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Tableaux on Periodic Skew Diagrams and

Irreducible Representations of the Double

Affine Hecke Algebra of Type A

Takeshi Suzuki and Monica Vazirani

1 Introduction

As is well known, Young diagrams consisting of n boxes parameterize isomorphism

classes of finite-dimensional irreducible representations of the symmetric group Sn of

degree n, and moreover the structure of each irreducible representation is described in

terms of tableaux on the corresponding Young diagram; namely, a basis of the represen-

tation is labeled by standard tableaux, with which the action of Sn generators is explic-

itly described. This combinatorial description due to A. Young has played an essential

role in the study of the representation theory of the symmetric group (or the affine Hecke

algebra), and its generalization to the (degenerate) affine Hecke algebra Hn(q) of GLn

has been given in [3, 8, 9], where skew Young diagrams appear on combinatorial side.

The purpose of this paper is to introduce an “affine analogue” of skew Young di-

agrams and tableaux, which give a parameterization and a combinatorial description of

a family of irreducible representations of the double affine Hecke algebra Ḧn(q) of GLn

over a field F, where q ∈ F is a parameter of the algebra.

The double affine Hecke algebra was introduced by Cherednik [2, 4] and has since

been used by him and by several authors to obtain important results about diagonal

coinvariants, Macdonald polynomials, and certain Macdonald identities.

In this paper, we focus on the case where q is not a root of 1, and we consider rep-

resentations of Ḧn(q) that are X-semisimple; namely, we consider representations which
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have a basis of simultaneous eigenvectors with respect to all elements in the commuta-

tive subalgebra F[X] = F[x±1
1 , x±1

2 , . . . , x±1
n , ξ±1] of Ḧn(q). (In [8, 9], such representations

for affine Hecke algebras are referred to as “calibrated.”)

On combinatorial side, we introduce periodic skew diagrams as skew Young di-

agrams consisting of infinitely many boxes satisfying certain periodicity conditions. We

define a tableau on a periodic skew diagram as a bijection from the diagram to Z which

satisfies the condition reflecting the periodicity of the diagram.

Periodic skew diagrams are natural generalization of skew Young diagrams and

have appeared in [5] (or implicitly in [1]), but the notion of tableaux on them seems new.

To connect the combinatorics with the representation theory of the double affine

Hecke algebra Ḧn(q), we construct, for each periodic skew diagram, an Ḧn(q)-module

that has a basis of F[X]-weight vectors labeled by standard tableaux on the diagram by

giving the explicit action of the Ḧn(q) generators.

Such modules are X-semisimple by definition. We show that they are irreducible,

and that our construction gives a one-to-one correspondence between the set of periodic

skew diagrams and the set of isomorphism classes of irreducible representations of the

double affine Hecke algebra that are X-semisimple.

The classification results here recover those of Cherednik’s in [5] (see also [6]),

but, in this paper, we provide a detailed proof based on purely combinatorial arguments

concerning standard tableaux on periodic skew diagrams.

Note that the corresponding results for the degenerate double affine Hecke alge-

bra of GLn easily follow from a parallel argument.

An outline of the paper is as follows. Section 2 is a review of the affine root system

and the extended affine Weyl group of ĝln.

The contents of Section 3 are purely combinatorial. We introduce periodic skew

diagrams and tableaux on them in Sections 3.1 and 3.2, respectively. These combinato-

rial objects are considered worth studying in themselves, and here we investigate their

relation with the affine Weyl group and content functions. The set of tableaux on a pe-

riodic skew diagram admits an action of the extended affine Weyl group Ẇ, and it turns

out that this action is simply transitive and gives a bijective correspondence between the

tableaux and the elements of Ẇ. In Section 3.5, we explicitly describe the subset Ẇ cor-

responding to the set of the standard tableaux, which is the most interesting class from

the view point of the representation theory.

We study content functions, in particular, those associated with standard tab-

leaux, in Section 3.6. The results obtained here lay the foundation to show our construc-

tion exhausts all X-semisimple irreducible modules.
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In Section 4, we introduce the double affine Hecke algebra and apply the combi-

natorics studied in Section 3 to its representation theory.

We remind the reader in Section 4.1 of the definition of the algebra Ḧn(q) and re-

view intertwining operators, which were also introduced by Cherednik and are elemen-

tary tools in the representation theory of Ḧn(q).

We derive some of rigid properties of X-semisimple modules in Section 4.2. Then

we give a combinatorial and explicit construction of the representations of Ḧn(q) in

Section 4.3 using tableaux on periodic skew diagrams. The related combinatorics is sim-

ilar to and inspired by that in [9] for the affine Hecke algebra.

Note that the statements of Section 4.2 also hold in the case that q is a root of

unity. However, when q is a root of unity, the combinatorial description of the modules is

incredibly complicated.

It is proved in Section 4.4 that we have constructed all the X-semisimple irre-

ducible representations and that they are distinct up to diagonal shift of periodic skew

diagrams. This gives the classification of the X-semisimple irreducible representations

of Ḧn(q).

2 The affine root system and Weyl group

Let Q denote the field of rational numbers, and let Z denote the ring of integral numbers.

