helpful discussions and comments. The
first author was partially supported by the NSF grant DMS-0739392 and DMS-0855713. The
second author was partially supported by the NSA grant #H982300910076, and would like
acknowledge Columbia’s RTG grant DMS-0739392 for supporting her visits to Columbia.

1.1 The algebras R(ν)

1.1.1 Cartan datum

Assume we are given a Cartan data

P - a free Z-module (called the weight lattice)

I - an index set for simple roots

αi ∈ P for i ∈ I called simple roots

hi ∈ P∨ = HomZ(P,Z) called simple coroots

(, ) : P × P → Z a bilinear form

where we write 〈·, ·〉 : P∨ × P → Z for the canonical pairing. This data is required to satisfy
the following axioms

(αi, αi) ∈ 2Z>0 for any i ∈ I (1.2)

〈hi, λ〉 = 2
(αi, λ)

(αi, αi)
for i ∈ I and λ ∈ P (1.3)

(αi, αj) ≤ 0 for i, j ∈ I with i 6= j. (1.4)

Hence {〈hi, αj〉}i,j∈I is a symmetrizable generalized Cartan matrix. In what follows we write

aij = −〈i, j〉 := −〈hi, αj〉 (1.5)

for i, j ∈ I.
Let Λi ∈ P

+ be the fundamental weights defined by 〈hj ,Λi〉 = δij .

1.1.2 The algebra U−
q

Associated to a Cartan datum one can define an algebra U−
q , the quantum deformation

of the universal enveloping algebra of the “lower-triangular” subalgebra of a symmetrizable
Kac-Moody algebra g. Our discussion here follows Lusztig [Lus93].

5



THE ALGEBRAS R(ν) 6

Let qi = q
(αi,αi)

2 , [a]i = qa−1
i + qa−3

i + · · ·+ q1−ai , [a]i! = [a]i[a−1]i . . . [1]i. Denote by ′f the
free associative algebra over Q(q) with generators θi, i ∈ I, and introduce q-divided powers

θ
(a)
i = θai /[a]i!. The algebra ′f is N[I]-graded, with θi in degree i. The tensor square ′f ⊗ ′f

is an associative algebra with twisted multiplication

(x1 ⊗ x2)(x
′
1 ⊗ x′2) = q−|x2|·|x′1|x1x

′
1 ⊗ x2x

′
2

for homogeneous x1, x2, x
′
1, x

′
2. The assignment r(θi) = θi ⊗ 1 + 1 ⊗ θi extends to a unique

algebra homomorphism r : ′f−→′f ⊗ ′f .
Algebra ′f carries a Q(q)-bilinear form determined by the conditions

• (1, 1) = 1,

• (θi, θj) = δi,j(1 − q2i )
−1 for i, j ∈ I,

• (x, yy′) = (r(x), y ⊗ y′) for x, y, y′ ∈ ′f ,

• (xx′, y) = (x⊗ x′, r(y)) for x, x′, y ∈ ′f .

The bilinear form (, ) is symmetric. Its radical I is a two-sided ideal of ′f . The form (, )
descends to a nondegenerate form on the associative Q(q)-algebra f = ′f/I.

Theorem 1.1. The ideal I is generated by the elements

∑

r+s=aij+1

(−1)rθ
(r)
i θjθ

(s)
i

over all i, j ∈ I, i 6= j.

For a general Cartan datum, the only known proof of this theorem requires Lusztig’s
geometric realization of f via perverse sheaves. This proof is given in his book [Lus93, Theo-
rem 33.1.3]. Less sophisticated proofs exist when the Cartan datum is finite.

Remark 1.2. Theorem 1.1 implies that f is the quotient of ′f by the quantum Serre relations

∑

r+s=aij+1

(−1)rθ
(r)
i θjθ

(s)
i = 0. (1.6)

Furthermore, since f is a quotient of a free algebra, it also implies that there are no smaller
relations in f . In particular, (1.6) can never hold for r + s = c+ 1 with c < aij.

Let Uq(g) denote the quantum enveloping algebra of a symmetrizable Kac-Moody algebra
g. There is a pair of injective algebra homomorphisms f → Uq(g), which sends θi 7→ ei,
respectively θi 7→ fi. We denote the images of these homomorphisms as U+

q (g) and U−
q (g).

Let A = Z[q, q−1]. The integral form of the algebra f , denoted Af , is the Z[q, q−1]-subalgebra

of f generated by the divided powers θ
(a)
i , over all i ∈ I and a ∈ N. We write AU−

q for the
corresponding integral form of the negative half of the quantum enveloping algebra Uq(g).
The algebra Af admits a decomposition into weight spaces Af =

⊕
ν∈N[I] Af(ν).

In the next section we introduce graded algebras R(ν) whose Grothendieck ring was shown
by Khovanov and Lauda to be isomorphic to Af .

6



THE ALGEBRAS R(ν) 7

1.1.3 The definition of the algebra R(ν)

Recall the definition from [KL09, KL08a] of the algebra R associated to a Cartan datum. Let k

be an algebraically closed field (of arbitrary characteristic). The algebra R is defined by finite
k-linear combinations of braid–like diagrams in the plane, where each strand is coloured by a
vertex i ∈ I. Strands can intersect and can carry dots; however, triple intersections are not
allowed. Diagrams are considered up to planar isotopy that do not change the combinatorial
type of the diagram. We recall the local relations

i j

=





0 if i = j,

i j

if (αi, αj) = 0,

i

•

j

aij
+

j

•

i

aji
if (αi, αj) 6= 0.

(1.7)

•

i j

= •
i j

•

i j

= •
i j

for i 6= j (1.8)

•

i i

− •
i i

=

i i

(1.9)

•
i i

−
•

i i

=

i i

(1.10)

i j k

=

i j k

unless i = k and (αi, αj) 6= 0 (1.11)

i j i

−

i j i

=

aij−1∑

a=0

i

• a

j i

• aij−1−a
if (αi, αj) 6= 0

(1.12)

Multiplication is given by concatenation of diagrams when the endpoints have the same
colours, and is defined to be zero otherwise. The algebra is graded where generators are

7



THE ALGEBRAS R(ν) 8

defined to have degrees

deg




i

•


 = (αi, αi), deg



i j


 = −(αi, αj). (1.13)

For ν =
∑

i∈I νi · i ∈ N[I] let Seq(ν) be the set of all sequences of vertices i = i1 . . . im
where ir ∈ I for each r and vertex i appears νi times in the sequence. The length m of the
sequence is equal to |ν| =

∑
i∈I νi. It is sometimes convenient to identify ν =

∑
i∈I νi ·i ∈ N[I]

as ν ∈
∑

i∈I νiαi ∈ Q+ = ⊕i∈IZ≥0αi. The algebra R has a decomposition

R =
⊕

ν∈N[I]

R(ν) (1.14)

where R(ν) is the subalgebra generated by diagrams that contain νi strands coloured i.
To convert from graphical to algebraic notation write

1i :=

i1

. . .

ik

. . .

im

(1.15)

for i = i1i2 . . . im ∈ Seq(ν). Elements 1i are idempotents in the ring R(ν) and when I is
finite, 1ν ∈ R(ν) is given by 1ν =

∑
i∈Seq(ν) 1i . For 1 ≤ r ≤ m we denote

xr,i :=

i1

. . . •

ir

. . .

im

(1.16)

with the dot positioned on the r-th strand counting from the left, and

ψr,i :=

i1

. . .

ir ir+1

. . .

im

(1.17)

The algebra R(ν) decomposes as a vector space

R(ν) =
⊕

i ,j∈Seq(ν)

1jR(ν)1i (1.18)

where 1jR(ν)1i is the k-vector space of all linear combinations of diagrams with sequence i

at the bottom and sequence j at the top modulo the above relations.
The symmetric group Sm acts on Seq(ν), m = |ν| by permutations. Transposition sr =

(r, r + 1) switches entries ir, ir+1 of i . Thus, ψr,i ∈ 1sr(i)R(ν)1i . For each w ∈ Sm fix
once and for all reduced expression ŵ = sw1sw2 . . . swt. Given w ∈ Sn we convert its reduced
expression ŵ into an element of 1w(i)R(ν)1i denoted ψ bw,i = ψw1,sw2 ···swt (i )

· · ·ψwt−1,swt (i)
ψwt,i .

To simplify notation we introduce elements

xr :=
∑

i∈Seq(ν)

xr,i , ψ bw =
∑

i∈Seq(ν)

ψ bw,i (1.19)

so that xr1i = 1ixr = xr,i and ψ bw1i = 1w(i)ψ bw = ψ bw,i . This allows us to write the definition
of the algebra R(ν) as follows:

8



THE ALGEBRAS R(ν) 9

For ν ∈ N[I] with |ν| = m, let R(ν) denote the associative, k-algebra on generators

1i for i ∈ Seq(ν) (1.20)

xr for 1 ≤ r ≤ m (1.21)

ψr for 1 ≤ r ≤ m− 1 (1.22)

subject to the following relations for i , j ∈ Seq(ν):

1i1j = δi ,j 1i , (1.23)

xr1i = 1ixr, (1.24)

ψr1i = 1sr(i)ψr, (1.25)

xrxt = xtxr, (1.26)

ψrψt = ψtψr if |r − t| > 1, (1.27)

ψrψr1i =





0 if ir = ir+1

1i if (αir , αir+1) = 0(
x
−〈ir ,ir+1〉
r + x

−〈ir+1,ir〉
r+1

)
1i if (αir , αir+1) 6= 0 and ir 6= ir+1,

(1.28)

(ψrψr+1ψr − ψr+1ψrψr+1) 1i =

=





∑−〈ir ,ir+1〉−1

t=0

xtrx
−〈ir ,ir+1〉−1−t
r+2 1i if ir = ir+2 and (αir , αir+1) 6= 0

0 otherwise,
(1.29)

(
ψrxt − xsr(t)ψr

)
1i =





1i if t = r and ir = ir+1

−1i if t = r + 1 and ir = ir+1

0 otherwise.
(1.30)

Remark 1.3. For i , j ∈ Seq(ν) let jSi be the subset of Sm consisting of permutations w
that take i to j via the standard action of permutations on sequences, defined above. Denote
the subset {ŵ}w∈jSi

of 1jR1i by j Ŝi . It was shown in [KL09, KL08a] that the vector space
1jR(ν)1i has a basis consisting of elements of the form

{ψ bw · xa11 · · · xam
m 1i | ŵ ∈ j Ŝi , ar ∈ Z≥0}. (1.31)

Rouquier has defined a generalization of the algebras R, where the relations depend on
Hermitian matrices [Rou08].

1.1.4 The involution σ

Flipping a diagram about a vertical axis and simultaneously taking

i i

to −

i i

(in other words, multiplying the diagram by (−1)s where s is the number of times equally
labelled strands intersect) is an involution σ = σν of R(ν). Let w0 denote the longest element

9



FUNCTORS ON THE MODULAR CATEGORY 10

of S|ν|. We can specify σ algebraically as follows:

σ : R(ν) → R(ν) (1.32)

1i 7→ 1w0(i )

xr 7→ x|ν|+1−r

ψr 7→ ψ|ν|−r.

Given an R(ν)-module M , we let σ∗M denote the R(ν)-module whose underlying set is M
but with twisted action r · u = σ(r)u.

1.1.5 Characters

Define the character ch(M) of a graded finitely-generated R(ν)-module M as

ch(M) =
∑

i∈Seq(ν)

gdim(1iM) · i .

The character is an element of the free Z((q))-module with the basis Seq(ν); when M is finite
dimensional, ch(M) is an element of the free Z[q, q−1]-module with basis Seq(ν).

2 Functors on the modular category

2.1 Categories of graded modules

We form the direct sum
R =

⊕

ν∈N[I]

R(ν).

This is a non-unital ring. Let R(ν)−mod be the category of finitely-generated graded left
R(ν)-modules, R(ν)−fmod be the category of finite dimensional graded R(ν)-modules, and
R(ν)−pmod be the category of projective objects in R(ν)−mod. The morphisms in each of
these three categories are grading-preserving module homomorphisms.

By various categories of R-modules we will mean direct sums of corresponding categories
of R(ν)-modules:

R−mod
def
=

⊕

ν∈N[I]

R(ν)−mod,

R−fmod
def
=

⊕

ν∈N[I]

R(ν)−fmod,

R−pmod
def
=

⊕

ν∈N[I]

R(ν)−pmod.

By a simple R(ν)-module we mean a simple object in the category R(ν)−mod. In this paper
we will be primarily concerned with category of finite dimensional R(ν)-modules. Note that
this category contains all of the simples. Henceforth, by an R(ν)-module we will mean a finite
dimensional graded R(ν)-module, unless we say otherwise. We will denote the zero module
by 0.

10
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For any two R(ν)-modules M , N denote by Hom(M,N) or HomR(ν)(M,N) the k-vector
space of degree preserving homomorphisms, and by Hom(M{r}, N) = Hom(M,N{−r}) the
space of homogeneous homomorphisms of degree r. Here N{r} denotes N with the grading
shifted up by r, so that ch(N{r}) = qrch(N). Then we write

HOM(M,N) :=
⊕

r∈ZHom(M,N{r}), (2.1)

for the Z-graded k-vector space of all R(ν)-module morphisms.
Though it is essential to work with the degree preserving morphisms to get the Z[q, q−1]-

module structure for the categorification theorems in [KL09, KL08a], for our purposes it
will often be convenient to work with degree homogenous morphisms, but not necessarily
degree preserving, in the various categories of graded modules introduced above. Since any
homogenous morphism can be interpreted as a degree preserving morphism by shifting the
grading on the source or target, all results stated using homogeneous morphisms can be recast
as degree zero morphisms for an appropriate shift on the source or target.

2.2 Induction and Restriction functors

There is an inclusion of graded algebras

ιν,ν′ : R(ν) ⊗R(ν ′) →֒ R(ν + ν ′)

given graphically by putting the diagrams next to each other. It takes the idempotent 1i ⊗1j

to 1i j and the unit element 1ν⊗1ν′ to an idempotent of R(ν+ν ′) denoted 1ν,ν′ . This inclusion
gives rise to restriction and induction functors denoted by Resν,ν′ and Indν,ν′ , respectively.
When it is clear from the context, or when no confusion is likely to arise, we often simplify
notation and write Res and Ind.

We can also consider these notions for any tuple ν = (ν(1), ν(2), . . . , ν(k)) and sometimes

refer to the image R(ν)
def
= Im ιν ⊆ R(ν(1) + · · · + ν(k)) as a parabolic subalgebra. This

subalgebra has identity 1ν . Let µ = ν(1) + · · · + ν(k), m =
∑

r |ν
(r)|, and P = Pν be the

composition (|ν(1)|, . . . , |ν(k)|) of m so that SP is the corresponding parabolic subgroup of
Sm. It follows from Remark 1.3 that R(µ)1ν is a free right R(ν)-module with basis {ψ bw1ν |
w ∈ Sm/SP } and 1νR(µ) is a free left R(ν)-module with basis {1νψ bw | w ∈ SP\Sm}. By
abuse of notation we will write Sm/SP to denote the minimal length left coset representatives,
i.e. {w ∈ Sm | ℓ(wv) = ℓ(w) + ℓ(v)∀ v ∈ SP }, and SP \Sm for the minimal length right coset
representatives.

Remark 2.1. It is easy to see that if M is an R(ν)-module with basis U consisting of weight

vectors, then {ψ bw ⊗ u | u ∈ U , w ∈ Sm/SP} is a weight basis of IndνM
def
= R(µ) ⊗R(ν) M

(where for each w we fix just one reduced expression ŵ). Note R(µ)⊗R(ν)M = R(µ)1ν⊗R(ν)M
since ψ bw1ν ⊗ u = ψ bw ⊗ 1νu = ψ bw ⊗ u.

Likewise, coIndM
def
= HOMR(ν)(R(µ),M), which is discussed in detail in Section 2.3 below,

and has basis {fw,u | u ∈ U , w ∈ SP \Sm} where fw,u(hψbv) = hu δw,v for h ∈ R(ν) and v ∈
SP\Sm. Note HomR(ν)(R(µ),M) = HomR(ν)(1νR(µ),M) since for f ∈ HomR(ν)(1νR(µ),M),
t ∈ R(µ), if 1i 6∈ R(ν), i.e. 1ν1i = 0, then

f(1i t) = 1νf(1i t) = f(1ν1i t) = f(0) = 0.

11
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In other words, we can extend the domain of f to R(µ) by setting f to be 0 on 1iR(µ) when
1i 6∈ R(ν). Likewise any f ∈ HomR(ν)(R(µ),M) must be 0 on the above set.

One extremely important property of the functor Indν −
def
= R(µ)⊗R(ν) − is that it is left

adjoint to restriction. In other words, there is a functorial isomorphism

HOMR(µ)(Indν A,B) ∼= HOMR(ν)(A,Resν B) (2.2)

where A, B are finite dimensional R(ν)- and R(µ)-modules, respectively. We refer to this
property as Frobenius reciprocity and use it repeatedly, often for deducing information about
characters.

A shuffle k of a pair of sequences i ∈ Seq(ν), j ∈ Seq(ν ′) is a sequence together with a
choice of subsequence isomorphic to i such that j is the complementary subsequence. Shuffles
of i , j are in a bijection with the minimal length left coset representatives of S|ν| × S|ν′| in
S|ν|+|ν′|. We denote by deg(i , j , k) the degree of the diagram in R(ν+ν ′) naturally associated
to the shuffle, see an example below.

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

k

i j

When the meaning is clear, we will also denote by k the underlying sequence of the shuffle k .
Given two functions f and g on sets Seq(ν) and Seq(ν ′), respectively, with values in some

commutative ring which contains Z[q, q−1], we define their (quantum) shuffle product f ∪∪ g
(see [Lec04] and references therein) as a function on Seq(ν + ν ′) given by

(f ∪∪ g)(k ) =
∑

i ,j

qdeg(i ,j ,k)f(i )g(j ),

the sum is over all ways to represent k as a shuffle of i and j . Given M ∈ R(ν)−mod and
N ∈ R(ν ′)−mod we construct the R(ν) ⊗ R(ν ′)-module denoted by M ⊠ N in the obvious
way. It was shown in [KL09] that

ch(Indν,ν′(M ⊠N)) = ch(M) ∪∪ ch(N).

A similar statement holds for characters of induced R(ν)-modules by the transitivity of
induction. This statement can be seen as a special case of the Mackey formula which describes
a filtration on the restriction of an induced module (from one parabolic to another).

More precisely, in the case of maximal parabolics, the Mackey formula says the graded
(R(ν) ⊗ R(ν ′), R(ν ′′) ⊗ R(ν ′′′))-bimodule 1ν,ν′R1ν′′,ν′′′ has a filtration over all λ ∈ N[I] with
subquotients isomorphic to the graded bimodules
(
1νR1ν−λ,λ⊗1ν′R1ν′+λ−ν′′′,ν′′′−λ

)
⊗R′

(
1ν−λ,ν′′+λ−νR1ν′′ ⊗1λ,ν′′′−λR1ν′′′

)
{(−λ, ν ′ +λ−ν ′′′)},

where R′ = R(ν − λ) ⊗R(λ) ⊗R(ν ′ + λ− ν ′′′) ⊗R(ν ′′′ − λ), the bilinear form ( , ) is defined
in Section 1.1.1, and such that every term above is in N[I]. There is a natural generalization
of this statement to arbitrary parabolic subalgebras.

12
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2.3 Co-induction

In this section, we examine the right adjoint to restriction, the co-induction functor denoted
coInd, and discuss the relationship between Ind and coInd, following the work of [Vaz99].
Using the notation of the previous section, set coIndR(ν) − := HOMR(ν)(R(µ),−) endowed
with the module structure (r⊙ f)(t) = f(tr) for r, t ∈ R(µ), f ∈ coIndR(ν) −. Now there is a
functorial isomorphism

HOMR(µ)(B, coIndν A) ∼= HOMR(ν)(Resν B,A) (2.3)

where A, B are finite dimensional modules.
Just as w0 denotes the longest element of Sm, let wP ∈ SP denote the longest element

of the parabolic subgroup, with notation as above. Let y = wPw0 in the discussion below.
Note that y is a minimal length right coset representative for SP \Sm and corresponds to the
“longest shuffle”.

Observe that for any r such that sr ∈ SP , ℓ(wP srwP ) = 1 = ℓ(w0srw0) and further

ℓ(sry) = 1 + ℓ(y) = ℓ(wP srwP y) = ℓ(yw0srw0)

as in fact
(wP srwP )y = wP srwPwPw0 = wPw0w0srw0 = y(w0srw0).

Set

σν := σν(1) ⊗ σν(2) ⊗ · · · ⊗ σν(k) (2.4)

where σν : R(ν) → R(ν) is the involution defined in Section 1.1.4.
When clear from context, let us just call σ = σµ. Then note, σ(1j ) = 1w0(j ), σ(xr) =

xw0(r), σ(ψr) = ψw0srw0 with similar equations for σν , where Sm acts on Seq(µ) in the usual
fashion w(i1, . . . , im) = (iw−1(1), . . . , iw−1(m)). In what follows, for bookkeeping purposes, we

will write u ∈M , but ū ∈ σ∗M so that the σ-twisted action can be described as rū = σ(r)u.

Theorem 2.2.

1. LetM be a finite dimensionalR(ν)-module. Then Indµν M
∼= σ∗µ(coIndµν (σνM)){deg(y)}.

2. Let A be a finite dimensional R(ν)-module and B a finite dimensional R(η)-module.
Then there is a homogeneous, but not degree-preserving, isomorphism Indν+ην,η A⊠B ∼=
coIndη+νη,ν B ⊠A.

Proof. We first note that (2) follows from a special case of (1). To prove (1), we first construct
a R(ν)-module map

M
F

// Resµν (σ
∗
µ coIndµν (σ

∗
νM)) (2.5)

with deg(F ) = − deg(y) and then the induced map

Indµν M
F

// σ∗µ coIndµν (σ
∗
νM)) (2.6)

also has deg(F) = − deg(y) and surjective as the image of F generates the target over R(µ).
Since the two modules in question have the same dimension, they are isomorphic.

13
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Given u ∈M define fu ∈ HOMR(ν)(R(µ), σ∗νM) by

fu(ψ bw) = ūδw,y (2.7)

where w ∈ SP\Sm ranges over the minimal length right coset representatives, ŵ is a fixed
reduced expression, and y = wPw0. Observe that deg(fu) = deg(u) − deg(y). We extend fu
to an R(ν)-map by declaring fu(hψ bw) = hfu(ψ bw) for h ∈ R(ν) which is viable by Remark 2.1.
Now we define

F : M → σ∗µ coIndµν (σ
∗
νM)

u 7→ fu (2.8)

and check it is an R(ν)-map. This map is homogeneous with deg(F ) = − deg(y). Note that
fu+u′ = fu+ fu′ so it suffices to consider only degree homogeneous weight vectors u ∈M , i.e.
there exists i such that 1i ū = ū (and so 1wP (i )u = u). In this case fu(1jψ bw) = ūδw,yδi ,j , and
this holds regardless of whether 1j ∈ R(ν) by Remark 2.1. In fact, by abuse of notation, we
may write 1j ū = ūδi ,j even when 1j 6∈ R(ν).

We need to show F (hu) = h ⊙ F (u) for h = 1j , h = xr for all r, and h = ψr for r such
that sr ∈ SP . From now on, assume u is a weight vector as above.

Case 1) We evaluate

(1jF (u))(ψ bw) = 1j ⊙ fu(ψ bw) = σµ(1j ) ⊙ fu(ψ bw)

= fu(ψ bw1w0(j )) = fu(1ww0(j )ψ bw)

= ūδw,yδi ,ww0(j ) = ūδw,yδi ,yw0(j )

= ūδw,yδi ,wP (j ) = 1wP (j )ūδw,y

= σν(1j )ūδw,y = 1juδw,y

= f1j u(ψ bw) = F (1ju)(ψ bw) (2.9)

so that 1jF (u) = F (1j u).
Case 2) We compute

(xrF (u))(ψ bw) = (xr ⊙ fu)(ψ bw) = σµ(xr) ⊙ fu(ψ bw)

= fu(ψ bwxw0(r))

= fu(xww0(r)ψ bw + lower terms)

=

{
fu(xwP (r)ψby) if w = y

0 else

=

{
xwP (r)ū if w = y

0 else

=

{
xru if w = y
0 else

= fxru(ψ bw) = F (xru)(ψ bw) (2.10)

so that F (xru) = xrF (u) for any r.
Note that with respect to ψ bw, by lower terms we mean elements of {hψbv | h ∈ R(ν), ℓ(v) <

ℓ(w)}.

14
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Case 3) Let r be such that sr ∈ SP . Recall that then wP srwP ∈ SP as well. We compute

ψrF (u)(ψ bw) = (ψr ⊙ fu)(ψ bw)

= fu(ψ bwσµ(ψr)) = fu(ψ bwψw0srw0)

=

{
fu(ψwP srwP

ψby + lower terms) if w = y

fu(lower terms) if w 6= y

=

{
ψwP srwP

fu(ψby) if w = y
0 else

=

{
σν(ψr)ū if w = y

0 else

=

{
ψru if w = y
0 else

= fψru(ψ bw)

= F (ψru)(ψ bw), (2.11)

so that ψrF (u) = F (ψru).
Thus, F is indeed an R(ν)-map. Note the image of F contains all of the fu as u ranges

over a weight basis of M . Hence the image of F : Indµν M → σ∗µ coIndµν (σ
∗
νM) contains all of

the h⊙ fu for h ∈ R(µ).
We shall argue this contains a basis of σ∗µ coIndµν σ

∗
νM which will show that F is surjective.

Recall from Remark 2.1 that σ∗µ coIndµν (σ
∗
νM) has a basis of “bump functions” of the form

fw,u and in this notation fu = fy,u. As in [Vaz99], we can show the ψbv ⊙ fy,u for appropriate
v are triangular with respect to the {fw,u′} so contain a basis. Since the dimensions of the
induced and coinduced modules are the same, F is in fact an isomorphism.

2.4 Simple R(mi)-modules

Simple modules for the algebra R(mi)-modules play a key role in this paper. There are several
constructions of these modules.

For example, let i = im and consider the graded algebra k[x1,i , . . . , xm,i ] with deg(xt,i ) =
(αi, αi). Up to isomorphism and grading shift, for each r ∈ Z, there is a unique graded
irreducible module L(im){r} for the ring R(mi) given as the quotient of k[x1,i , . . . , xm,i ] by
the ideal of symmetric polynomials, see [KL09]. This module can alternatively be described as
the induced module from the trivial R′-module, where R′ is the subalgebra of R(mi) spanned
by ψ1,i , . . . , ψm−1,i and symmetric polynomials in k[x1,i , . . . , xm,i ].

Furthermore, this irreducible module L(im){r} is isomorphic, by a homogeneous but not
degree preserving isomorphism, to the module induced from the one-dimensional graded mod-
ule L = L(i) ⊠ · · ·⊠L(i) over k[x1,i , . . . , xm,i ] on which x1,i , . . . , xm,i all act trivially. In this
paper we fix the grading shift on this unique simple module L(im){r} so that

ch(L(im)) = [m]!ii
m. (2.12)

In [Lau09, Proposition 2.8], Lauda shows not only that for any u ∈ L(im), 1 ≤ r ≤ m,
and k ≥ m that xkru = 0, but also that there exists ũ ∈ L(im) such that xm−1

r ũ 6= 0 for all r.
See the third statement in Section 2.5.1 for some of the important properties of L(im),

such as its behaviour under the induction and restriction functors.
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2.5 Refining the restriction functor

For M in R(ν)−mod and i ∈ I let

∆iM = (1ν−i ⊗ 1i)M = Resν−i,iM,

and, more generally,
∆inM = (1ν−ni ⊗ 1ni)M = Resν−ni,niM.

We view ∆in as a functor into the category R(ν−ni)⊗R(ni)−mod. By Frobenius reciprocity,
there are functorial isomorphisms

HOMR(ν)(Indν−ni,niN ⊠ L(in),M) ∼= HOMR(ν−ni)⊗R(ni)(N ⊠ L(in),∆inM), (2.13)

for M as above and N ∈ R(ν − ni)−mod.
Define

ei := Resν−i,iν−i ◦∆i : R(ν)−mod → R(ν − i)−mod (2.14)

and for M an irreducible R(ν)-module, set

ẽiM := soc eiM, (2.15)

f̃iM := cosoc Indν+iν,i M ⊠ L(i), (2.16)

εi(M) := max{n ≥ 0 | ẽi
nM 6= 0}. (2.17)

We also define their so-called σ-symmetric versions, which are indicated with a ∨. Note that
σ∗(∆i(σ

∗M)) = Resi,ν−iM . Set

e∨i := Resi,ν−iν−i ◦Resi,ν−i : R(ν)−mod → R(ν − i)−mod, (2.18)

ẽi
∨M := σ∗(ẽi(σ

∗M)) = soc e∨i M, (2.19)

f̃i
∨
M := σ∗(f̃i(σ

∗M)) = cosoc Indν+ii,ν L(i) ⊠M, (2.20)

ε∨i (M) := εi(σ
∗M) = max{m ≥ 0 | (ẽi

∨)mM 6= 0}. (2.21)

Observe that the functors ei and e∨i are exact. It is a theorem of [KL09] that ifM is irreducible,

so are f̃iM and ẽiM (so long as the latter is nonzero), and likewise for f̃i
∨
M and ẽi

∨M . This
is stated below along with other key properties.

2.5.1 Properties of the functors ẽi and f̃i on simple modules

In this section we give a long list of results that were proved in [KL09], which extend to the
symmetrizable case by the results in [KL08a], about simple R(ν)-modules and their behaviour
under induction and restriction. We will use them freely throughout the paper.

1.
ch(∆inM) =

∑

j∈Seq(ν−ni)

ch(M, j in) · j ,

where we view ∆inM as a module over the subalgebra R(ν − ni) of R(ν − ni)⊗R(ni).

2. Let N ∈ R(ν)−mod be irreducible and M = Indν,niN ⊠ L(in). Let ε = εi(N).

16
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(a) ∆iε+nM ∼= ẽi
εN ⊠ L(iε+n).

(b) cosoc M is irreducible, and up to grading shift cosoc M ∼= f̃i
n
N , ∆iε+n f̃i

n
N ∼=

ẽi
εN ⊠ L(iε+n), and εi(f̃i

n
N) = ε+ n.

(c) All other composition factors L of M have εi(L) < ε+ n.

(d) f̃i
n
N occurs with multiplicity one as a composition factor of M .

3. Let µ = (iµ1 , · · · , iµr ) with
∑r

k=1 µk = n.

(a) The module L(in) over the algebra R(ni) is the only graded irreducible module,
up to isomorphism and grading shift.

(b) All composition factors of Resµ L(in) are isomorphic to L(iµ1) ⊠ · · · ⊠ L(iµr ), up
to grading shifts, and soc (Resµ L(in)) is irreducible.

(c) ẽiL(in) ∼= L(in−1), up to a grading shift.

4. Let M ∈ R(ν)−mod be irreducible with εi(M) > 0. Then ẽiM = soc (eiM) is irre-
ducible and εi(ẽiM) = εi(M)−1. Socles of eiM are pairwise nonisomorphic for different
i ∈ I.

In the statements below, isomorphisms of simple modules are allowed to be homogeneous
(not necessarily degree-preserving).

5. For irreducible M ∈ R(ν)−mod let m = εi(M). Then the socle of emi M is isomorphic

to ẽmi M
⊕[m]!i .

6. For irreducible modules M ∈ R(ν)−mod and N ∈ R(ν + i)−mod we have f̃iM ∼= N if
and only if ẽiN ∼= M .

7. Let M,N ∈ R(ν)−mod be irreducible. Then f̃iM ∼= f̃iN if and only if M ∼= N .
Assuming εi(M), εi(N) > 0, ẽiM ∼= ẽiN if and only if M ∼= N .

2.6 The algebras RΛ(ν)

For Λ =
∑

i∈I λiΛi ∈ P+ consider the two-sided ideal J Λ
ν of R(ν) generated by elements x

λi1
1,i

over all sequences i ∈ Seq(ν). We sometimes write J Λ
ν = J Λ when no confusion is likely to

arise. Define
RΛ(ν) := R(ν)/J Λ

ν (2.22)

By analogy with the Ariki-Koike cyclotomic quotient of the affine Hecke algebra [AK94] (see
also [Ari02]) this algebra is called the cyclotomic quotient at weight Λ of R(ν). As above we
form the non-unital ring

RΛ =
⊕

ν∈N[I]

RΛ(ν). (2.23)

Proposition 2.3.

1. For all i ∈ Seq(ν) and any Λ ∈ P+ the elements xr,i are nilpotent for all 1 ≤ r ≤ |ν|.

2. The algebra RΛ(ν) is finite dimensional.
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Proof. The proof of the first claim is by induction on the length of the sequence i . The base
case is immediate from the definition (2.22) of RΛ(ν). For the induction step we assume the
claim holds for all sequences i of length of m− 1 and prove the result for sequences of length
m. For j ∈ I write ij for the concatenated sequence of length m obtained by adding j to the
end of i . Restricting Rij → R1i ⊗ R1j implies xr,ij is nilpotent for all 1 ≤ r < m. Thus it
suffices to prove that xm,ij is nilpotent.

Let i = i1 . . . im−1 and assume for simplicity of notation that im−1 = i for some i ∈ I. If
(αi, αj) < 0, then by the inductive hypothesis for some N,N ′ > 0 we have xNm−1,i = 0 and

xN
′

m−1,i ′
= 0, where i ′ = i1 . . . im−3im−2j, so that adding j to the end of the sequence i we

have xNm−1,ij = 0, and adding an i to the end of the sequence i ′ we have xN
′

m−1,sm−1(ij) = 0.