We use the notation

Z≥k = {n ∈ Z | n ≥ k} (2.1)

for k ∈ Z, and

[i, j] = {i, i + 1, . . . , j} (2.2)

for i, j ∈ Z with i ≤ j.

2.1 The affine root system

Let n ∈ Z≥2. Let h̃ be an (n + 2)-dimensional vector space over Q with the basis

{ε∨
1 , ε

∨
2 , . . . , ε

∨
n , c, d}:

h̃ =

( n⊕

i=1

Qε∨
i

)
⊕ Qc⊕ Qd. (2.3)
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Introduce the nondegenerate symmetric bilinear form (|) on h̃ by

(
ε∨

i |ε∨
j

)
= δij,

(
ε∨

i |c
)

=
(
ε∨

i |d
)

= 0,

(c|d) = 1, (c|c) = (d|d) = 0.
(2.4)

Put h =
⊕n

i=1Qε∨
i and ḣ = h ⊕ Qc.

Let h̃∗ = (
⊕n

i=1 Qεi) ⊕ Qc∗ ⊕ Qδ be the dual space of h̃, where εi, c
∗, and δ are the

dual vectors of ε∨
i , c, and d, respectively.

We identify the dual space ḣ∗ of ḣ as a subspace of h̃∗ via the identification ḣ∗ =

h̃∗/Qδ ∼= h∗ ⊕ Qc∗.

The natural pairing is denoted by 〈|〉 : h̃∗ × h̃ → Q. There exists an isomorphism

h̃∗ → h̃ such that εi �→ ε∨
i , δ �→ c, and c∗ �→ d. We denote by ζ∨ ∈ h̃ the image of ζ ∈ h̃∗

under this isomorphism. Introduce the bilinear form (|) on h̃∗ through this isomorphism.

Note that

(ζ | η) =
〈
ζ | η∨

〉
=

(
ζ∨ | η∨

) (
ζ, η ∈ h̃∗

)
. (2.5)

Put αij = εi − εj (1 ≤ i �= j ≤ n) and αi = αii+1 (1 ≤ i ≤ n − 1). Then

R =
{
αij | i, j ∈ [1, n], i �= j

}
, R+ =

{
αij | i, j ∈ [1, n], i < j

}
,

Π =
{
α1, α2, . . . , αn−1

} (2.6)

give the system of roots, positive roots, and simple roots of type An−1, respectively.

Put α0 = −α1n + δ, and define the set Ṙ of (real) roots, Ṙ+ of positive roots, and Π̇

of simple roots of type A
(1)
n−1 by

Ṙ =
{
α + kδ | α ∈ R, k ∈ Z

}
,

Ṙ+ =
{
α + kδ | α ∈ R+, k ∈ Z≥0

}
	
{

− α + kδ | α ∈ R+, k ∈ Z≥1

}
,

Π̇ =
{
α0, α1, . . . , αn−1

}
.

(2.7)

2.2 Affine Weyl group

Definition 2.1. For n ∈ Z≥2, the extended affine Weyl group Ẇn of gln is the group de-

fined by the following generators and relations:

(1) generators:

s0, s1, . . . , sn−1, π
±1; (2.8)
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(2) relations for n ≥ 3:

s2i = 1
(
i ∈ [0, n − 1]

)
,

sisjsi = sjsisj (i − j ≡ ±1modn),

sisj = sjsi (i − j �≡ ±1modn),

πsi = si+1π
(
i ∈ [0, n − 2]

)
, πsn−1 = s0π,

ππ−1 = π−1π = 1;

(2.9)

(3) relations for n = 2:

s20 = s21 = 1,

πs0 = s1π, πs1 = s0π,

ππ−1 = π−1π = 1.

(2.10)

The subgroup Wn of Ẇn generated by the elements s1, s2, . . . , sn−1 is called the

Weyl group of gln. The groupWn is isomorphic to the symmetric group of degree n.

In the following, we fix n ∈ Z≥2 and denote Ẇ = Ẇn andW = Wn.

Put

P =

n⊕

i=1

Zεi. (2.11)

Put τε1
= πsn−1 · · · s2s1 and τεi

= πi−1τε1
π−i+1 (i ∈ [2, n]). Then there exists a group

embedding P → Ẇ such that εi �→ τεi
. By τη we denote the element in Ẇ corresponding

to η ∈ P. It is well known that the group Ẇ is isomorphic to the semidirect product P�W

with the relationwτηw
−1 = τw(η).

The group Ẇ acts on h̃ by

si(h) = h −
〈
αi|h

〉
α∨

i for i ∈ [1, n − 1], h ∈ h̃,

τεi
(h) = h + 〈δ|h〉ε∨

i −

(〈
εi|h

〉
+
1

2
〈δ|h〉

)
c for i ∈ [1, n], h ∈ h̃.

(2.12)

The dual action on h̃∗ is given by

si(ζ) = ζ −
(
αi|ζ

)
αi for i ∈ [1, n − 1], ζ ∈ h̃∗,

τεi
(ζ) = ζ + (δ|ζ)εi −

((
εi|ζ

)
+
1

2
(δ|ζ)

)
δ for i ∈ [1, n], h ∈ h̃∗.