Since xNm−1,i = 0 we certainly have x
Naij

m−1,i = 0. Then x
Naji+N ′

m,ij = 0, since by (1.7) (working
locally around the last two strands) we have

j

•

i

Naji+N
′

=

i j

•(N−1)aji+N
′

−

i

•

j

•aij (N−1)aji+N
′

(2.24)

The first diagram on the right-hand-side is zero since we can slide the dots using (1.8) and
then use our assumption xN

′

m−1,sm−1(ij) = 0. Then either N = 1 and the second diagram is

also zero by assumption, or N > 1 and we can iterate N -times the application of (1.7) to
show

j

•

i

Naji+N ′

=

i j

• N ′•(N−1)aij

− (−1)N

i

•

j

•Naij N ′

(2.25)

Sliding the N ′ dots on the first diagram on the right-hand-side using (1.8), the entire right
side is zero by our assumptions on N , N ′.

If (αi, αj) = 0 then by the inductive hypothesis there exist an N with xN
m,sm−1(i

′)
= 0 for

i ′ = i1 . . . im−3im−2j, so that (1.7) and (1.8) imply xm,ij = ψm−1x
N
m−1ψm−11ij = 0. If i = j

then an identical proof as in [BK08, Lemma 2.1] or [Lau09, Proposition 2.9 (i)] shows that
xm,ij is nilpotent. Therefore, xr,ij is nilpotent for all 1 ≤ r ≤ m and we have proven the
induction step.

The second claim in the Proposition follows from the first since RΛ(ν) is spanned by
{ψ bw,ix

n1
1,i · · · x

nm

m,i | w ∈ Sm, n1, . . . , nm ≥ 0} and by the first claim only finitely many of the
xnr

r,i are nonzero for each 1 ≤ r ≤ m.

In terms of the graphical calculus the cyclotomic quotient RΛ(ν) is the quotient of R(ν)
by the ideal generated by

i1

•λi1

i2

· · ·

im

= 0 (2.26)

over all sequences i in Seq(ν).

18



UNGRADED MODULES 19

For bookkeeping purposes we will denote RΛ(ν) modules by M but R(ν)-modules by M .
We introduce functors

inflΛ : RΛ(ν)−mod → R(ν)−fmod prΛ : R(ν)−fmod → RΛ(ν)−mod (2.27)

where inflΛ is the inflation along the epimorphism R(ν) → RΛ(ν), so that M = inflΛ M on
the level of sets. If M,N are RΛ(ν)-modules, then

HomRΛ(ν)(M,N ) ∼= HomR(ν)(inflΛ M, inflΛ N ).

Note M is irreducible if and only if inflΛ M is. We define prΛM = M/J ΛM . If M is
irreducible then prΛM is either irreducible or zero. Observe inflΛ is an exact functor and its
left adjoint is prΛ which is only right exact.

A careful study of the modules L(im) yields that for simple modules M , the algebraic
statement J ΛM = 0 is equivalent to the measurement that ε∨i (M) ≤ λi for all i ∈ I, see
[Lau09, Proposition 2.8]. Likewise J ΛM = M if and only if there exists some i ∈ I such that
ε∨i (M) > λi. Hence, given a finite dimensional R(ν)-module M , there exists a Λ ∈ P+ such
that J ΛM = 0, so that we can identify M with the RΛ(ν)-module prΛM . For instance, take
any Λ =

∑
i∈I miλi with mi > dimk M . We deduce the following remark.

Remark 2.4. Let M be a simple R(ν)-module. Then prΛM 6= 0 iff ε∨i (M) ≤ λi for all i ∈ I.

Let M be an irreducible RΛ(ν)-module. As in Section 2.5 define

eΛi M = prΛ ◦ei ◦ inflΛ M : RΛ(ν)−mod → RΛ(ν − i)−mod

ẽi
ΛM = prΛ ◦ẽi ◦ inflΛ M

f̃i
Λ
M = prΛ ◦f̃i ◦ inflΛ M

εΛi (M) = εi(inflΛ M)

Let M ∈ RΛ(ν)−mod and M = inflΛ M. Then prΛM = M. Since J ΛM = 0 then
J ΛeiM = 0 too, so that eΛi M is an R(ν− i)Λ-module with inflΛ(eΛi M) = eiM . In particular,
dimk e

Λ
i M = dimk eiM . If furthermore M is irreducible, then ẽi

ΛM = soc eΛi M.

2.7 Ungraded modules

Write R−mod, R−fmod, and R−pmod for the corresponding categories of ungraded modules.
There are forgetful functors

R−mod → R−mod, R−fmod → R−fmod, R−pmod → R−pmod (2.28)

given by sending a module M to the module M obtained by forgetting the gradings, and
mapping HOM(M,N) to Hom(M,N). Essentially not much is lost working with the ungraded
modules since given an irreducible module M ∈ R−fmod, then M is irreducible in R−fmod
[NO04, Theorem 4.4.4(v)]. Likewise, since RΛ(ν) is a finite dimensional k-algebra, if K ∈
RΛ(ν)−fmod is irreducible, then there exists an irreducible L ∈ RΛ(ν)−fmod such that
L ∼= K. Furthermore, L is unique up to isomorphism and grading shift, see [NO04, Theorem
9.6.8]. Since any finite-dimensional R(ν)-module M can be identified with the RΛ(ν)-module
prΛM for some Λ, we also have that for any irreducible K ∈ R(ν)−fmod there exists a
unique, up to grading shift and isomorphism, irreducible L ∈ R(ν)−fmod such that L = K.
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OPERATORS ON THE GROTHENDIECK GROUP 20

3 Operators on the Grothendieck group

The Grothendieck groups

K0(R) =
⊕

ν∈N[I]

K0(R(ν)−pmod), G0(R) =
⊕

ν∈N[I]

G0(R(ν)−fmod)

K0(R
Λ) =

⊕

ν∈N[I]

K0(R
Λ(ν)−pmod), G0(R

Λ) =
⊕

ν∈N[I]

G0(R
Λ(ν)−fmod)

are the direct sums of Grothendieck groupsR(ν)−pmod, R(ν)−fmod, RΛ(ν)−pmod, RΛ(ν)−fmod
respectively. The Grothendieck groups have the structure of a Z[q, q−1]-module given by shift-
ing the grading, q[M ] = [M{1}].

The functor ei defined in (2.14) is clearly exact so descends to an operator on the
Grothendieck group

G0(R(ν)−mod) −→ G0(R(ν − i)−mod) (3.1)

and hence
ei : G0(R) −→ G0(R). (3.2)

By abuse of notation, we will also call this operator ei. Likewise eΛi : G0(R
Λ) −→ G0(R

Λ).
We also define divided powers

e
(r)
i : G0(R) −→ G0(R) (3.3)

given by e
(r)
i [M ] = 1

[r]!i
[eriM ], which are well-defined by Section 2.4.

For irreducibleM , we define ẽi[M ] = [ẽiM ], f̃i[M ] = [f̃iM ], and extend the action linearly.
An important result from [KL09, KL08a] is that the character map

ch : G0(R(ν)−mod)−→Z[q, q−1]Seq(ν)

is injective. In other words, for any module M , we have that [M ] ∈ G0(R) is determined by
ch(M). This fact was used in [KL09, KL08a] to give an explicit isomorphism

Af −→ K0(R) (3.4)

as (twisted) Z[q, q−1]-bialgebras.
Let us consider the maximal commutative subalgebra

⊕

i∈Seq(ν)

k[x1,i , . . . , xm,i ] ⊆ R(ν).

This ring was called Poℓν in [KL09]. In the notation of this paper, we could also denote it
k[x1, . . . , xm]1ν . Its irreducible submodules are one dimensional, and up to grading shift are
isomorphic to L(i1) ⊠ L(i2) ⊠ · · · ⊠ L(im) and in this way correspond to i = (i1, . . . , im) ∈
Seq(ν). In this way, we may identify G0(k[x1, . . . , xm]1ν−fmod) with Z[q, q−1]Seq(ν). Hence
one may rephrase the injectivity of the character map as saying that a module is determined
by its restriction to that maximal commutative subalgebra, in their respective Grothendieck
groups.

Note that the isomorphism classes of simple modules, up to grading shift, form a basis of
G0(R). One of the main results of this paper is that we compute the rank of G0(R

Λ(ν)−fmod)
by realizing a crystal structure on G0(R

Λ) and identifying it as the highest weight crystal
B(Λ). In this language, we see the operators above become crystal operators.
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4 Reminders on crystals

A main result of this paper is the realization of a crystal graph structure on G0(R) which
we identify as the crystal B(∞). Hence, we need to remind the reader of the language and
notation of crystals.

4.1 Monoidal category of crystals

We recall the tensor category of crystals following Kashiwara [Kas95], see also [Kas90b, Kas91,
KS97].

A crystal is a set B together with maps

• wt: B −→ P ,

• εi, ϕi : B −→ Z ⊔ {∞} for i ∈ I,

• ẽi, f̃i : B −→ B ⊔ {0} for i ∈ I,

such that

(C1) ϕi(b) = εi(b) + 〈hi,wt(b)〉 for any i.

(C2) If b ∈ B satisfies ẽib 6= 0, then

εi(ẽib) = εi(b) − 1, ϕi(ẽib) = ϕi(b) + 1, wt(ẽib) = wt(b) + αi. (4.1)

(C3) If b ∈ B satisfies f̃ib 6= 0, then

εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b) − 1, wt(f̃ib) = wt(b) − αi. (4.2)

(C4) For b1, b2 ∈ B, b2 = f̃ib1 if and only if b1 = ẽib2.

(C5) If ϕi(b) = −∞, then ẽib = f̃ib = 0.

If B1 and B2 are two crystals, then a morphism ψ : B1 → B2 of crystals is a map

ψ : B1 ⊔ {0} → B2 ⊔ {0}

satisfying the following properties:

(M1) ψ(0) = 0.

(M2) If ψ(b) 6= 0 for b ∈ B1, then

wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), ϕi(ψ(b)) = ϕi(b). (4.3)

(M3) For b ∈ B1 such that ψ(b) 6= 0 and ψ(ẽib) 6= 0, we have ψ(ẽib) = ẽi(ψ(b)).

(M4) For b ∈ B1 such that ψ(b) 6= 0 and ψ(f̃ib) 6= 0, we have ψ(f̃ib) = f̃i(ψ(b)).
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DESCRIPTION OF B(∞) 22

A morphism ψ of crystals is called strict if

ψẽi = ẽiψ, ψf̃i = f̃iψ, (4.4)

and an embedding if ψ is injective.

Given two crystals B1 and B2 their tensor product B1⊗B2 has underlying set {b1⊗b2; b1 ∈
B1, and b2 ∈ B2} where we identify b1 ⊗ 0 = 0 ⊗ b2 = 0. The crystal structure is given as
follows:

wt(b1 ⊗ b2) = wt(b1) + wt(b2), (4.5)

εi(b1 ⊗ b2) = max max{εi(b1), εi(b2) − 〈hi,wt(b1)〉}, (4.6)

ϕi(b1 ⊗ b2) = max{ϕi(b1) + 〈hi,wt(b2)〉, ϕi(b2)}, (4.7)

ẽi(b1 ⊗ b2) =

{
ẽi(b1) ⊗ b2 if ϕi(b1) ≥ εi(b2)
b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

(4.8)

f̃i(b1 ⊗ b2) =

{
f̃i(b1) ⊗ b2 if ϕi(b1) > εi(b2)

b1 ⊗ f̃ib2 if ϕi(b1) ≤ εi(b2).
(4.9)

Example 4.1 (TΛ (Λ ∈ P )).
Let TΛ = {tΛ} with wt(tΛ) = Λ, εi(tΛ) = ϕi(tΛ) = −∞, ẽitΛ = f̃itΛ = 0. Tensoring a crystal
B with the crystal TΛ has the effect of shifting the weight wt by Λ and leaving the other data
fixed.

Example 4.2 (Bi (i ∈ I)). Bi = {bi(n);n ∈ Z} with wt(bi(n)) = nαi,

εj(bi(n)) =

{
−n if i = j
−∞ if j 6= i,

ϕj(bi(n)) =

{
n if i = j
−∞ if j 6= i,

(4.10)

ẽjbi(n) =

{
bi(n+ 1) if i = j
0 if j 6= i,

f̃jbi(n) =

{
bi(n − 1) if i = j
0 if j 6= i.

(4.11)

We write bi for bi(0).

4.2 Description of B(∞)

B(∞) is the crystal associated with the crystal graph of U−
q (g) where g is the Kac-Moody

algebra defined from the Cartan data of Section 1.1.1. One can also defineB(∞) as an abstract
crystal. As such, it can be characterized by Kashiwara-Saito’s Proposition 4.3 below.

Proposition 4.3 ([KS97] Proposition 3.2.3). Let B be a crystal and b0 an element of B with
weight zero. Assume the following conditions.

(B1) wt(B) ⊂ Q−.

(B2) b0 is the unique element of B with weight zero.

(B3) εi(b0) = 0 for every i ∈ I.

(B4) εi(b) ∈ Z for any b ∈ B and i ∈ I.
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MODULE THEORETIC REALIZATIONS OF CERTAIN CRYSTALS 23

(B5) For every i ∈ I, there exists a strict embedding Ψi : B → B ⊗Bi.

(B6) Ψi(B) ⊂ B × {f̃i
n
bi;n ≥ 0}.

(B7) For any b ∈ B such that b 6= b0, there exists i such that Ψi(b) = b′ ⊗ f̃i
n
bi with n > 0.

Then B is isomorphic to B(∞).

5 Module theoretic realizations of certain crystals

5.1 The crystal B

Let B denote the set of isomorphism classes of irreducible R-modules. Let 0 denote the zero
module.

Let M be an irreducible R(ν)-module, so that [M ] ∈ B. By abuse of notation, we identify
M with [M ] in the following definitions. Hence, we are defining operators and functions on
B ⊔ {0} below.

Recall from Section 2.5 the definitions

ẽiM := soc eiM (5.1)

f̃iM := cosoc Indν+iν,i M ⊠ L(i) (5.2)

εi(M) := max{n ≥ 0 | ẽi
nM 6= 0} (5.3)

and similarly the ∨-versions

ẽi
∨M := σ∗(ẽi(σ

∗M)) (5.4)

f̃i
∨
M := σ∗(f̃i(σ

∗M)) = cosoc Indν+ii,ν L(i) ⊠M, (5.5)

ε∨i (M) := εi(σ
∗M) = max{m ≥ 0 | (ẽi

∨)mM 6= 0}. (5.6)

For ν =
∑

i∈I νiαi, i ∈ I and M ∈ R(ν)−mod set

wt(M) = −ν, wti(M) = 〈hi,wt(M)〉. (5.7)

Set
ϕi(M) = εi(M) + 〈hi,wt(M)〉. (5.8)

Proposition 5.1. The tuple (B, εi, ϕi, ẽi, f̃i,wt) defines a crystal.

Proof. (C1) is the definition of ϕi. (C2)–(C4) was shown in [KL09], see Section 2.5.1. Property
(C5) is vacuous as ϕi(b) is always finite for b ∈ B.

We write 1 ∈ B for the class of the trivial R(ν)-module where ν = ∅ and |ν| = 0.
One of the main theorems of this paper is Theorem 7.4 that identifies the crystal B as

B(∞). However we need the many auxiliary results that follow before we can prove this.
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THE CRYSTAL B ⊗ TΛ 24

5.2 The crystal B ⊗ TΛ

Let M be an irreducible R(ν)-module, so M ⊗ tΛ ∈ B ⊗ TΛ. Then

εi(M ⊗ tΛ) = εi(M)

ϕi(M ⊗ tΛ) = ϕi(M) + λi

ẽi(M ⊗ tΛ) = ẽiM ⊗ tΛ

f̃i(M ⊗ tΛ) = f̃iM ⊗ tΛ

wt(M ⊗ tΛ) = −ν + Λ.

5.3 The crystal BΛ

Let BΛ denote the set of isomorphism classes of irreducible RΛ-modules. As in the previous
section, by abuse of notation we write M for [M] below. Define

ẽi
Λ : BΛ → BΛ ⊔ {0}

M 7→ prΛ ◦ẽi ◦ inflΛ M

f̃i
Λ

: BΛ → BΛ ⊔ {0}

M 7→ prΛ ◦f̃i ◦ inflΛ M

εΛi : BΛ → Z ⊔ {−∞}

M 7→ εi(inflΛ M)

ϕΛ
i : BΛ → Z ⊔ {−∞}

M 7→ max{k ∈ Z | prΛ ◦f̃i
k
◦ inflΛ M 6= 0}

wtΛ : BΛ → P

M 7→ −ν + Λ. (5.9)

Note εΛi (M) = max{k ∈ Z | (ẽi
Λ)kM 6= 0}, and 0 ≤ ϕΛ

i (M) <∞.
It is true, but not at all obvious, that with this definition ϕΛ

i (M) = εΛi (M)+ 〈hi,wtΛM〉;

see Corollary 6.21. The proof that the data (BΛ, εΛi , ϕ
Λ
i , ẽi

Λ, f̃i
Λ
,wtΛ) defines a crystal is

delayed until Section 7.
On the level of sets define a function

Υ: BΛ → B ⊗ TΛ

M 7→ inflΛ M⊗ tΛ. (5.10)

The function Υ is clearly injective and satisfies

εΛi (M) = εi(ΥM), (5.11)

Υẽi
ΛM = ẽiΥM, (5.12)

Υf̃i
Λ
M =

{
f̃iΥM f̃i

Λ
M 6= 0

0 f̃i
Λ
M = 0

(5.13)

wtΛ(M) = wt(ΥM). (5.14)

Later we will see the relationship between ϕΛ
i (M) and ϕi(inflΛ M). Once this relationship

is in place (see Corollary 6.21) it will imply Υ is an embedding of crystals and in particular
that BΛ is a crystal. In Section 7 we show that B ∼= B(∞) which then identifies BΛ as the
highest weight crystal B(Λ).
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6 Understanding R(ν)-modules and the crystal data of B

This section contains an in depth study of simple R(ν)-modules and the functor f̃i. In
particular, we measure how the quantities ε∨j , εi, ϕ

Λ
i change with the application of f̃j.

Throughout this section we assume j 6= i and set a = aij = −〈hi, αj〉.

6.1 Jump

Given an irreducible module M , prΛ f̃iM is either irreducible or zero. In the following sub-
section, we measure exactly when the latter occurs. More specifically, we compare ε∨i (M)

to ε∨i (f̃iM) and compute when the latter quantity “jumps” by +1. In this case, we show

f̃iM ∼= f̃i
∨
M . Understanding exactly when this jump occurs will be a key ingredient in

constructing the strict embedding of crystals in Section 7.1.
One very useful byproduct of understanding co-induction is that for irreducible M if we

know f̃iM ∼= f̃i
∨
M then we can easily conclude f̃i

m
M ∼= IndM⊠L(im) ∼= IndL(im)⊠M , not

just for m = 1, but for all m ≥ 1, and in particular that the latter module is irreducible. We
will prove this in Proposition 6.6 below. While for the main results of this paper, it suffices

to understand exactly when f̃iM ∼= f̃i
∨
M , we found it worthwhile to include Section 2.3

precisely for the sake of a deeper understanding of IndM ⊠ L(i).
The following proposition is a consequence of Theorem 2.2. and the properties listed in

Section 2.5.1.

Proposition 6.1. Let M be an irreducible R(ν)-module. Let n ≥ 1. Up to grading shift,

1. f̃i
n
M ∼= soc coIndM ⊠ L(in) ∼= soc IndL(in) ⊠M .

2. (f̃i
∨
)nM ∼= soc coIndL(in) ⊠M ∼= soc IndM ⊠ L(in).

Proof. Let m = εi(M) and N = ẽi
mM . Recall from Section 2.5.1

Resν−mi,miM ∼= N ⊠ L(im). (6.1)

We thus have a nonzero map Resν−mi,miM → N ⊠L(im), hence a nonzero and thus injective
map

M → coIndN ⊠ L(im). (6.2)

Repeating the standard arguments from [GV01, KL09] we see M ∼= soc coIndN ⊠ L(im)
and that all other composition factors have εi strictly smaller that m. Likewise we have
f̃i
n
M ∼= soc coIndN ⊠ L(im+n) and deduce statement (1), using Theorem 2.2. The proof of

(2) is similar.

It is necessary to understand how ε∨i changes with application of f̃j.

Proposition 6.2. Let M be an irreducible R(ν)-module.

i) For any i ∈ I, either ε∨i (f̃iM) = ε∨i (M) or ε∨i (M) + 1.

ii) For any i, j ∈ I with i 6= j, we have ε∨i (f̃jM) = ε∨i (M) and εi(f̃j
∨
M) = εi(M).
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Proof. Consider IndM ⊠ L(j) ։ f̃jM , so by Frobenius reciprocity ε∨i (f̃jM) ≥ ε∨i (M). On
the other hand, by the Shuffle Lemma

ε∨i (f̃jM) ≤ ε∨i (M) + ε∨i (L(j)) = ε∨i (M) + δij . (6.3)

In the case i = j we then get ε∨i (M) ≤ ε∨i (f̃jM) ≤ ε∨i (M) + 1 and in the case i 6= j

ε∨i (M) ≤ ε∨i (f̃jM) ≤ ε∨i (M). Applying the automorphism σ in the case i 6= j also yields the

symmetric statement εi(f̃j
∨
M) = εi(M).

Definition 6.3. Let M be an irreducible R(ν)-module and let Λ ∈ P+. Define

ϕΛ
i (M) = max{k ∈ Z | prΛ f̃i

k
M 6= 0}. (6.4)

where we take the convention that f̃i
k

= ẽi
−k when k < 0.

Note that prΛM 6= 0 if and only if ϕΛ
i (M) ≥ 0 for all i ∈ I by Remark 2.4, or even for a

single i ∈ I by Proposition 6.2. Hence, by allowing ϕΛ
i to take negative values, we can use ϕΛ

i

to detect which irreducible R(ν)-modules are in fact RΛ(ν)-modules. Thus when ϕΛ
i (M) ≥ 0

it agrees with ϕΛ
i (prΛM) as defined in Section 5.3 which is manifestly nonnegative. By abuse

of notation we call both functions ϕΛ
i .

Observe that
ϕΛ
i (f̃iM) = ϕΛ

i (M) − 1. (6.5)

We warn the reader that with this extended definition of ϕΛ
i on G0(R), it not only takes

negative values but can be equal to −∞. For example, take Λ = Λi, and let j 6= i. Then

ẽiL(j) = 0 and we see prΛ f̃i
k
L(j) = 0 for all k ∈ Z by Proposition 6.2. Hence ϕΛ

i (L(j)) =
−∞. However, this is no call for alarm, as by Remark 2.4, we can always find a larger Λ so
that prΛM 6= 0 for any given M .

Definition 6.4. Let M be a simple R(ν)-module and let i ∈ I. Then

jumpi(M) := max{J ≥ 0 | ε∨i (M) = ε∨i (f̃i
J
M)}. (6.6)

In the following Lemma we collect a long list of useful characterizations of when jumpi(M) =
0. We find it convenient to be overly thorough below and furthermore to give this lemma the
name “Jump Lemma” because we use it repeatedly throughout the paper.

We remind the reader that the isomorphisms below are homogeneous but not necessarily
degree preserving.

Lemma 6.5 (Jump Lemma). Let M be irreducible. The following are equivalent:

1) jumpi(M) = 0

2) f̃iM ∼= f̃i
∨
M

3) f̃i
m
M ∼= (f̃i

∨
)mM for all m ≥ 1

4) IndM ⊠ L(i) ∼= IndL(i) ⊠M

5) IndM ⊠ L(im) ∼= IndL(im) ⊠M for all m ≥ 1
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6) f̃iM ∼= IndM ⊠ L(i) 6′) f̃i
∨
M ∼= IndL(i) ⊠M

7) IndM ⊠ L(i) is irreducible 7′) IndL(i) ⊠M is irreducible

8) IndM ⊠ L(im) is irreducible 8′) IndL(im) ⊠M is irreducible
for all m ≥ 1 for all m ≥ 1

9) ε∨i (f̃iM) = ε∨i (M) + 1 9′) εi(f̃i
∨
M) = εi(M) + 1

10) jumpi(f̃i
m
M) = 0 for all m ≥ 0

11) ε∨i (f̃i
m
M) = ε∨i (M) +m for all m ≥ 1

Proof. Pairs of “symmetric” conditions labelled by X) and X ′) are clearly equivalent to each
other by applying the automorphism σ, except for (9) ⇔ (9)′ which is slightly less obvious.
We will show (2) ⇔ (9) which then gives (2) ⇔ (9)′ by σ-symmetry.

By Proposition 6.2, we have ε∨i (M) ≤ ε∨i (f̃iM) ≤ ε∨i (M) + 1. This yields (1) ⇔ (9).

Suppose (9) holds, i.e. ε∨i (f̃iM) = ε∨i (M) + 1 = ε∨i (f̃i
∨
M). By the Shuffle Lemma,

ch(IndM ⊠ L(i)) |q=1= ch(IndL(i) ⊠M) |q=1, (6.7)

so by the injectivity of the character map and the discussion of Section 2.7, they have same

composition factors. But f̃i
∨
M is the unique composition factor of IndL(i) ⊠M with largest

ε∨i , forcing f̃iM ∼= f̃i
∨
M up to grading shift, which yields (2). The converse of (2) ⇒ (9) is

obvious. So we have (2) ⇔ (9) and by σ-symmetry also (2) ⇔ (9)′.

Next suppose (2), i.e. f̃iM ∼= f̃i
∨
M . This implies

cosoc IndM ⊠ L(i) ∼= soc coIndL(i) ⊠M ∼= soc IndM ⊠ L(i) (6.8)

by Proposition 6.1. Furthermore from Section 2.5.1, f̃iM is not only the cosocle, but occurs
with multiplicity one in IndM ⊠ L(i). For it to also be the socle forces IndM ⊠ L(i) to
be irreducible, yielding (7). Clearly (7) ⇔ (6). Further (7) ⇒ (4) as ch(IndM ⊠ L(i)) =
ch(IndL(i) ⊠M) at q = 1.

Given (4) an inductive argument and transitivity of induction gives (5), that IndM ⊠

L(im) ∼= IndL(im)⊠M for allm ≥ 1. Thus, f̃i
m
M ∼= cosoc IndM⊠L(im) ∼= cosoc IndL(im)⊠

M ∼= (f̃i
∨
)mM , yielding (3) and thus (11) by then evaluating ε∨i . That (11) ⇒ (3) is an iden-

tical argument to (9) ⇒ (2).
Now suppose (3) holds. Again by Proposition 6.1

cosoc IndM ⊠ L(im) ∼= soc coIndL(im) ⊠M ∼= soc IndM ⊠ L(im) (6.9)

so as above IndM ⊠ L(im) is irreducible, yielding (8), and hence it is isomorphic to f̃i
m
M .

It is trivial to check (8) ⇒ (7) ⇒ (4) ⇒ (2) and (6) ⇔ (6)′, (7) ⇔ (7)′, (8) ⇔ (8)′. Finally,
since (1) ⇔ (11) we certainly have (1) ⇔ (10). This completes the proof.

The following proposition gives alternate characterizations of jumpi(M). Although we do
not prove that all five hold at this time, it is worth stating them all together now.

Proposition 6.6. Let M be a simple R(ν)-module and let i ∈ I. Then the following hold.
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i) jumpi(M) = max{J ≥ 0 | εi(M) = εi((f̃i
∨
)JM)}

ii) jumpi(M) = min{J ≥ 0 | f̃i(f̃i
J
M) ∼= f̃i

∨
(f̃i

J
M)}

iii) jumpi(M) = min{J ≥ 0 | f̃i((f̃i
∨
)JM) ∼= f̃i

∨
((f̃i

∨
)JM)}

iv) If ϕΛ
i (M) > −∞, then jumpi(M) = ϕΛ

i (M) + ε∨i (M) − λi.

v) jumpi(M) = εi(M) + ε∨i (M) + wti(M).

Proof. We must delay the proof of (v) until we have proved Theorem 6.12 and consequently
Corollary 6.21. We will only prove (ii) and (iv) now as we will need them frequently in the
sequel.

The equivalence of (ii) to the definition of jumpi is σ-symmetric to the equivalence of
(i) ⇔ (iii), and (ii) is σ-symmetric to (iii). So once we have (v) which is a σ-symmetric
statement, we will have all (i)–(v) of the proposition.

Since we do not use (i) or (iii) in the rest of this section, we won’t prove them here
independently of (v) and in fact to do so would be rather difficult.

Now we prove (ii). Let J = jumpi(M) and N = f̃i
J
M . Then by the maximality of J ,

ε∨i (f̃iN) = ε∨i (N) + 1 = ε∨i (M) + 1. By the Jump Lemma 6.5, f̃iN ∼= f̃i
∨
N , i.e. f̃i(f̃i

J
M) ∼=

f̃i
∨
(f̃i

J
M). Further, if 0 ≤ m < J then

ε∨i (f̃i
∨
f̃i
m
M) = 1 + ε∨i (f̃i

m
M) = 1 + ε∨i (M) > ε∨i (M) = ε∨i (f̃i

m+1
M) (6.10)

so f̃i
∨
f̃i
m
M ≇ f̃if̃i

m
M . This yields (ii).

Now we prove (iv). Again let J = jumpi(M). First, suppose ϕΛ
i (M) ≥ 0. Then, as

prΛ f̃i
ϕΛ

i (M)
M 6= 0, it follows from Proposition 6.2 and Remark 2.4 that prΛM 6= 0. Hence

λi ≥ ε∨i (M) = ε∨i (f̃i
J
M). But by (11) of the Jump Lemmaε∨i (f̃i

J+m
M) = ε∨i (M) +m for all

m ≥ 0.

Setm = λi−ε
∨
i (M). Then by the maximality of J , ε∨i (f̃i

J+m
M) = λi but ε∨i (f̃i

J+m+1
M) =

λi + 1. And by Proposition 6.2 ε∨j (f̃i
J+m

M) = ε∨j (M) ≤ λj. In other words prΛ f̃i
J+m

M 6= 0

but prΛ f̃i
J+m+1

M = 0, so by definition ϕΛ
i (M) = J +m = jumpi(M) + λi − ε∨i (M). Equiv-

alently jumpi(M) − ϕΛ
i (M) + ε∨i (M) − λi.

Second, if −∞ < ϕΛ
i (M) < 0, let k = −ϕΛ

i (M). Note ε∨i (ẽi
kM) = λi but ε∨i (ẽi

k−1M) =
λi + 1 so that jumpi(ẽi

kM) = 0 and hence jumpi(M) = 0 too, by characterization (10) of the

Jump Lemma. As before, ε∨i (M) = ε∨i (f̃i
k
ẽi
kM) = ε∨i (ẽi

kM) + k = λi − ϕΛ
i (M). So again

jumpi(M) = 0 = ϕΛ
i (M) + ε∨i (M) − λi.

It is clear from the Proposition that

jumpi(f̃iM) = max{0, jumpi(M) − 1} = jumpi(f̃i
∨
M). (6.11)

Remark 6.7. Given Λ,Ω ∈ P+ and irreducible modules A and B with prΛA 6= 0, prΩA 6= 0,
prΛB 6= 0, prΩB 6= 0, then ϕΛ

i (A) − ϕΛ
i (B) = ϕΩ

i (A) − ϕΩ
i (B) since by Proposition 6.6 (iv)

we compute

ϕΛ
i (A) − ϕΛ

i (B) = (jumpi(A) − ε∨i (A) + λi) − (jumpi(B) − ε∨i (B) + λi) (6.12)

= jumpi(A) − jumpi(B) + ε∨i (B) − ε∨i (A) (6.13)

= ϕΩ
i (A) − ϕΩ

i (B). (6.14)
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6.2 Serre relations

In this section, we present certain (minimal) relations that hold among the operators ei on
G0(R). These are the quantum Serre relations (6.16). We refer the reader to [KL08a], where
they prove similar relations (the vanishing of alternating sums in K0(R)) hold on a certain
family of projective modules in their Corollary 7. Then by the obvious generalization to the
symmetrizable case of Corollary 2.15 of [KL09] we have

a+1∑

r=0

(−1)re
(a+1−r)
i eje

(r)
i [M ] = 0 (6.15)

for all M ∈ R(ν)−mod with |ν| = a+1, and hence for all [M ] ∈ G0(R), showing the operator

a+1∑

r=0

(−1)re
(a+1−r)
i eje

(r)
i = 0. (6.16)

Recall the divided powers e
(r)
i are given by e

(r)
i [M ] = 1

[r]!i
[eriM ].

Furthermore, when c ≤ a the operator

c∑

r=0

(−1)re
(c−r)
i eje

(r)
i (6.17)

is never the zero operator on G0(R) by the quantum Gabber-Kac Theorem [Lus93] and the
work of [KL09, KL08a], which essentially computes the kernel of the map from the free algebra
on the generators ei to G0(R), see Remark 1.2.

In Section 6.3.1 below, we give an alternate proof that the quantum Serre relation (6.16)
holds by examining the structure of all simple R((a+ 1)i+ j)-modules. We further construct
simple R(ci + j)-modules that are witness to the nonvanishing of (6.17) when c ≤ a. In the
following remark, we give a sample argument of how understanding the simple R(ν)-modules
for a fixed ν gives a relation among the operators ei on G0(R). Although we only give it in
detail for a degree 2 relation among the ei, it can be easily extended to higher degree relations.