(2.13)
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With respect to these actions, the inner products on h̃ and h̃∗ are Ẇ-invariant. Note that

the set Ṙ of roots is preserved by the dual action of Ẇ on h̃∗. Note also that the action of

Ẇ preserves the subspace ḣ = h ⊕ Qc, and the dual action of Ẇ on ḣ∗ (called the affine

action) is described as follows:

si(ζ) = ζ −
(
αi|ζ

)
αi for i ∈ [1, n − 1], ζ ∈ ḣ∗,

τεi
(ζ) = ζ + (δ|ζ)εi for i ∈ [1, n], h ∈ ḣ∗.

(2.14)

For α ∈ Ṙ, there exists i ∈ [0, n − 1] and w ∈ Ẇ such that w(αi) = α. We set sα = wsiw
−1.

Then sα is independent of the choice of i andw, and we have

sα(h) = h − 〈α | h〉α∨ (2.15)

for h ∈ h̃. The element sα is called the reflection corresponding to α. Note that sαi
= si.

Forw ∈ Ẇ, set

R(w) = Ṙ+ ∩w−1Ṙ−, (2.16)

where Ṙ− = Ṙ \ Ṙ+. The length l(w) of w ∈ Ẇ is defined as the number �R(w) of elements

in R(w). For w ∈ Ẇ, an expression w = πksj1
sj2

· · · sjm
is called a reduced expression if

m = l(w). It can be seen that

R(w) =
{
sjm

· · · sj2

(
αj1

)
, sjm

· · · sj3

(
αj2

)
, . . . , αjm

}
(2.17)

ifw = πksj1
sj2

· · · sjm
is a reduced expression.

Define the Bruhat order � in Ẇ by

x � w⇐⇒ x is equal to a subexpression of a reduced expression ofw. (2.18)

We will review some fundamental facts in the theory of Coxeter groups, which

are often used in this paper. See, for example, [7] for proofs.

Lemma 2.2. (i) Letw ∈ Ẇ and i ∈ [0, n − 1]. Then

l
(
wsi

)
> l(w)⇐⇒ w

(
αi

)
∈ Ṙ+,

l
(
siw

)
> l(w)⇐⇒ w−1

(
αi

)
∈ Ṙ+.

(2.19)

(ii) (Strong exchange condition.) Let α ∈ Ṙ+ and let w ∈ Ẇ with a reduced ex-

pression w = πrsi1
si2

· · · sik
. If l(wsα) < l(w), then there exists p ∈ [1, k] such that

wsα = πrsi1
si2

· · · ŝip
· · · sik

(omitting sip
). Further α = sik

sik+1
· · · sip+1

(αip
). �
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Let I be a subset of [0, n − 1]. Put

Π̇I =
{
αi | i ∈ I

}
⊆ Π̇,

ẆI =
〈
si | i ∈ I

〉
⊆ Ẇ,

Ṙ+

I =
{
α ∈ Ṙ+ | sα ∈ ẆI

}
.

(2.20)

The subgroup ẆI is called the parabolic subgroup corresponding to Π̇I. Define

ẆI =
{
w ∈ Ẇ | R(w) ∩ Ṙ+

I = ∅
}
. (2.21)

The following fact is well known.

Proposition 2.3. (i) ẆI = {w ∈ Ẇ | l(wsαi
) > l(w) ∀αi ∈ Π̇I}.

(ii) For any w ∈ Ẇ, there exist a unique x ∈ ẆI and a unique y ∈ ẆI such that

w = xy. Namely, the set ẆI gives a complete set of minimal length coset representatives

for Ẇ/ẆI. �

2.3 Notation

For any integer i, we introduce the following notation:

εi = εi − kδ ∈ h̃∗, ε∨
i = ε∨

i − kc ∈ h̃, (2.22)

where i = i + knwith i ∈ [1, n] and k ∈ Z.

Putαij = εi−εj and α∨
ij = ε∨

i −ε∨
j for any i, j ∈ Z. Noting that ε0−ε1 = δ+εn−ε1 =

α0, we reset αi = εi − εi+1 and α∨
i = ε∨

i − ε∨
i+1 for any i ∈ Z.

The following is easy.

Lemma 2.4. (i) αi+n,j+n = αij for all i, j ∈ Z.

(ii) Ṙ = {αij | i, j ∈ Z, i �≡ jmodn} as a subset of h̃∗.

(iii) Ṙ+ = {αij | i, j ∈ Z, i �≡ jmodn and i < j} as a subset of h̃∗. �

Define the action of Ẇ on the set Z of integers by

si(j) = j + 1 for j ≡ i mod n,

si(j) = j − 1 for j ≡ i + 1 mod n,

si(j) = j for j �≡ i, i + 1 mod n,

π(j) = j + 1 ∀j.

(2.23)
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It is easy to see that the action of τεi
(i ∈ [1, n]) is given by

τεi
(j) = j + n for j ≡ i mod n,

τεi
(j) = j for j �≡ i mod n,

(2.24)

and that the following formula holds for anyw ∈ Ẇ:

w(j + n) = w(j) + n ∀ j. (2.25)

Lemma 2.5. Letw ∈ Ẇ.