Remark 6.8. Suppose we have explicitly constructed all simpleR(i+j)-modules M , and have
verified (ejei − ejei)[M ] = 0 for all such M . (We know this is the case whenever 〈i, j〉 = 0.)
We will call this a degree 2 relation in the ei’s for obvious reasons. We easily see the operator
ejei − ejei is zero on G0(R(µ)−mod) not just for µ = i + j but for any ν with |µ| = 0, 1, 2.
Now consider arbitrary ν with |ν| > 2. Let M be any finite dimensional R(ν)-module. We
can write [Resν−µ,µM ] =

∑
h[Ah ⊠ Bh] for some simple R(µ)-modules Bh with |µ| = 2, or

the restriction is zero. Then

(ejei − ejei)[M ] =
∑

µ:|µ|=2

∑

h

[Ah ⊠ (ejei − ejei)Bh] (6.18)

=
∑∑

[Ah ⊠ 0] = 0. (6.19)

Hence ejei−ejei is zero as an operator on G0(R). However, this is a relation of the form (6.17)
with c = 0. By the discussion above on the minimality of the quantum Serre relation, this
forces aij = 0. Similarly, if one shows the expression (6.16) in the quantum Serre relation
vanishes on all irreducible R((a + 1)i + j)-modules, the same argument shows the relation
holds on all G0(R) and that aij ≤ a.
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6.3 The Structure Theorems for simple R(ci + j)-modules

In this section we describe the structure of all simple R(ci + j)-modules. We will hence-
forth refer to Theorems 6.9, 6.10 as the Structure Theorems for simple R(ci + j)-modules.
Throughout this section we assume j 6= i and set a = aij = −〈hi, αj〉.

In the theorems below we introduce the notation

L(ic−njin) and L(n)
def
= L(ia−njin)

for the irreducible R(ci+j)-modules (up to grading shift) when c ≤ a. They are characterized
by εi (L(ic−njin)) = n.

Theorem 6.9. Let c ≤ a and let ν = ci + j. Up to isomorphism and grading shift, there
exists a unique irreducible R(ν)-module denoted L(ic−njin) with

εi
(
L(ic−njin)

)
= n (6.20)

for each n with 0 ≤ n ≤ c. Furthermore,

ε∨i (L(ic−njin)) = c− n (6.21)

and
ch(L(ic−njin)) = [c− n]i![n]i!i

c−njin. (6.22)

In particular, in the Grothendieck group e
(c−s)
i eje

(s)
i [L(ic−njin)] = 0 unless s = n.

Proof. The proof is by induction on c. The case c = 0 is obvious; up to isomorphism and
grading shift there exists a unique irreducible R(j)-module L(j) which obviously satisfies
(6.20)–(6.22). In the following, isomorphisms are allowed to be homogeneous but not neces-
sarily degree preserving.

The case c = 1 is also straightforward. Since c ≤ a, and so a 6= 0, we compute IndL(i) ⊠

L(j) is reducible, but has irreducible cosocle. Let

L(ij) = cosoc IndL(i) ⊠ L(j) (6.23)

L(ji) = cosoc IndL(j) ⊠ L(i). (6.24)

Note each of the above modules is one-dimensional and satisfies (6.20)–(6.22). Observe if
(6.20) did not hold for either module, then by the Jump Lemma 6.5

IndL(i) ⊠ L(j) ∼= IndL(j) ⊠ L(i) (6.25)

and this module would be irreducible. Hence for all R(i+ j)-modules M we would have

(ejei − ejei)[M ] = 0 (6.26)

and in fact this relation would then hold for any ν and any irreducible R(ν)-module M via
Remark 6.8. But by (6.17) this would imply a = 0, a contradiction.

Now assume the theorem holds for some fixed c ≤ a and we will show it also holds for
c+ 1 so long as c+ 1 ≤ a. Let N be an irreducible R((c+ 1)i + j)-module with εi(N) = n.

Suppose n > 0. If in fact n = 0 consider instead n∨ = ε∨i N which cannot also be 0
and perform the following argument applying the automorphism σ everywhere. Observe any
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other module N ′ such that εi(N
′) = n has ẽiN

′ ∼= ẽiN , forcing N ′ ∼= N , which gives us
the uniqueness. Note ẽiN is an R(ci + j)-module with εi(ẽiN) = n − 1 so by the inductive
hypothesis ẽiN = L(ic+1−njin−1). We have a surjection (up to grading shift)

IndL(ic+1−njin−1) ⊠ L(i) ։ N. (6.27)

Since N = cosoc IndL(ic+1−njin−1)⊠L(i), by Frobenius reciprocity, the Shuffle Lemma, and
the fact that L(im) is irreducible with character [m]!ii

m, either we have

ch(N) = [c+ 1 − n]!i[n]!ii
c+1−njin (6.28)

or

ch(N) = [c+ 1 − n]!i[n]!ii
c+1−njin + q−(αi,αj)[c+ 2 − n]!i[n− 1]!ii

c+2−njin−1 (6.29)

= ch(IndL(ic+1−njin−1) ⊠ L(i)). (6.30)

In the former case, N satisfies (6.22) and of course also (6.21). In the latter case, by the
injectivity of the character map, we must have isomorphisms N ∼= IndL(ic+1−njin−1) ⊠ L(i)
and in fact, up to grading shift,

IndL(ic+1−njin−1) ⊠ L(i) ∼= IndL(i) ⊠ L(ic+1−njin−1). (6.31)

Next we will show that if (6.31) holds for this n, then it holds for all 1 ≤ n ≤ c.
Let M = cosoc IndL(i) ⊠ L(ic−njin) which is irreducible. By the Shuffle Lemma, either

εi(M) = n or εi(M) = n + 1. If εi(M) = n, then by uniqueness part of the inductive
hypothesis ẽiM ∼= ẽiN and so M ∼= N . But this is impossible as ic+2−njin−1 can never be
a constituent of ch(M). So we must have εi(M) = n + 1. Repeating the same analysis of
characters as above we must have

M ∼= IndL(i) ⊠ L(ic−njin) ∼= IndL(ic−njin) ⊠ L(i). (6.32)

Continuing in this manner, we deduce

IndL(i) ⊠ L(ic−gjig) ∼= IndL(ic−gjig) ⊠ L(i) (6.33)

for all n− 1 ≤ g ≤ c.
We may repeat the same argument applying the automorphism σ everywhere. In other

words consider ε∨i (N) = c+ 2 − n and start with

M ′ = cosoc IndL(ic+2−njin−2) ⊠ L(i) (6.34)

which will force ε∨i (M ′) = c+ 3 − n and

IndL(ic+2−njin−2) ⊠ L(i) ∼= IndL(i) ⊠ L(ic+2−njin−2). (6.35)

Continuing as before yields isomorphisms (6.33) for n− 1 > g ≥ 0, in other words for all g.
Under the original assumption that the R((c+ 1)i+ j)-module N does not satisfy (6.22),

we have shown that every irreducible R((c+ 1)i + j)-module A satisfies

A ∼= IndL(i) ⊠B ∼= IndB ⊠ L(i) (6.36)
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for some irreducible R(ci+ j)-module B, and furthermore we have computed ch(A).
On closer examination of these characters, we see

c+1∑

s=0

(−1)se
(c+1−s)
i eje

(s)
i [A] = 0 (6.37)

for all such A. But then an argument similar to that in Remark 6.8 shows

c+1∑

s=0

(−1)se
(c+1−s)
i eje

(s)
i [C] = 0 (6.38)

for all irreducible R(ν)-modules C for any ν ∈ N[I]. So by (6.17), (6.16) we would get a ≤ c,
contradicting c+ 1 ≤ a.

So it must be that all irreducible R((c + 1)i + j)-modules satisfy (6.20), (6.21), and
(6.22).

In the previous theorem we introduced the notation L(ic−njin) for the unique (up to
isomorphism and grading shift) simpleR(ci+j)-module with εi = n when c ≤ a. Theorem 6.10
below extends this uniqueness to c ≥ a. Recall that in the special case that c = a, we denote

L(n) = L(ia−njin).

The following theorem motivates why we distinguish the special case c = a.

Theorem 6.10. Let 0 ≤ n ≤ a.

i) The module
IndL(im) ⊠ L(n) ∼= IndL(n) ⊠ L(im) (6.39)

is irreducible for all m ≥ 0.

ii) Let c ≥ a. Let N be an irreducible R(ci+ j)-module with εi(N) = n. Then c−a ≤ n ≤ c
and up to grading shift

N ∼= IndL(n− (c− a)) ⊠ L(ic−a). (6.40)

Proof. We first prove (6.39) for m = 1, from which it will follow for all m by the Jump
Lemma 6.5. Let M = f̃iL(n) = cosoc IndL(n) ⊠ L(i), which is irreducible. Note εi(M) =
n+ 1 and by the Shuffle Lemma

e
(a−n)
i eje

(n+1)
i [M ] 6= 0 (6.41)

but
e
(a+1−s)
i eje

(s)
i [M ] = 0 (6.42)

unless s = n + 1 or s = n. But the Serre relations (6.16) imply the following operator is
identically zero:

a+1∑

s=0

(−1)se
(a+1−s)
i eje

(s)
i = 0. (6.43)
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In particular,

0 =
a+1∑

s=0

(−1)se
(a+1−s)
i eje

(s)
i [M ]

(6.42) (−1)ne
(a+1−n)
i eje

(n)
i [M ] + (−1)n+1e

(a−n)
i eje

(n+1)
i [M ], (6.44)

from which we conclude, by (6.41), that

e
(a+1−n)
i eje

(n)
i [M ] 6= 0. (6.45)

This implies
a− n+ 1 = ε∨i M = ε∨i (f̃iL(n)) = ε∨i (L(n)) + 1 (6.46)

so that by the Jump Lemmaf̃iL(n) ∼= f̃i
∨
L(n), and consequently part (i) of the theorem also

holds for all m ≥ 1. (The case m = 0 is vacuously true.)
For part (ii), we induct on c ≥ a, the case c = a following directly from Theorem 6.9. Now

assume the statement for general c > a and consider an irreducible R((c + 1)i + j)-module

N such that εi(N) = n. If n = 0, then clearly e
(c+1)
i ej[N ] 6= 0 so also e

(a+1)
i ej [N ] 6= 0, which

by the Serre relations (6.16) implies there exists an n′ 6= 0 with e
(a+1−n′)
i eje

(n′)
i [N ] 6= 0. But

then εi(N) ≥ n′ > 0, which is a contradiction.
Let M ∼= ẽiN 6= 0, so that εi(M) = n− 1 and by the inductive hypothesis

M ∼= IndL(n− 1 − (c− a)) ⊠ L(ic−a).

Hence, by part (i) and the Jump Lemma

N ∼= f̃iM ∼= IndL(n− ((c + 1) − a)) ⊠ L(ic+1−a). (6.47)

Consequently n ≥ c+1−a. As N is an irreducible R((c+1)i+j)-module, clearly c+1 ≥ n.

Observe that from Theorems 6.9, 6.10 and the Shuffle Lemma, we have computed the
character (up to grading shift) of all irreducible R(ci+ j)-modules.

6.3.1 A generators and relations proof

In this section, we give alternative proofs of the Structure Theorems 6.9 and 6.10 using the
description of R(ν) via generators and relations. In particular, we do not use the Serre
relations (6.16) and in fact one could instead deduce that the Serre relations hold from these
theorems.

We first set up some useful notation. For this section let

i (b, c) = i . . . i︸ ︷︷ ︸ j i . . . i︸ ︷︷ ︸
b c

Let {ur | 1 ≤ r ≤ m!} be a (weight) basis of L(im), {ys | 1 ≤ s ≤ n!} be a basis of L(in), and
{v} be a basis of L(j). Recall the following fact about the irreducible module L(im). For any
u ∈ L(im)

xkru = 0, (6.48)
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for all k ≥ m, and 1 ≤ r ≤ m. Further if u 6= 0 then L(im) = R(mi)u, and 1j u = 0 if j 6= im.
Also there exists ũ ∈ L(im) such that xm−1

r ũ 6= 0 for all r. (We note that it is from these
properties we may deduce Remark 2.4.)

The induced module IndL(im) ⊠ L(j) ⊠ L(in) has a weight basis

B = {ψ bw ⊗ (ur ⊗ v ⊗ ys) | 1 ≤ r ≤ m!, 1 ≤ s ≤ n!, w ∈ Sm+1+n/Sm × S1 × Sn} (6.49)

as in Remark 2.1.

Proposition 6.11. Let K = span{ψ bw⊗(ur⊗v⊗ys) ∈ B | ℓ(w) 6= 0}. Suppose c = m+n ≤ a.
Then

1. K is a proper submodule of IndL(im) ⊠ L(j) ⊠ L(in).

2. The quotient module IndL(im)⊠L(j)⊠L(in)/K is irreducible with character [m]!i[n]!ii
mjin.

Proof. It suffices to show
hψ bw ⊗ (ur ⊗ v ⊗ ys) ∈ K (6.50)

where ℓ(w) > 0 as h ranges over the generators 1j , xr, ψr of R(ν).
Considering the relations in Section 1.1.3, hψ bw ⊗ (ur ⊗ v ⊗ ys) is 0 or a sum of terms of

the form ψcw′
⊗ (u′ ⊗ v ⊗ y′) with ℓ(w′) ≥ ℓ(w) − 2, so in other words, we reduce to the case

ℓ(w) = 1 or ℓ(w) = 2 (or else the terms are obviously in K). In fact, it is only in considering
relation (1.29) we examine ℓ(w) = 2, and otherwise we examine ℓ(w) = 1.

To make this reduction valid, we first examine the case h = xt, which in fact does not
decrease length at all, showing that when applying relation (1.29), there is no further reduction
of length to the terms ψcw′

⊗ (u′ ⊗ v ⊗ y′).
Let w ∈ Sm+1+n/Sm × S1 × Sn so the diagram for ψ bw1i (m,n) has no ii-crossings, that

is, no crossings ψr,j between strands that are both labelled by i ∈ I. Then for h = xt we
have xtψ bw1i(m,n) = ψ bwxw−1(t)1i(m,n) by repeated application of relation (1.8) and isotopies
of diagrams. Algebraically speaking, if ŵ = srsr2 · · · srℓ , then i := (srw)(i (m,n)) = i (m′, n′)
where either m′ = r or r − 1. In particular i r 6= i r+1, so that by relation (1.30) xtψr1i =
ψrxsr(t)1i , and then by induction we get the statement above. Hence (6.50) holds for h = xt
and w with ℓ(w) > 0.

For h = 1j , either hψ bw1i(m,n) = 0 or hψ bw1i(m,n) = ψ bw1i (m,n), so clearly (6.50) holds.
Next we need only consider the case ℓ(w) = 2, where either w = sm±1sm or w =

sm+1±1sm+1. However, the only cases that are potentially “length-decreasing” by 2 are for
w = sm+1sm and h = ψm, or w = smsm+1 and h = ψm+1, for which we compute

(ψmψm+1ψm − ψm+1ψmψm+1)1i (m,n) =

a+1∑

k=0

xkmx
a+1−k
m+2 1i (m,n). (6.51)

By (6.48)

xkmx
a+1−k
m+2 ⊗ (u⊗ v ⊗ y) = 1i (m,n) ⊗ (xkmu) ⊗ v ⊗ (xa+1−k

1 y) = 0 (6.52)

since either k ≥ m or a+ 1 − k > a+ 1 −m ≥ n as we assumed m+ n ≤ a. This yields

ψmψm+1ψm ⊗ (u⊗ v ⊗ y) = ψm+1ψmψm+1 ⊗ (u⊗ v ⊗ y).
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In fact, we also have ψmψm−1ψm ⊗ (u⊗ v⊗ y) = ψm−1ψmψm−1 ⊗ (u⊗ v⊗ y), as for instance
i (m,n)m−1 6= i (m,n)m+1, and similarly ψm+1ψm+2ψm+1 ⊗ (u⊗ v ⊗ y) = ψm+2ψm+1ψm+2 ⊗
(u⊗ v ⊗ y). Thus in all cases, this braid relation honestly holds. This then reduces us to the
case ℓ(w) = 1 as such relations decrease length by at most 1. For example,

ψmψm−1ψm ⊗ (u⊗ v ⊗ y) = ψm−1ψmψm−1 ⊗ (u⊗ v ⊗ y) = ψm−1ψm ⊗ (u′ ⊗ v ⊗ y). (6.53)

When ℓ(w) = 1 either w = sm or w = sm+1. For h = ψb the only relation that is length
decreasing is (1.28) (which decreases length by at most one, when b = m or m+1), for which
we compute

ψmψm ⊗ (u⊗ v ⊗ y) = (xam + x
−〈j,i〉
m+1 )1i (m,n) ⊗ (u⊗ v ⊗ y)

= 1i(m,n) ⊗ (xamu) ⊗ v ⊗ y + 1i (m,n) ⊗ u⊗ (x
−〈j,i〉
1 v) ⊗ y

= 0 ∈ K (6.54)

by (6.48) since a ≥ m, and −〈j, i〉 ≥ 1. Similarly,

ψm+1ψm+1 ⊗ (u⊗ v ⊗ y) = 1i(m,n) ⊗ u⊗ (x
−〈j,i〉
1 v) ⊗ y + 1i (m,n) ⊗ u⊗ v ⊗ (xa1y)

= 0 ∈ K (6.55)

as a ≥ n.
In conclusion, K is indeed a submodule and in fact generated by

ψm+1 ⊗ (ur ⊗ v ⊗ ys), and ψm ⊗ (ur ⊗ v ⊗ ys). (6.56)

For part (2) note w(i (m,n)) = i (c−r, r) for some r, but r 6= n when ℓ(w) > 0 for minimal
length w ∈ Sm+1+n/Sm × S1 × Sn. In other words, ψ bw ⊗ (ur ⊗ v ⊗ ys) is a weight vector and
1i (m,n)ψ bw ⊗ (ur ⊗ v ⊗ ys) = 0 when ℓ(w) > 0. That is, for all z ∈ Q = IndL(im) ⊠ L(j) ⊠

L(in)/K, 1i (m,n)z = z, but 1i(c−r,r)z = 0 when r 6= n. Hence all constituents of ch(Q) have
the form imjin.

By Frobenius reciprocity, and the irreducibility of L(im), we have an injection

L(im) ⊠ L(j) ⊠ L(in) →֒ Resmi,j,niQ (6.57)

which is also a surjection by the above arguments. Hence

ch(Q) = [m]!i[n]!ii
mjin. (6.58)

Note that, up to grading shift, Q is none other than L(imjin) and we have shown this is the
unique simple quotient of IndL(im)⊠L(j)⊠L(in). The uniqueness statements of Theorem 6.9
follow by Frobenius reciprocity.

Next we will give a generators and relations proof that

f̃iL(n) ∼= f̃i
∨
L(n) ∼= IndL(n) ⊠ L(i). (6.59)

Just as in the proof of Theorem 6.9,

ch(IndL(n) ⊠ L(i)) = [a− n]!i[n+ 1]!ii
a−njin+1 + q−(αi,αj)[a− n+ 1]!i[n]!ii

a+n+1jin, (6.60)
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and since L(im) is irreducible with dimension m!, either ch(f̃iL(n)) = [a−n]!i[n+1]!ii
a−njin+1

or ch(f̃iL(n)) = ch(IndL(n) ⊠ L(i)).
In the latter case, IndL(n) ⊠ L(i) is isomorphic to f̃iL(n), so by the Jump Lemma 6.5 it

is irreducible and isomorphic to f̃i
∨
L(n). In the former case, we clearly have

0 → K → IndL(ia−n) ⊠ L(j) ⊠ L(in+1) → f̃iL(n) (6.61)

by Frobenius reciprocity.
The R((a+ 1)i+ j)-module IndL(ia−n) ⊠ L(j) ⊠ L(in+1) has a weight basis given by

{ψ bw⊗(ur⊗v⊗ys) | w ∈ Sa+2/Sa−n×S1×Sn+1, 1 ≤ r ≤ (a−n)!, 1 ≤ s ≤ (n+1)!}. (6.62)

Let i = i(a−n, n+1). Note, for all minimal left coset representatives w ∈ Sa+2/Sa−n×S1×
Sn+1 that w(i ) 6= i unless w = id, i.e. unless ℓ(w) = 0. (In fact w(i ) = i (a − r + 1, r) for
some r.) Since 1i(a−r+1,r)f̃iL(n) = 0 if r 6= n+ 1 by assumption, we must have

K = span{ψ bw ⊗ (ur ⊗ v ⊗ ys) | ℓ(w) > 0}. (6.63)

We will show that K is not a proper submodule.
Pick u ∈ L(ia−n), y ∈ L(in+1) so that xa−n−1

a−n u = u′ 6= 0, xn1y = y′ 6= 0 so that

xa−n−1
a−n · xna−n+2 (1i ⊗ (u⊗ v ⊗ y)) = 1i ⊗ (u′ ⊗ v ⊗ y′) 6= 0, (6.64)

but
xa−1−k
a−n u = 0 if k < n (6.65)

and
xk1y = 0 if k > n. (6.66)

Also recall u′ generates L(ia−n) and y′ generates L(in+1) so 1i ⊗ (u′ ⊗ v ⊗ y′) generates
the module IndL(ia−n) ⊠ L(j) ⊠ L(in+1). By assumption, K ∋ ψa−n+1 ⊗ (u ⊗ v ⊗ y) and
K ∋ ψa−n ⊗ (u⊗ v ⊗ y).

If K is a R((a+ 1)i+ j)-submodule, K also contains

(ψa−n+1ψa−nψa−n+1 − ψa−nψa−n+1ψa−n) ⊗ (u⊗ v ⊗ y)

(1.29)

(
a−1∑

k=0

xa−1−k
a−n xka−n+2

)
⊗ (u⊗ v ⊗ y)

(6.63),(6.64),(6.66)
0 + 1i ⊗ (u′ ⊗ v ⊗ y′) 6= 0.

Therefore K ∋ 1i ⊗ (u′ ⊗ v ⊗ y′), hence K contains all of IndL(ia−n) ⊠ L(j) ⊠ L(in+1)
contradicting that K is a proper submodule. We must have f̃iL(n) ∼= IndL(n) ⊠ L(i). Now
(6.39) in Theorem 6.10 follows for general m from the m = 1 case as before.

Note that the Structure Theorems do not depend on the characteristic of k. Just as the
dimensions of simple R(mi)-modules are independent of chark, so are the dimensions of simple
R(ci+ j)-modules. In fact, Kleshchev and Ram have conjectured [KR09] that the dimensions
of all simple R(ν)-modules are independent of chark for finite Cartan datum.

36



UNDERSTANDING ϕΛ 37

6.4 Understanding ϕΛ
i

The following theorems measure how the crystal data differs for M and f̃jM .

Theorem 6.12. Let M be an irreducible R(ν)-module Λ ∈ P+ such that prΛM 6= 0 and
prΛ f̃jM 6= 0. Let m = εi(M), k = ϕΛ

i (M). Then there exists an n with 0 ≤ n ≤ a such that

εi(f̃jM) = m− (a− n) and ϕΛ
i (f̃jM) = k + n.

Proof. This follows from Theorem 6.19 which proves the theorem in the case ν = ci+ dj and
from Proposition 6.20 which reduces it to this case.

One important rephrasing of the Theorem is

ϕΛ
i (f̃jM) − εi(f̃jM) = a+ (ϕΛ

i (M) − εi(M)) = −〈hi, αj〉 + (ϕΛ
i (M) − εi(M)). (6.67)

First we introduce several lemmas that will be needed.

Lemma 6.13. Suppose c+ d ≤ a.

i) IndL(icjid) ⊠ L(im) has irreducible cosocle equal to

f̃i
m
L(icjid) = f̃i

m+d
L(icj) =

{
IndL(a− c) ⊠ L(im−a+c+d) m ≥ a− (c+ d)

L(icjid+m) m < a− (c+ d).
(6.68)

ii) Suppose there is a nonzero map

IndL(c1) ⊠ L(c2) ⊠ · · · ⊠ L(cr) ⊠ L(im) −→ Q (6.69)

where Q is irreducible. Then εi(Q) = m+
∑r

t=1 ct and ε∨i (Q) = m+
∑r

t=1(a− ct).

iii) Let B and Q be irreducible and suppose there is a nonzero map IndB⊠L(c) → Q. Then
εi(Q) = εi(B) + c.

Proof. Part (i) follows from the Structure Theorems 6.9, 6.10 for irreducible R((c + d +
m)i + j)-modules. For part (ii) recall IndL(c) ⊠ L(im) is irreducible and is isomorphic to
IndL(im)⊠L(c) by Part (i) of Theorem 6.10. Consider the chain of homogeneous surjections

IndL(ia−c1j) ⊠ L(c2) ⊠ · · · ⊠ L(cr) ⊠ L(ic1+m)

IndL(ia−c1j) ⊠ L(ic1) ⊠ L(c2) ⊠ · · · ⊠ L(cr) ⊠ L(im)

IndL(c1) ⊠ L(c2) ⊠ · · · ⊠ L(cr) ⊠ L(im)

Q

∼=
��

��
��

��
��

(6.70)

Iterating this process we get a surjection

IndL(ia−c1j) ⊠ L(ia−c2j) ⊠ · · · ⊠ L(ia−crj) ⊠ L(ih) ։ Q (6.71)
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where h = m+
∑r

t=1 ct. This shows that εi(Q) = m+
∑r

t=1 ct. The computation of ε∨i (Q) is
similar.

For part (iii) let b = εi(B). By the Shuffle Lemma εi(Q) ≤ b + c. Further there exists
an irreducible module C such that εi(C) = 0 and IndC ⊠ L(ib) ։ B. By the exactness of
induction, we have a surjection

IndC ⊠ L(c) ⊠ L(ib) ∼= IndC ⊠ L(ib) ⊠ L(c) Q// // (6.72)

and so by Frobenius reciprocity εi(Q) ≥ εi(L(c)) + εi(L(ib)) = c+ b.

Lemma 6.14. Let N be an irreducible R(ci+dj)-module with εi(N) = 0. Suppose c+d > 0.

i) There exists irreducible N with εi(N) = 0 and a surjection

IndN ⊠ L(ibj) ։ N (6.73)

with b ≤ a.

ii) There exists an r ∈ N and bt ≤ a for 1 ≤ t ≤ r such that

IndL(ib1j) ⊠ L(ib2j) ⊠ · · · ⊠ L(ibrj) ։ N. (6.74)

Proof. First, we may assume ẽjN 6= 0 or else N would be the trivial module 1, i.e. c = d = 0.
Let b = εi(ẽjN) and let N = ẽi

bẽjN so that εi(N) = 0. There exists a surjection

IndN ⊠ L(ib) ⊠ L(j) ։ N. (6.75)

Recall εi(N) = 0 and by the Structure Theorems, IndL(ib)⊠L(j) has at most one composition
factor with εi = 0, namely L(ibj) in the case b ≤ a. In the case b > a it has no such
composition factors, contradicting εi(N) = 0. Hence b ≤ a and the above map must factor
through

IndN ⊠ L(ibj) ։ N. (6.76)

For part (ii) we merely repeat the argument from part (i) using the exactness of induction.

Lemma 6.15. Suppose Q is irreducible and we have a surjection

IndL(ib1j) ⊠ L(ib2j) ⊠ · · · ⊠ L(ibrj) ⊠ L(ih) ։ Q. (6.77)

i) Then for h≫ 0 we have a surjection

IndL(a− b1) ⊠ L(a− b2) ⊠ · · · ⊠ L(a− br) ⊠ L(ig) ։ Q (6.78)

where g = h−
∑r

t=1(a− bt).

ii) In the case h < ar −
∑r

t=1 bt, we have

IndL(ib1j) ⊠ · · · ⊠ L(ibs−1j) ⊠ L(ibsjig
′

) ⊠ L(a− bs+1) ⊠ · · · ⊠ L(a− br) ։ Q (6.79)
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where g′ = h−
∑r

t=s+1(a− bt) and s is such that

r∑

t=s+1

(a− bt) ≤ h <
r∑

t=s

(a− bt). (6.80)

Proof. Observe that εi(Q) = h. Similar to Lemma 6.13 (i) when d = 0, IndL(ibrj) ⊠ L(ih)
has a unique composition factor with εi = h, namely IndL(ih−(a−br)) ⊠ L(a− br) in the case
h ≥ a− br and L(ibrjih) otherwise. In the latter case, we are done, and note we fall into case
(ii) with s = r. In the former case, we get a surjection

IndL(ib1j) ⊠ · · · ⊠ L(ibr−1j) ⊠ L(ih−(a−br)) ⊠ L(a− br) ։ Q. (6.81)

We apply the same reasoning to IndL(ibr−1j)⊠L(ih−(a−br)) noting that by Lemma 6.13 (iii),
since εi(L(a−br)) = a−br = εi(Q)−(h−(a−br)) we want to pick out the unique composition
factor with εi = h − (a − br). As above, this is IndL(ih−

Pr
t=r−1 bt) ⊠ L(a − br−1) for h large

enough and L(ibr−1jih−(a−br)) otherwise. Continuing in this vein the lemma follows.

Lemma 6.16. Let M be an irreducible R(ν)-module and suppose we have a nonzero map

IndA⊠B ⊠ L(ih) M
f

// // (6.82)

where εi(A) = 0 and B is irreducible. Then there exists a surjective map

IndA⊠ f̃i
h
B M// // (6.83)

Proof. First note εi(M) = εi(B) + h since by Frobenius reciprocity εi(M) ≥ εi(B) + h, but
by the Shuffle Lemma εi(M) ≤ εi(B) + h since εi(A) = 0. Consider IndB ⊠ L(ih). This has

unique irreducible quotient f̃i
h
B with εi(f̃i

h
B) = εi(B) + h and has all other composition

factors U with εi(U) < εi(B)+h = εi(M), by Section 2.5.1. Hence, for any such U there does
not exist a nonzero map IndA⊠U →M . In particular, letting K be the maximal submodule
such that

0 // K // IndB ⊠ L(ih) //
f̃i
h
B

// 0 (6.84)

is exact, the above map f must restrict to zero on the submodule IndA ⊠ K and hence f

factors through IndA⊠ f̃i
h
B ։ M , which is nonzero and thus surjective.

Lemma 6.17. Let A be an irreducible R(ν)-module with prΛA 6= 0 and k = ϕΛ
i (A).

i) Let U be an irreducible R(µ)-module and let t ≥ 1. Then prΛ IndA⊠ L(ik+t) ⊠ U = 0.

ii) Let B be irreducible with ε∨i (B) > k. Then prΛ IndA⊠B = 0. In particular, if Q is any
irreducible quotient of IndA⊠B, then prΛQ = 0.

Proof. Recall for a module B, prΛB = B/J ΛB and so prΛB = 0 if and only if B = J ΛB.
Since A, L(ik+t), and U are all irreducible, each is cyclically generated by any nonzero element.
Let us pick nonzero w ∈ A, v ∈ L(ik+t), u ∈ U . Further IndA⊠L(ik+t) is cyclically generated
as an R(ν+(k+ t)i)-module by 1ν+(k+t)i⊗w⊗v and likewise IndA⊠L(ik+t)⊠U is cyclically
generated as an R(ν + (k + t)i+ µ)-module by 1ν+(k+t)i+µ ⊗ w ⊗ v ⊗ u.
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Recall that IndA ⊠ L(ik+t) has a unique simple quotient f̃i
k+t

A and that prΛ f̃i
k+t

A =
0 because ϕΛ

i (A) = k. Since prΛ is right exact, prΛ IndA ⊠ L(ik+t) = 0. Consequently
J Λ
ν+(k+t)i IndA⊠ L(ik+t) = IndA⊠ L(ik+t). In particular, there exists an η ∈ J Λ

ν+(k+t)i such
that

η1ν+(k+t)i ⊗ w ⊗ v = 1ν+(k+t)i ⊗ w ⊗ v. (6.85)

But then
η1ν+(k+t)i+µ ⊗ w ⊗ v ⊗ u = 1ν+(k+t)i+µ ⊗w ⊗ v ⊗ u. (6.86)

Note we can consider η as an element of J Λ
ν+(k+t)i+µ as well via the canonical inclusion

R(ν + (k + t)i) →֒ R(ν + (k + t)i+ µ). Hence

J Λ
ν+(k+t)i+µ IndA⊠ L(ik+t) ⊠ U = IndA⊠ L(ik+t) ⊠ U (6.87)

and so prΛ IndA⊠ L(ik+t) ⊠ U = 0.
For part (ii), let b = ε∨i (B) and C = (ẽi

∨)bB so we have IndL(ib) ⊠C ։ B. Thus by the
exactness of induction we also have a surjection IndA⊠ L(ib) ⊠C ։ IndA⊠B. By part (i)
and the right exactness of prΛ, prΛ IndA ⊠ B = 0. Likewise prΛQ = 0 for any quotient of
IndA⊠B.

Lemma 6.18. Let A be an irreducible R(ν)-module with prΛA 6= 0 and k = ϕΛ
i (A). Further

suppose εi(A) = εj(A) = 0 and that B is an irreducible R(ci + dj)-module with ε∨i (B) ≤ k.
Let Q be irreducible such that IndA ⊠ B ։ Q is nonzero. Then ε∨i (Q) ≤ λi. Further, if
ε∨j (B) ≤ ϕΛ

j (A) (or if λj ≫ 0) then prΛQ 6= 0.