(i) w(εj) = εw(j) andw(ε∨
j ) = ε∨

w(j) for any j ∈ Z.

(ii) w(αij) = αw(i)w(j) andw(α∨
ij) = α∨

w(i)w(j) for any i, j ∈ Z. �

Proof. (i) It is enough to check the statement when w = si (i ∈ [1, n − 1]) and when w =

τεi
(i ∈ [1, n]). Let j = j + kn with j ∈ [1, n] and k ∈ Z. For i ∈ [1, n − 1], we have si(εj) =

εj − (αi | εj)αi = εj − (αi | εj)αi. This leads to si(εj) = εsi(j). For i ∈ [1, n], we have

τεi
(εj) = εj + (εi | εj)δ = εj + (εi | εj)δ. This leads to τεi

(εj) = ετεi
(j).

(ii) The proof follows directly from (i). �

3 Periodic skew diagrams and tableaux on them

Throughout this paper, we let F denote a field whose characteristic is not equal to 2.

3.1 Periodic skew diagrams

Form ∈ Z≥1 and 
 ∈ Z≥0, put

P̂+

m,� =
{
µ ∈ Zm | µ1 ≥ µ2 ≥ · · · ≥ µm, 
 ≥ µ1 − µm

}
, (3.1)

where µi denotes the ith component of µ, that is, µ = (µ1, µ2, . . . , µm). Fix n ∈ Z≥2 and

introduce the following subsets of Zm × Zm:

Ĵn
m,� =

{

(λ, µ) ∈ P̂+

m,� × P̂+

m,�

∣∣λi ≥ µi

(
i ∈ [1,m]

)
,

m∑

i=1

(
λi − µi

)
= n

}

,

Ĵ∗n
m,� =

{

(λ, µ) ∈ P̂+

m,� × P̂+

m,�

∣∣λi > µi

(
i ∈ [1,m]

)
,

m∑

i=1

(
λi − µi

)
= n

}

.

(3.2)
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1,2 1,3 1,4 1,5

2,1 2,2 2,3

�

�

b

a

Figure 3.1

For (λ, µ) ∈ Ĵn
m,�, define the subsets λ/µ and λ̂/µ(m,−�) of Z2 by

λ/µ =
{
(a, b) ∈ Z2 | a ∈ [1,m], b ∈ [µa + 1, λa]

}
,

λ̂/µ(m,−�) =

{
(a + km, b − k
) ∈ Z2 | (a, b) ∈ λ/µ, k ∈ Z

}
.

(3.3)

Let λ/µ[k] = λ/µ + k(m,−
). Obviously we have

λ̂/µ(m,−�) =
⊔

k∈Z

λ/µ[k] =
⊔

k∈Z

(
λ/µ + k(m,−
)

)
. (3.4)

The set λ/µ is the so-called skew diagram (or skew Young diagram) associated

with (λ, µ).

We call the set λ̂/µ(m,−�) the periodic skew diagram associated with (λ, µ).

We will denote λ̂/µ(m,−�) just by λ̂/µwhenm and 
 are fixed.

Example 3.1. (i) Let n = 7, m = 2, and 
 = 3. Put λ = (5, 3), µ = (1, 0). Then (λ, µ) ∈ Ĵ∗n
m,�

and we have

λ/µ =
{
(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3)

}
. (3.5)

The set λ/µ is expressed by Figure 3.1 (usually, the coordinates in the boxes are omitted).

The periodic skew diagram

λ̂/µ(2,−3) =
⊔

k∈Z

λ/µ[k] =
⊔

k∈Z

(
λ/µ + k(2,−3)

)
(3.6)

is expressed by Figure 3.2.

Generally, periodic skew diagrams are defined as follows (see [5]).

Definition 3.2. For γ ∈ Z2, a subset Λ ⊂ Z2 is called a γ-periodic skew diagram (or a

periodic skew diagram of period γ) if it satisfies the following conditions.



1630 T. Suzuki and M. Vazirani

−1,5

λ/µ[1]

1,2

λ/µ[0] = λ/µ

3,−1

λ/µ[−1]

�

�

b

a

}

Figure 3.2

(D1) The set Λ is invariant under the parallel translation by γ:

Λ + γ = Λ, (3.7)

and hence the group Zγ acts on Λ.

(D2) A fundamental domain of the action of Zγ on Λ consists of finitely many

elements. This number is called the degree of Λ.

(D3) If (a, b) ∈ Λ and (a+i, b+j) ∈ Λ for i, j ∈ Z≥0, then the rectangle {(a+i ′, b+j ′) |

i ′ ∈ [0, i], j ′ ∈ [0, j]} is included in Λ.

Let Dn
γ denote the set of all γ-periodic skew diagram of degree n, and put

D∗n
γ =

{
Λ ∈ Dn

γ | ∀ a ∈ Z, ∃b ∈ Z such that (a, b) ∈ Λ
}
. (3.8)

Namely, D∗n
γ is the subset of Dn

γ consisting of all diagrams without empty rows.