Proof. Let b = ε∨i (B) and C = (ẽi
∨)bB so that ε∨i (C) = 0. We thus have surjections

IndA⊠ L(ib) ⊠ C ։ IndA⊠B ։ Q. (6.88)

Observe by Frobenius reciprocity

(1ν ⊗ 1bi ⊗ 1(c−b)i+dj)Q 6= 0. (6.89)

Let U be any composition factor of IndA⊠ L(ib) other than f̃i
b
A, so that εi(U) < b. By the

Shuffle Lemma 1ν ⊗ 1bi ⊗ 1(c−b)i+dj(IndU ⊠C) = 0, so there cannot be a nonzero homomor-
phism IndU ⊠ C ։ Q. (More precisely, for every constituent i = i1 . . . i|ν|+b of ch(U) there
exists a y, |ν| < y ≤ |ν| + b with iy 6= i and iy 6= j. Hence by the Shuffle Lemma, for every
constituent i ′ = i′1 . . . i

′
|ν|+c+d of ch(IndU ⊠ C) there exists a z, |ν| < z ≤ |ν| + c + d with

i′z 6= i and i′z 6= j.)
Thus we must have a nonzero map

Ind f̃i
b
A⊠ C ։ Q. (6.90)

By the Shuffle Lemma, ε∨i (Q) ≤ ε∨i (f̃i
b
A) + ε∨i (C) ≤ λi since b ≤ k = ϕΛ

i (A) and ε∨i (C) = 0.
Note ε∨ℓ (Q) ≤ ε∨ℓ (A) + ε∨ℓ (B), so for ℓ 6= i, ℓ 6= j clearly ε∨ℓ (Q) ≤ λℓ and hence prΛQ 6= 0 so
long as ε∨j (B) ≤ ϕΛ

j (A), which will for instance be assured if λj ≫ 0.

In the following theorem and its proof all modules have support ν = ci + dj for some
c, d ∈ N.
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Theorem 6.19. Let M be an irreducible R(ci + dj)-module and let Λ ∈ P+ be such that
prΛM 6= 0 and prΛ f̃jM 6= 0. Let m = εi(M), k = ϕΛ

i (M) . Then there exists an n with

0 ≤ n ≤ a such that εi(f̃jM) = m− (a− n) and ϕΛ
i (f̃jM) = k + n.

Proof. Let N = ẽi
mM so that εi(N) = 0 and we have a surjection

IndN ⊠ L(im) ։ M. (6.91)

Thus, we also have
IndN ⊠ L(im) ⊠ L(j) ։ f̃jM. (6.92)

By the Structure Theorems 6.9, 6.10 for simple R(mi+ j)-modules, for each m− a ≤ γ ≤ m
there exists a composition factor Uγ of IndL(im)⊠L(j) with εi(Uγ) = γ. In particular, there
is a unique γ such that the above map induces

IndN ⊠ Uγ ։ f̃jM (6.93)

as we must have εi(Uγ) = εi(f̃jM), since εi(N) = 0. Choose n so that γ = m − (a − n) =

εi(f̃jM). Note that by the Structure Theorems

Uγ ∼=

{
IndL(n) ⊠ L(im−a) m ≥ a

L(ia−njim−(a−n)) m < a,
(6.94)

and furthermore
f̃i
a
Uγ ∼= IndL(n) ⊠ L(im) (6.95)

in both cases.
By Lemma 6.14 there exist 0 ≤ bt ≤ a such that

IndL(ib1j) ⊠ L(ib2j) ⊠ · · · ⊠ L(ibrj) ։ N (6.96)

and hence we obtain the following surjections

IndL(ib1j) ⊠ L(ib2j) ⊠ · · · ⊠ L(ibrj) ⊠ L(im) ։ M (6.97)

IndL(ib1j) ⊠ L(ib2j) ⊠ · · · ⊠ L(ibrj) ⊠ L(im+h) ։ f̃i
h
M (6.98)

IndL(ib1j) ⊠ L(ib2j) ⊠ · · · ⊠ L(ibrj) ⊠ Um−a+n ։ f̃jM (6.99)

IndL(ib1j) ⊠ L(ib2j) ⊠ · · · ⊠ L(ibrj) ⊠ Um−a+n ⊠ L(ih) ։ f̃i
h
f̃jM (6.100)

We first apply Lemma 6.15 to (6.98) to obtain, for h≫ 0 (in fact h ≥
∑r

t=1(a− bt) −m)

IndL(a− b1) ⊠ L(a− b2) ⊠ · · · ⊠ L(a− br) ⊠ L(ig) ։ f̃i
h
M (6.101)

where g = m+ h−
∑r

t=1(a− bt). Hence, by Lemma 6.13 (ii)

ε∨i (f̃i
h
M) = g +

r∑

t=1

bt = h+m− ar + 2
r∑

t=1

bt. (6.102)

Further, it is clear that ε∨i (f̃i
h+1

) = 1 + ε∨i (f̃i
h
(M)).
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Applying Lemma 6.15 to (6.100) we obtain for h≫ 0

IndL(a− b1) ⊠ · · · ⊠ L(a− br) ⊠ L(n) ⊠ L(im) ⊠ L(ig
′

) ։ f̃i
h
f̃jM (6.103)

where g′ = h− a−
∑r

t=1(a− bt). Note we have used (6.95) above, and in the case m < a we
have also employed Lemma 6.16. As above, by Lemma 6.13 (ii)

ε∨i (f̃i
h
f̃jM) = g′ +m+ a− n+

r∑

t=1

bt (6.104)

= h+m− n− ar + 2
r∑

t=1

bt (6.105)

= ε∨i (f̃i
h
M) − n. (6.106)

Further, it is clear that ε∨i (f̃i
h+1

f̃jM) = 1 + ε∨i (f̃i
h
f̃jM).

For h ≫ 0 we have shown that ε∨i (f̃i
h
f̃jM) = ε∨i (f̃i

h
M) − n. Now fix such an h and

let ωi = h + (m − ar + 2
∑r

t=1 bt), which we may assume is positive. Let ωℓ = λℓ for

ℓ 6= i and set Ω =
∑

i∈I ωiΛi ∈ P+. Given these choices, we have shown ε∨i (f̃i
h
M) = ωi,

but ε∨i (f̃i
h+1

M) = ωi + 1. Hence ϕΩ
i (M) = h. Likewise ε∨i (f̃i

h
f̃jM) = ωi − n, so that

ε∨i (f̃i
h+n

f̃jM) = ωi, but ε∨i (f̃i
h+n+1

f̃jM) = ωi + 1 yielding ϕΩ
i (f̃jM) = h+ n. Observe then

that
ϕΩ
i (f̃jM) − ϕΩ

i (M) = n. (6.107)

By our hypotheses and the choice of Ω, we know prΛ and prΩ are nonzero for both modules.
Hence by Remark 6.7,

ϕΛ
i (f̃jM) − ϕΛ

i (M) = ϕΩ
i (f̃jM) − ϕΩ

i (M) = n.

We have just shown in Theorem 6.19 that Theorem 6.12 holds for all R(ci+ dj)-modules.
Next we show that to deduce the theorem for R(ν)-modules for arbitrary ν it suffices to know
the result for ν = ci+ dj.

Proposition 6.20. Let Λ ∈ P+ and let M be an irreducible R(ν)-module such that prΛM 6=
0 and prΛ f̃jM 6= 0. Suppose εi(M) = m and εi(f̃jM) = m − (a − n) for some 0 ≤ n ≤
a. Then there exists c, d and an irreducible R(ci + dj)-module B such that εi(B) = m,
εi(f̃jB) = m− (a−n) and there exists Ω ∈ P+ with prΩ(B) 6= 0, prΩ(f̃jB) 6= 0, prΩ(M) 6= 0,

prΩ(f̃jM) 6= 0, and furthermore

ϕΩ
i (f̃jM) − ϕΩ

i (M) = ϕΩ
i (f̃jB) − ϕΩ

i (B). (6.108)

Note that by Remark 6.7 ϕΛ
i (f̃jM)−ϕΛ

i (M) = ϕΩ
i (f̃jM)−ϕΩ

i (M), so once we prove this
proposition, it together with Theorem 6.19 proves Theorem 6.12.

Proof. Let N = ẽi
mM , so that εi(N) = 0. Then there exists irreducible modules A and B

with a surjection IndA⊠B ։ N such that εi(A) = εj(A) = 0 and B is an R(c̄i+ dj)-module
for some c̄, d. (For instance, one may construct A by setting

A1 = N, A2r = ẽj
εj(A2r−1)A2r−1, A2r+1 = ẽi

εi(A2r)A2r (6.109)
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which eventually stabilizes. So we may set A = Ar for r ≫ 0.)
Observe, as εi(A) = εj(A) = 0, we must have εi(B) = εi(N) = 0 and εj(B) = εj(N).

Hence we also have a surjection

IndA⊠B ⊠ L(im) ։ M (6.110)

which by Lemma 6.16 produces a map

IndA⊠B ։ M (6.111)

where B = f̃i
m
B. Observe εi(B) = εi(M) = m. We have a surjection

IndA⊠B ⊠ L(j) ։ f̃jM (6.112)

and since εj(B) = εj(M), Lemma 6.16 again produces a map

IndA⊠ f̃jB ։ f̃jM. (6.113)

Again observe εi(f̃jB) = εi(f̃jM) = m− (a− n). From (6.111) and (6.113) we also have
nonzero maps

IndA⊠B ⊠ L(ih) ։ f̃i
h
M, IndA⊠ f̃jB ⊠ L(ih

′

) ։ f̃i
h′

f̃jM (6.114)

so applying Lemma 6.16, there exist surjections

IndA⊠ f̃i
h
B ։ f̃i

h
M, IndA⊠ f̃i

h′

f̃jB ։ f̃i
h′

f̃jM. (6.115)

Let Ω =
∑

i∈I ωiΛi ∈ P+ be such that ωℓ = max{λℓ, ε
∨
ℓ B} for all ℓ ∈ I. Recall B is an

R(ci + dj)-module, where c = c̄ + m, so for ℓ 6= i, j, ε∨ℓ B = 0. Take h = ϕΩ
i (M) and h′ =

ϕΩ
i (f̃jM) so that prΩ(f̃i

h
M) 6= 0, prΩ(f̃i

h′

f̃jM) 6= 0, but prΩ(f̃i
h+1

M) = prΩ(f̃i
h′+1

f̃jM) =
0.

From the contrapositive to Lemma 6.17 (ii) applied to (6.115) we deduce

ε∨i (f̃i
h
B) ≤ ϕΩ

i (A), ε∨i (f̃i
h′

f̃jB) ≤ ϕΩ
i (A). (6.116)

However, applying the contrapositive of Lemma 6.18

ε∨i (f̃i
h+1

B) > ϕΩ
i (A), ε∨i (f̃i

h′+1
f̃jB) > ϕΩ

i (A). (6.117)

We thus conclude

ε∨i (f̃i
h
B) = ϕΩ

i (A) = ε∨i (f̃i
h′

f̃jB) (6.118)

and furthermore jumpi(f̃i
h
B) = jumpi(f̃i

h′

f̃jB) = 0.

Recall that ϕΩ
i (C) = 1 + ϕΩ

i (f̃iC) for any irreducible module C. Hence, we compute

ϕΩ
i (f̃jB) − ϕΩ

i (B) = (h′ + ϕΩ
i (f̃i

h′

f̃jB)) − (h+ ϕΩ
i (f̃i

h
B))

= (h′ − h) + ϕΩ
i (f̃i

h′

f̃jB) − ϕΩ
i (f̃i

h
B)

Prop 6.6 (iv) (h′ − h) + (jumpi(f̃i
h′

f̃jB) − ε∨i (f̃i
h′

f̃jB) + ωi)

−(jumpi(f̃i
h
B) − ε∨i (f̃i

h
B) + ωi)

= (h′ − h) + (0 − ϕΩ
i (A) + ωi) − (0 − ϕΩ

i (A) + ωi)

= h′ − h

= ϕΩ
i (f̃jM) − ϕΩ

i (M).
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Corollary 6.21 (Corollary of Theorem 6.12). Let Λ =
∑

i∈I λiΛi ∈ P+ and let M an
irreducible R(ν)-module such that prΛM 6= 0. Then

ϕΛ
i (M) = λi + εi(M) + wti(M).

Proof. The proof is by induction on the length |ν|. For |ν| = 0 we haveM = 1 and wt(M) = 0.
For all i ∈ I observe that ϕΛ

i (1) = λi, εi(1) = 0, and wti(M) = 0, so that the claim clearly
holds for M = 1. Fix ν with |ν| > 0 and an irreducible R(ν)-module M . Let j ∈ I be such
that εj(M) 6= 0, noting such j exists since |ν| > 0.

Consider N = ẽjM . By induction we may assume the claim holds for N . Note M = f̃jN .
By Theorem 6.12 and its rephrasing (6.67), for any i ∈ I

ϕΛ
i (M) = ϕΛ

i (f̃jN) = ϕΛ
i (N) + εi(f̃jN) − εi(N) + aij

= (λi + εi(N) + wti(N)) + εi(f̃jN) − εi(N) + aij

= λi + εi(f̃jN) + wti(N) − 〈hi, αj〉

= λi + εi(M) + wti(M).

Note that we have finally proved Proposition 6.6 (v). By Remark 2.4, given an irreducible
moduleM we can always take Λ large enough so that prΛM 6= 0, and then Proposition 6.6 (iv)
combined with the above corollary gives

jumpi(M) = ϕΛ
i (M) + ε∨i (M) + λi

= (λi + εi(M) + wti(M)) + ε∨i (M) − λi

= εi(M) + ε∨i (M) + wti(M). (6.119)

As mentioned in the partial proof of Proposition 6.6 above, the σ-symmetry of this charac-
terization of jumpi(M) now implies the remaining parts (i), (iii) of that proposition. In the
next section, we will use all characterizations of jumpi(M) from Proposition 6.6.

7 Identification of crystals – “Reaping the Harvest”

Now that we have built up the machinery of Section 6, we can prove the module theoretic
crystal B is isomorphic to B(∞). Once we have completed this step, it is not much harder to
show BΛ ∼= B(Λ).

7.1 Constructing the strict embedding Ψ

Recall Proposition 6.2 that said ε∨i (f̃jM) = ε∨i (M) when i 6= j but when i = j either

ε∨i (f̃iM) = ε∨i (M) or ε∨i (M) + 1.

Proposition 7.1. Let M be a simple R(ν)-module, and write c = ε∨i (M).

i) Suppose ε∨i (f̃iM) = ε∨i (M) + 1. Then

ẽi
∨f̃iM ∼= M (7.1)

up to grading shift.
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ii) Suppose ε∨i (f̃jM) = ε∨i (M) where i and j are not necessarily distinct. Then

(ẽi
∨)c(f̃jM) ∼= f̃j(ẽi

∨cM) (7.2)

up to grading shift.

Proof. For part (i), the Jump Lemma 6.5 gives us f̃iM ∼= f̃i
∨
M . Therefore, ẽi

∨f̃iM ∼=

ẽi
∨f̃i

∨
M ∼= M .

For part (ii) let M = (ẽi
∨)cM so that ε∨i (M ) = 0 and we have a surjection IndL(ic)⊠M ։

M as well as
IndL(ic) ⊠M ⊠ L(j) ։ f̃jM. (7.3)

Note that as c = ε∨i (f̃jM), all composition factors of (e∨i )cf̃jM are, up to grading shift,

isomorphic to (ẽi
∨)cf̃jM , so there exists a surjection (e∨i )cf̃jM ։ (ẽi

∨)cf̃jM . As (e∨i )c is
exact, we may apply it to (7.3) and compose with the map above yielding

(e∨i )c(IndL(ic) ⊠M ⊠ L(j)) ։ (ẽi
∨)cf̃jM. (7.4)

In the case j 6= i, by the Mackey Theorem [KL09, Proposition 2.8] (e∨i )c(IndL(ic)⊠M⊠L(j))
has a filtration whose subquotients are isomorphic (up to grading shift) to IndM ⊠L(j). So
(7.4) yields a map

IndM ⊠ L(j) ։ (ẽi
∨)cf̃jM, (7.5)

which implies
(ẽi

∨)cf̃jM ∼= f̃jM ∼= f̃j(ẽi
∨)cM. (7.6)

In the case j = i, the subquotients are isomorphic to IndM ⊠L(i) or IndL(i) ⊠M . But,
by assumption ε∨i ((ẽi

∨)cf̃iM) = 0, so by Frobenius reciprocity we cannot have a nonzero map

from IndL(i) ⊠M to (ẽi
∨)cf̃iM . As before, we must have

IndM ⊠ L(i) ։ (ẽi
∨)cf̃iM (7.7)

and so (ẽi
∨)cf̃jM = (ẽi

∨)cf̃iM ∼= f̃iM = f̃i(ẽi
∨)cM = f̃j(ẽi

∨)cM .

Proposition 7.2. Let M be an irreducible R(ν)-module, and write c = ε∨i (M), M =
(ẽi

∨)c(M).

i) εi(M) = max
{
εi(M), c − wti(M)

}
.

ii) Suppose εi(M) > 0. Then

ε∨i (ẽiM) =

{
c if εi(M) ≥ c− wti(M ),

c− 1 if εi(M) < c− wti(M ).
(7.8)

iii) Suppose εi(M) > 0. Then

(ẽi
∨)ε

∨

i (eeiM)(ẽiM) =

{
ẽi(M) if εi(M) ≥ c− wti(M ),

M if εi(M) < c− wti(M ).
(7.9)
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Proof. Suppose εi(M) > εi(M). Then jumpi(M) = 0 and by Proposition 6.6 (v)

0 = jumpi(M) = εi(M) + ε∨i (M) + wti(M) = εi(M) + c+ wti(M ) − 2c (7.10)

so that εi(M) = c − wti(M), and clearly εi(M) = max
{
εi(M ), c− wti(M)

}
. It is always

the case that jumpi(M) ≥ 0. If εi(M) = εi(M), then as above εi(M) = (c − wti(M )) +
jumpi(M) ≥ c− wti(M ). So again εi(M) = max

{
εi(M ), c− wti(M)

}
.