Note that an element in Dn
(0,0) is regarded as a (classical) skew Young diagram of

degree n.

Lemma 3.3. Let γ ∈ Z2.

(i) If Dn
γ �= ∅, then γ ∈ Z≤0 × Z≥0 or γ ∈ Z≥0 × Z≤0.

(ii) If D∗n
γ �= ∅, then γ ∈ Z≥1 × Z≤0 or γ ∈ Z≤−1 × Z≥0. �
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Proof. (i) Since Dn
γ = Dn

−γ, it is enough to prove that Dn
γ = ∅ for γ ∈ Z≥1 × Z≥1.

Suppose Dn
(m,�) �= ∅ for some m ∈ Z≥1 and 
 ∈ Z≥1, and take Λ ∈ Dn

(m,�). Then

Λ̄ = {(a, b) ∈ Λ | a ∈ [1,m]} is a fundamental domain of the action of Z(m, 
) on Λ.

Let (a, b) ∈ Λ̄. Then condition (D1) implies {(a+km, b+k
)}k∈Z ⊆ Λ, and condition

(D3) implies {(a, b+k
)}k∈Z ⊆ Λ, and hence {(a, b+k
)}k∈Z ⊆ Λ̄. This implies that the fun-

damental domain Λ̄ contains infinitely many elements. This contradicts condition (D2),

and hence we have Dn
(m,�) = ∅ form ∈ Z≥1 and 
 ∈ Z≥1.

(ii) By (i), it is enough to show that D∗n
(0,�) = ∅ for all 
 ∈ Z, and this is easy. �

Let m ∈ Z≥1 and 
 ∈ Z≥0. For (λ, µ) ∈ Ĵn
m,�, it is easy to see that the set λ̂/µ(m,−�)

satisfies conditions (D1), (D2), and (D3) in Definition 3.2, and hence we have λ̂/µ(m,−�) ∈

Dn
(m,−�).

Proposition 3.4. Let n ∈ Z≥2, m ∈ Z≥1, and 
 ∈ Z≥0. The correspondence Ĵn
m,�→Dn

(m,−�)

given by (λ, µ) �→ λ̂/µ is a surjection. Moreover, its restriction to Ĵ∗n
m,� gives a bijection

Ĵ∗n
m,�

∼
−→ D∗n

(m,−�). (3.9)

�

Proof. Take any Λ ∈ Dn
(m,−�).

Fix i0 ∈ Z≤0 such that the i0th row of Λ is not empty. For i ≥ i0, define λi and µi

recursively by the following relations:

λi =





max

{
b ∈ Z | (i, b) ∈ Λ

}
if the ith row is not empty,

λi−1 if the ith row is empty,

µi =





min{b ∈ Z | (i, b) ∈ Λ} − 1 if the ith row is not empty,

λi−1 if the ith row is empty.

(3.10)

Put λ = (λ1, λ2, . . . , λm) and µ = (µ1, µ2, . . . , µm). Then it follows from condition (D3) (with

i = 0) that

{
(a, b) ∈ Λ | a = i} =

[
µi + 1, λi

] (
i ∈ [1,m]

)
(3.11)

and hence

λ/µ =
{
(a, b) ∈ Λ | a ∈ [1,m]

}
. (3.12)
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It follows from condition (D1) that λ/µ is a fundamental domain of Z(m,−
) on Λ and

Λ =
⊔

k∈Z

(
λ/µ + k(m,−
)

)
= λ̂/µ(m,−�). (3.13)

In particular, we have �λ/µ = n.

Note that λ0 = λm + 
 and µ0 = µm + 
 by condition (D1).

Now, condition (D3) implies that λi ≥ λi+1 and µi ≥ µi+1 for all i ≥ i0, in particu-

lar, for all i ∈ [1,m − 1]. This yields λ ∈ P̂+

m,� and µ ∈ P̂+

m,�. Therefore, the correspondence

Ĵn
m,� → Dn

(m,−�) is surjective.

Now, it is clear from the discussion above that the correspondence (λ, µ) �→ λ̂/µ

gives a bijection Ĵ∗n
m,� → D∗n

(m,−�). �

3.2 Tableaux on periodic skew diagram

Fix n ∈ Z≥2. Recall that a bijection from a skew Young diagram, say λ/µ, of degree n to

the set [1, n] is called a tableau on λ/µ.

Definition 3.5. For γ ∈ Z2 and Λ ∈ Dn
γ , a bijection T : Λ → Z is said to be a γ-tableau on

Λ if T satisfies

T(u + γ) = T(u) + n ∀ u ∈ Λ. (3.14)

Let Tabγ(Λ) denote the set of all γ-tableaux on Λ.

In this paper, we mostly treat periodic skew diagrams associated with (λ, µ) ∈

Ĵn
m,� for somem ∈ Z≥1 and 
 ∈ Z≥0. For (λ, µ) ∈ Ĵn

m,�, we always choose (m,−
) as a period

of λ̂/µ. We use the abbreviated notation

Tab(λ̂/µ) = Tab
(m,−�)

(λ̂/µ) (3.15)

for (λ, µ) ∈ Ĵn
m,�, and we let a tableau on λ̂/µmean an (m,−
)-tableau on λ̂/µ.

Remark 3.6. A tableau on λ̂/µ is determined uniquely from the values on a fundamental

domain of λ̂/µ with respect to the action of Zγ. It also holds that any bijection from a

fundamental domain of Zγ to the set [1, n] uniquely extends to a tableau on λ̂/µ.
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−6 −5 −4 −3

−2 −1 0

1 2 3 4

5 6 7
λ/µ

8 9 10 11

12 13 14

}

Figure 3.3

There exists a unique tableau T
λ̂/µ

0 = T0 on λ̂/µ such that

T0

(
i, µi + j

)
=

i−1∑

k=1

(
λk − µk

)
+ j for i ∈ [1,m], j ∈

[
1, λi − µi

]
. (3.16)

We call T0 the row reading tableau on λ̂/µ.

Example 3.7. Let n = 7,m = 2, 
 = 3 and λ = (5, 3), µ = (1, 0). The tableau T0 on λ̂/µ given

above is pictured in Figure 3.3.

Proposition 3.8. Let (λ, µ) ∈ Ĵn
m,�. The group Ẇ acts on the set Tab(λ̂/µ) by

(wT)(u) = w
(
T(u)

)
(3.17)

forw ∈ Ẇ, T ∈ Tab(λ̂/µ), and u ∈ λ̂/µ. �

Proof. It is obvious that wT is a bijection. It is enough to verify that wT satisfies condi-

tion (3.14) in Definition 3.5. Putting γ = (m,−
), we have

(wT)(u + γ) = w
(
T(u + γ)

)
= w

(
T(u) + n

)
= wT(u) + n. (3.18)

Therefore,wT satisfies (3.14). �
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For each T ∈ Tab(λ̂/µ), define the map

ψT : Ẇ −→ Tab(λ̂/µ) (3.19)

by ψT (w) = wT (w ∈ Ẇ).

Proposition 3.9. Let (λ, µ) ∈ Ĵn
m,�. For any T ∈ Tab(λ̂/µ), the correspondence ψT is a

bijection. �

Proof. It is enough to show the statement for T = T0 given by (3.16). We prove the surjec-

tivity first. Take any S ∈ Tab(λ̂/µ) and put ri = S(T−1
0 (i)) for i ∈ [1, n]. Suppose ri − rj = kn

for some i, j ∈ [1, n] and some k ∈ Z. Then S(T−1
0 (j) + k(m,−
)) = rj + kn = ri = S(T−1

0 (i)),

and hence T−1
0 (j) + k(m,−
) = T−1

0 (i). This means k = 0 and i = j.

Let ri = ri + kin with ri ∈ [1, n] and ki ∈ Z. Then we have shown that ri �= rj for

i, j ∈ [1, n] such that i �= j. This ensures that there exists x ∈ W such that x(i) = ri for

all i ∈ [1, n]. Putting w := x · τk1
ε1
τk2

ε2
· · · τkn

εn
, we have w(i) = ri for any i ∈ [1, n] and hence

wT0 = S on the fundamental domain λ/µ. This implieswT0 = S.

It is easy to see that the choice ofw for each S is unique, and hence the injectivity

follows. �

The following formula follows directly from the definition (3.17) of the action

of Ẇ.

Lemma 3.10. T−1(w−1(i)) = (wT)−1(i) for any T ∈ Tab(λ̂/µ),w ∈ Ẇ, and i ∈ Z. �

3.3 Content and weight

Let C denote the map from Z2 to Z given by C(a, b) = b − a for (a, b) ∈ Z2.

For a tableau T ∈ Tab(λ̂/µ), define the map C
λ̂/µ

T : Z→ Z by

C
λ̂/µ

T (i) = C
(
T−1(i)

)
(i ∈ Z), (3.20)

and call C
λ̂/µ

T the content of T . We simply denote C
λ̂/µ

T by CT when (λ, µ) is fixed.

Lemma 3.11. Let T ∈ Tab(λ̂/µ). Then

(i) CT (i + n) = CT (i) − (
 +m) for all i ∈ Z;

(ii) CwT (i) = CT (w−1(i)) for allw ∈ Ẇ and i ∈ Z. �
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Proof. (i) Put (a, b) = T−1(i) ∈ λ̂/µ. Then T(a +m,b − 
) = T(a, b) + n = i + n. We have

CT (i + n) = C
(
T−1(i + n)

)
= C(a +m,b − 
)

= (b − a) − (
 +m) = CT (i) − (
 +m).
(3.21)

(ii) The proof follows directly from Lemma 3.10. �

For T ∈ Tab(λ̂/µ), we define ζT ∈ ḣ∗ by

ζT =

n∑

i=1

CT (i)εi + (
 +m)c∗. (3.22)

Then ζT belongs to the lattice

Ṗ
def
= P ⊕ Zc∗ =

( n⊕

i=1

Zεi

)
⊕ Zc∗. (3.23)

Note that the action (2.14) of Ẇ on ḣ∗ preserves Ṗ. Lemma 3.11 immediately implies the

following.