For part (ii) consider two cases.
Case 1 (εi(M ) < c−wti(M)): Recall by Proposition 6.6 (v), jumpi(M ) = ε∨i (M)+εi(M)+

wti(M ) = 0 + εi(M) + wti(M ) so jumpiM < c if and only if εi(M) < c − wti(M ). Since

jumpiM < c then 0 = jumpi((f̃i
∨
)c−1M ) = jumpi(ẽi

∨M) by (6.11). By the Jump Lemma 6.5,

f̃i(ẽi
∨M) ∼= f̃i

∨
(ẽi

∨M) ∼= M . Hence ẽi
∨M = ẽiM and so ε∨i (ẽiM) = ε∨i (ẽi

∨M) = c− 1.
Case 2 (εi(M ) ≥ c − wti(M )): As above this case is equivalent to jumpiM ≥ c. Note

if c = 0 then (ii) obviously holds by Proposition 6.2. If c > 0 by (6.11), we must have 0 <

jumpi((f̃i
∨
)c−1M) = jumpi(ẽi

∨M). Suppose that jumpi(ẽiM) = 0. Then as above f̃i
∨
ẽiM ∼=

f̃iẽiM ∼= M and so ẽiM ∼= ẽi
∨M yielding jumpi(ẽi

∨M) = 0 which is a contradiction. So we
must have jumpi(ẽiM) > 0. Then by Proposition 6.6 ε∨i (ẽiM) = ε∨i (f̃iẽiM) = ε∨i (M) = c.

For part (iii), first suppose εi(M) ≥ c−wti(M). Then by part (ii) ε∨i (ẽiM) = c = εi(M).

In other words ε∨i (ẽiM) = ε∨i (f̃iẽiM) so by Proposition 7.1 applied to ẽiM ,

f̃i(ẽi
∨)cẽiM ∼= (ẽi

∨)cf̃iẽiM ∼= (ẽi
∨)cM = M. (7.11)

Hence (ẽi
∨)cẽiM ∼= ẽiM .

Next suppose εi(M) < c− wti(M̄). Then by part (ii)

ε∨i (ẽiM) = c− 1 = ε∨i (M) − 1. (7.12)

In other words ε∨i (f̃iẽiM) = ε∨i (ẽiM) + 1, so by Proposition 7.1 applied to ẽiM ,

ẽi
∨M ∼= ẽi

∨f̃iẽiM ∼= ẽiM, (7.13)

hence (ẽi
∨)c−1ẽiM ∼= (ẽi

∨)c−1ẽi
∨M ∼= (ẽi

∨)cM ∼= M .

Proposition 7.3. For each i ∈ I define a map

Ψi : B → B ⊗Bi

M 7→ (ẽi
∨)c(M) ⊗ bi(−c),

where c = ε∨i (M). Then Ψi is a strict embedding of crystals.

Proof. First we show that Ψi is a morphism of crystals. (M1) is obvious. For (M2) let
M = (ẽi

∨)cM . We compute

wt(ψi(M)) = wt(M ⊗ bi(−c)) = wt(M ) + wt(bi(−c)) = wt(M) + cαi− cαi = wt(M). (7.14)

Consider first the case j 6= i. By Proposition 6.2

εj(Ψi(M)) = εj(M ⊗ bi(−c))

= max{εj(M), εj(bi(−c)) − 〈hj ,wt(M )〉}

= max{εj(M),−∞} = εj(M )

= εj(M).
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In the case j = i, Proposition 7.2 (i) implies

εi(Ψi(M)) = εi(M ⊗ bi(−c))

= max{εi(M), εi(bi(−c)) − 〈hi,wt(M)〉} = max{εi(M), c − wti(M)}

= εi(M). (7.15)

Since for both crystals, ϕj(b) = εj(b)+〈hj ,wt(b)〉 it follows ϕj(M) = ϕj(Ψi(M)) for all j ∈ I.
It is clear that Ψi is injective. We will prove a stronger statement than (M3) and (M4),

namely Ψi(ẽjM) = ẽj(Ψi(M)) and Ψi(f̃jM) = f̃j(Ψi(M)) which will show Ψi is not just a
morphism of crystals, but since it is injective, Ψi is a strict embedding of crystals.

Observe

ẽj(Ψi(M)) = ẽj
(
M ⊗ bi(−c)

)
=

{
ẽjM ⊗ bi(−c) if ϕj(M) ≥ εi(bi(−c)) = c

M ⊗ bi(−c+ 1) if ϕj(M) < c.
(7.16)

We first consider the case when j = i. If εi(M) = 0, then clearly εi(M) = 0 and further
ẽiM = ẽiM = 0. By Proposition 7.2 (i)

εi(M) = 0 = εi(M) = max{εi(M), c − wti(M)} ≥ c− wti(M), (7.17)

yielding ϕi(M) = εi(M ) + wti(M ) ≥ (c− wti(M )) + wti(M) = c, so by (4.8), (4.10) we get

ẽiΨi(M) = ẽiM ⊗ bi(−c) = 0 = Ψi(0) = Ψi(ẽiM). (7.18)

Now suppose εi(M) > 0. Using that ϕi(M) := εi(M) + wti(M), (4.8), and (4.10), Proposi-
tion 7.2 implies we can rewrite

ẽiΨi(M) =

{
(ẽi

∨)cẽiM ⊗ bi(−c) if εi(M ) ≥ c− wti(M )

(ẽi
∨)c−1ẽiM ⊗ bi(−c+ 1) if εi(M ) < c− wti(M )

(7.19)

= (ẽi
∨)ε

∨

i (eeiM)ẽiM ⊗ bi(ε
∨
i (ẽiM)) (7.20)

= Ψi(ẽiM). (7.21)

When j 6= i note that ε∨i (ẽjM) = ε∨i (M) = c so long as ẽjM 6= 0, by Proposition 6.2

applied to ẽjM . Equation (ii) of Proposition 7.1 implies M = (ẽi
∨)cM = f̃j(ẽi

∨)cẽjM , so
ẽjM = (ẽi

∨)cẽjM . Therefore, by (7.16) as εj(bi(−c)) = −∞,

ẽj(Ψi(M)) = ẽjM ⊗ bi(−c) = (ẽi
∨)cẽjM ⊗ bi(−c) = Ψi(ẽjM). (7.22)

In the case ẽjM = 0, Proposition 6.2 implies ẽjM = 0 as well, so we compute

ẽj(Ψi(M)) = ẽjM ⊗ bi(−c) = 0 = Ψi(0) = Ψi(ẽjM).

The proof that Ψi(f̃jM) = f̃j(Ψi(M)) is similar.

7.2 Main Theorems

Theorem 7.4. The crystal B is isomorphic to B(∞).
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Proof. Recall that by abuse of notation, for irreducible modules M , we write M ∈ B as
shorthand for [M ] ∈ B. We show that the crystal B satisfies the characterizing properties
of B(∞) given in Proposition 4.3. Properties (B1)-(B4) are obvious with 1 the unique node
with weight zero. The embedding Ψi : B → B ⊗ Bi for (B5) was constructed in the previous
section. (B6) follows from the definition of Ψi as ε∨j (M) ≥ 0 for all M ∈ B, j ∈ I. For (B7) we

must show that for M ∈ B other than 1, then there exists i ∈ I such that Ψi(M) = N ⊗ f̃i
n
bi

for some N ∈ B and n > 0. But every such M has ε∨i (M) > 0 for at least one i ∈ I, so that
N can be taken to be ẽi

∨n(M) for n = ε∨i (M) > 0.

Now we will show the data (BΛ, εΛi , ϕ
Λ
i , ẽi

Λ, ẽi
Λ,wtΛ) of Section 5.3 defines a crystal graph

and identify it as the highest weight crystal B(Λ).

Theorem 7.5. BΛ is a crystal; furthermore the crystal BΛ is isomorphic to B(Λ).

Proof. Proposition 8.2 of Kashiwara [Kas95] gives us an embedding

Υ∞ : B(Λ) → B(∞) ⊗ TΛ (7.23)

which identifies B(Λ) as a subcrystal of B(∞) ⊗ TΛ. The nodes of B(Λ) are associated with
the nodes of the image

ImΥ∞ = {b⊗ tΛ | ε∗i (b) ≤ 〈hi,Λ〉, for all i ∈ I} (7.24)

where c = ε∗i (b) is defined via Ψib = b′ ⊗ bi(−c) for the strict embedding Ψi : B(∞) →
B(∞) ⊗ Bi. The crystal data for B(Λ) is thus inherited from that of B(∞) ⊗ TΛ. Via our
isomorphism B(∞) ⊗ TΛ

∼= B ⊗ TΛ of Theorem 7.4 and the description of

Ψi : B → B ⊗Bi

M 7→ (ẽi
∨)ε

∨

i (M)M ⊗ bi(−ε
∨
i (M)) (7.25)

the set
{M ⊗ tΛ ∈ B ⊗ tΛ | ε∨i (M) ≤ λi, for all i ∈ I} (7.26)

endowed with the crystal data of B ⊗ TΛ is thus isomorphic to B(Λ).
Recall from Section 5.3 this is precisely ImΥ, as ε∨i (M) ≤ λi for all i ∈ I if and only if

prΛM 6= 0 which happens if and only if M = inflΛ M for some M ∈ BΛ. By Kashiwara’s
Proposition, we know ImΥ ∼= B(Λ) as crystals.

What remains is to check that the crystal data ImΥ inherits from B⊗ TΛ agrees with the
data defined in Section 5.3 for BΛ. Once we verify this, we will have shown BΛ is a crystal,
BΛ ∼= B(Λ), and Υ is an embedding of crystals.

Let M ∈ BΛ. Recall, since prΛ inflΛ M 6= 0, then 0 ≤ ϕΛ
i (inflΛ M) = ϕΛ

i (M) which was

defined as max{k | prΛ f̃i
k
(inflΛ M) 6= 0}. We verify

ϕi(ΥM) = ϕi(inflΛ M⊗ tΛ)

= ϕi(inflΛ M) + λi

= εi(inflΛ M) + wti(inflΛ M) + λi

Cor 6.21 ϕΛ
i (inflΛ M) = ϕΛ

i (M). (7.27)

This computation, along with (5.11)–(5.14) completes the check that (BΛ, εΛi , ϕ
Λ
i , ẽi

Λ, ẽi
Λ,wtΛ)

is a crystal and isomorphic to B(Λ).
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7.3 U+
q -module structures

Set
G∗

0(R) =
⊕

ν

G0(R(ν))∗ G∗
0(R

Λ) =
⊕

ν

G0(R
Λ(ν))∗

where, by V ∗ we mean the linear dual HomA(V,A). Because G0(R) and G0(R
Λ) are AU+

q -

modules, we can endow G∗
0(R), G∗

0(R
Λ) with a left AU+

q -module structure in several ways, via
a choice of anti-automorphism. Here we denote by ∗ the A-linear anti-automorphism defined
by

e∗i = ei for all i ∈ I.

Specifically, for y ∈ AU+
q , γ ∈ G∗

0(R) or G∗
0(R

Λ), and N simple, set

(y · γ) ([N ]) = γ (y∗[N ])

where we will identify eΛi with ei.
G0(R(ν))∗ has basis given by {δM |M ∈ B,wt(M) = −ν} defined by

δM ([N ]) =

{
q−r M ∼= N{r}

0 otherwise,

where N ranges over simple R(ν)-modules. We set wt(δM ) = −wt(M). Likewise G0(R
Λ(ν))∗

has basis {dM | M ∈ BΛ,wt(M) = −ν + Λ} defined similarly. Note that if δM has degree d
then δM{1} = q−1δM has degree d− 1. Recall 1 ∈ B denotes the trivial R(0)-module and we

will also write 1 ∈ BΛ for the trivial RΛ(0)-module.

Lemma 7.6.

i) e
(m)
i · δ1 = δL(im) ∈ G0(R(mi))∗; e

(m)
i · d1 = 0 ∈ G0(R

Λ(mi))∗ ⊆ G∗
0(R

Λ) if m ≥ λi + 1.

ii) G∗
0(R) is generated by δ1 as a AU+

q -module; G∗
0(R

Λ) is generated by d1 as a AU+
q -module.

Proof. The first part follows since e
(m)
i L(im) ∼= 1 and the only irreducible module N for which

e
(m)
i N is a nonzero R(0)-module is N ∼= L(im){r} for some r ∈ Z. Recall prΛ L(im) = 0 if

and only if m ≥ λi + 1.
For the second part, recall 1 co-generates G0(R) (resp. G0(R

Λ)) in the sense that for any
irreducible M , there exist it ∈ I such that

e
(mk)
ik

· · · e
(m2)
i2

e
(m1)
i1

M ∼= a1,
where mt = εit(ẽit−1

mt−1 · · · ẽi1
m1M) and a ∈ A (in fact a = qr for some r ∈ Z). So certainly

δ1 generates G∗
0(R) (resp. d1 generates G0(R

Λ)).
More specifically, an inductive argument relying on “triangularity” with respect to εi gives

δM ∈ AU+
q · δ1 and dM ∈ AU+

q · d1.
Lemma 7.7.

i) The maps

AU+
q

F
−→ G∗

0(R) AU+
q

F
−→ G∗

0(R
Λ) (7.28)

y 7→ y · δ1 y 7→ y · d1 (7.29)

are AU+
q -module homomorphisms.
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ii) F and F are surjective.

iii) kerF ∋ e
(λi+1)
i for all i ∈ I.

Proof. To show F , F are AU+
q -maps, we need only check the Serre relations (6.16) vanish on

G∗
0(R), G∗

0(R
Λ). But as the corresponding operators are invariant under ∗ and vanish on any

[N ], they certainly kill any δM , dM.
Now F (resp. F) is clearly surjective as it contains the generator δ1 (resp. d1) in its

image.
The third statement follows from part (i) of Lemma 7.6.

If V (Λ) is the irreducible highest weight Uq(g)-module with highest weight Λ and highest
weight vector vΛ then its A-form, or integral form, AV (Λ) is the UA-submodule of V (Λ)
generated by vΛ. In particular, AV (Λ) = AU−

q · vΛ. We let V (Λ)∗ denote the graded dual of
V (Λ), whose elements are sums of δv, v ∈ V (Λ). If v ∈ V (Λ) has weight µ then δv ∈ V (Λ)∗

has weight −µ and eiv, if nonzero, has weight µ+ i in the notation of this paper. We set

AV
∗(Λ) = AU+

q · δvΛ

endowed with the left AU+
q -module structure

y · δv(w) = δv(y
∗w).

Note that the −µ weight space of the dual is the dual of the µ weight space, and that both
weight spaces are free A-modules of finite rank.

As a left AU+
q -module

AV
∗(Λ) ∼= AU+

q /
∑

i∈I

AU+
q · e

(λi+1)
i . (7.30)

Theorem 7.8. As AU+
q modules

1. AU+
q
∼= G∗

0(R),

2. AV
∗(Λ) ∼= G∗

0(R
Λ),

3. AV (Λ) ∼= G0(R
Λ).

Proof. Note that both F and F are surjective and preserve weight in the sense that wt(ei) = i
in the notation of this paper. We know the dimension of the ν weight space of U+

q is

|{b ∈ B(∞) | wt(b) = −ν}| = |{M ∈ B | wt(M) = −ν}| = rankAG0(R(ν)) = rankAG0(R(ν))∗.

Because A is an integral domain, a surjection between two free A-modules of the same (finite)
rank must be an injection. Hence F must also be injective and hence an isomorphism.

Since the left ideal
∑

i∈I AU+
q · e

(λi+1)
i is contained in the kernel of F by part (iii) of

Lemma 7.7, F induces a surjection

AV
∗(Λ) ։ G∗

0(R
Λ).
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The dimension of the −Λ + ν weight space of V (Λ)∗ is the same as

dimV (Λ)Λ−ν = |{b ∈ B(Λ) | wt(b) = Λ − ν}| = |{M ∈ BΛ | wt(M) = Λ − ν}| (7.31)

= rankAG0(R
Λ(ν)) = rankAG0(R

Λ(ν))∗, (7.32)

so as above, F must in fact be an isomorphism.
The third statement follows from dualizing with respect to the antiautomorphism ∗.

We note that [KL09] proves a stronger statement than part (1) of Theorem 7.8, namely
that Af ∼= K0(R) as A-bialgebras. So in particular, as AU+

q -modules, AU+
q
∼= K0(R). Using

their result yields another proof that AU−
q
∼= G0(R) as AU+

q -modules. Using similar methods

to theirs, one should also be able to give an alternate proof that AV (Λ) ∼= G0(R
Λ) as AU+

q -
modules.
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