Lemma 3.12. Let T ∈ Tab(λ̂/µ). Then

(i) 〈ζT | ε∨
i 〉 = CT (i) for all i ∈ Z;

(ii)w(ζT ) = ζwT for allw ∈ Ẇ. �

3.4 The affine Weyl group and row increasing tableaux

Let (λ, µ) ∈ Ĵn
m,�.

Definition 3.13. A tableau T ∈ Tab(λ̂/µ) is said to be row increasing (resp., column in-

creasing) if

(a, b), (a, b + 1) ∈ λ̂/µ =⇒ T(a, b) < T(a, b + 1),

(
resp., (a, b), (a + 1, b) ∈ λ̂/µ =⇒ T(a, b) < T(a + 1, b)

)
.

(3.24)

A tableau T ∈ Tab(λ̂/µ) which is row increasing and column increasing is called a stan-

dard tableau (or a row-column increasing tableau).

Denote by TabR(λ̂/µ) (resp., TabRC(λ̂/µ)) the set of all row increasing (resp., stan-

dard) tableaux on λ̂/µ.

For (λ, µ) ∈ Ĵn
m,�, put

Iλ,µ = [1, n − 1]/{n1, n2, . . . , nm−1

}
, (3.25)
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where ni =
∑i

j=1(λj − µj) for i ∈ [1,m − 1]. We write Ṙ+

λ−µ = Ṙ+

Iλ,µ
, Ẇλ−µ = ẆIλ,µ

and

Ẇλ−µ = ẆIλ,µ . Note that Ṙ+

λ−µ ⊆ R+, and Ẇλ−µ = Wλ1−µ1
×Wλ2−µ2

× · · · ×Wλm−µm
⊆

W. Recall that the correspondence ψT : Ẇ → Tab(λ̂/µ) given by w �→ wT is bijective

(Proposition 3.9) for any T ∈ Tab(λ̂/µ).

Proposition 3.14. Let (λ, µ) ∈ Ĵn
m,�. Then

ψ−1
T0

( R

Tab(λ̂/µ)
)

= Ẇλ−µ, (3.26)

or, equivalently, TabR(λ̂/µ) = Ẇλ−µT0={wT0 | w ∈ Ẇλ−µ}. �

Proof. First we will prove Ẇλ−µT0 ⊆ TabR(λ̂/µ).

Take (a, b), (a, b + 1) ∈ λ̂/µ and put T0(a, b) = i. Then T0(a, b + 1) = i + 1 and

αi ∈ Ṙ
+

λ−µ. Ifw ∈ Ẇλ−µ, then we have l(wsi) > l(w). This meansw(αi) = εw(i) − εw(i+1) ∈

Ṙ+. Hence, w(i) < w(i + 1), or, equivalently, wT0(a, b) < wT0(a, b + 1). Therefore, wT0 ∈

TabR(λ̂/µ) for allw ∈ Ẇλ−µ.

Next, we will prove Ẇλ−µT0 ⊇ TabR(λ̂/µ).

For T ∈ TabR(λ̂/µ), take w ∈ Ẇ such that wT0 = T . We have to show that w ∈

Ẇλ−µ. Let αij ∈ Ṙ+

λ−µ. Put (a, b) = T0
−1(i). Then T0

−1(j) = (a, b + j − i). Since wT0 is row

increasing, we have wT0(a, b) < wT0(a, b + j − i) and hence w(i) < w(j). This means that

w(αij) ∈ Ṙ
+. Therefore, αij �∈ R(w) = Ṙ+ ∩w−1Ṙ−. This proves R(w) ∩ Ṙ+

λ−µ = ∅ and hence

w ∈ Ẇλ−µ. �

3.5 The set of standard tableaux

The next lemma follows easily.

Lemma 3.15. Let (λ, µ) ∈ Ĵn
m,� and T ∈ TabRC(λ̂/µ). If (a, b) ∈ λ̂/µ and (a + 1, b + 1) ∈ λ̂/µ,

then T(a + 1, b + 1) − T(a, b) > 1. �

As a direct consequence of Lemma 3.15, we obtain the following result, which

will be used in the next section.

Proposition 3.16. Let (λ, µ) ∈ Ĵn
m,� and T, S ∈ TabRC(λ̂/µ). If CT = CS, then T = S. �

Our next purpose is to describe the subset of Ẇ which corresponds to TabRC(λ̂/µ)

under the correspondence ψT (T ∈ TabRC(λ̂/µ)).

Lemma 3.17. Let (λ, µ) ∈ Ĵn
m,�. Let w ∈ Ẇ and i ∈ [0, n − 1] such that wT0 ∈ TabRC(λ̂/µ)

and l(w) > l(siw). Then siwT0 ∈ TabRC(λ̂/µ). �
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Proof. We havew ∈ Ẇλ−µ by Proposition 3.14. Put x = siw. Since R(w) = R(x) 	 {x−1(αi)},

we have x ∈ Ẇλ−µ. Hence, xT0 ∈ TabR(λ̂/µ).

Suppose xT0 �∈ TabRC(λ̂/µ). Then there exist (a, b) and (a + 1, b) in λ̂/µ such that

xT0(a, b) > xT0(a + 1, b),

wT0(a, b) < wT0(a + 1, b).
(3.27)

This implies xT0(a, b) = i + 1 + kn and xT0(a + 1, b) = i + kn for some k ∈ Z.

On the other hand, we have x−1(αi) ∈ Ṙ+ as l(w) > l(x). Therefore, it follows

that x−1(i) < x−1(i + 1) and hence x−1(i + kn) < x−1(i + 1 + kn). Therefore, we have

T0(a + 1, b) < T0(a, b), and this is a contradiction. �

For T ∈ TabRC(λ̂/µ), put

Ż
λ̂/µ

T =
{
w ∈ Ẇ |

〈
ζT | α∨

〉
�∈ {−1, 1} ∀α ∈ R(w)

}
. (3.28)

Lemma 3.18. Let (λ, µ) ∈ Ĵn
m,�. Then

Ż
λ̂/µ

T0
⊆ Ẇλ−µ. (3.29)

�

Proof. Take w ∈ Ẇ such that w /∈ Ẇλ−µ. Then, it follows that there exists j ∈ [0, n − 1]

such that sj ∈ Ẇλ−µ and l(wsj) < l(w). Then Lemma 2.2(ii) implies that αj ∈ R(w). By

sj ∈ Ẇλ−µ, we have 〈ζT0
| α∨

j 〉 = −1. Hence, we have w �∈ Ż
λ̂/µ

T0
, and thus we proved that

Ż
λ̂/µ

T0
⊆ Ẇλ−µ. �

Theorem 3.19. Let (λ, µ) ∈ Ĵn
m,� and T ∈ TabRC(λ̂/µ). Then

ψ−1
T

( RC

Tab(λ̂/µ)
)

= Ż
λ̂/µ

T (3.30)

or, equivalently, TabRC(λ̂/µ) = Ż
λ̂/µ

T T . �

Proof

Step 1. First we will prove the statement for the row reading tableau T0, namely, we will

prove TabRC(λ̂/µ) = Ż
λ̂/µ

T0
T0.

Let us see Ż
λ̂/µ

T0
T0 ⊆ TabRC(λ̂/µ), that is, wT0 ∈ TabRC(λ̂/µ) for all w ∈ Ż

λ̂/µ

T0
. We

proceed by induction on l(w).

If w ∈ Ż
λ̂/µ

T0
with l(w) = 0, then w = πk for some k ∈ Z and it is obvious that wT0

is row-column increasing. Suppose that wT0 is row-column increasing for all w ∈ Ż
λ̂/µ

T0

with l(w) < k.
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Takew ∈ Ż
λ̂/µ

T0
with l(w) = k. Note thatw ∈ Ẇλ−µ by Lemma 3.18. Take x ∈ Ẇ and

i ∈ [0, n − 1] such thatw = six and l(w) = l(x) + 1.

Note that R(w) = R(x) 	 {x−1(αi)}, and hence x ∈ Ż
λ̂/µ

T0
. By the induction hypoth-

esis, we have xT0 ∈ TabRC(λ̂/µ). Suppose that wT0 �∈ TabRC(λ̂/µ). Then wT0 is not col-

umn increasing becausewT0 is row increasing by Proposition 3.14. Therefore, there exist

(a, b), (a + 1, b) ∈ λ̂/µ such that

xT0(a, b) < xT0(a + 1, b),

wT0(a, b) > wT0(a + 1, b).
(3.31)

This implies that xT0(a, b) = i + kn and xT0(a + 1, b) = i + 1 + kn for some k ∈ Z. We have

〈
ζT0

| x−1
(
α∨

i

)〉
=

〈
ζT0

| x−1
(
α∨

i+kn

)〉

= CT0

(
x−1(i + kn)

)
− CT0

(
x−1(i + 1 + kn)

)

= b − a −
(
b − (a + 1)

)
= 1.

(3.32)

This contradicts thatw ∈ Ż
λ̂/µ

T0
and hence we havewT0 ∈ TabRC(λ̂/µ).

Next, let us prove Ż
λ̂/µ

T0
T0 ⊇ TabRC(λ̂/µ). We will show thatw ∈ Ż

λ̂/µ

T0
for allw such

thatwT0 ∈ TabRC(λ̂/µ) by induction on l(w). If l(w) = 0, then R(w) = ∅ andw ∈ Ż
λ̂/µ

T0
. Let

k ∈ Z≥1 and suppose that the statement is true for allwwith l(w) < k.

Takew ∈ Ẇ such thatwT0 ∈ TabRC(λ̂/µ) and l(w) = k. Take x ∈ Ẇ and i ∈ [0, n−1]

such that w = six and l(w) = l(x) + 1. By Lemma 3.17, we have xT0 ∈ TabRC(λ̂/µ). By the

induction hypothesis, we have x ∈ Ż
λ̂/µ

T0
. Since R(w) = R(x) 	 {x−1(α∨

i )}, it is enough to

prove

σ :=
〈
ζT0

| x−1
(
α∨

i

)〉
= CT0

(
x−1(i)

)
− CT0

(
x−1(i + 1)

)
�= ±1. (3.33)

We put T = xT0 in the rest of the proof.

Suppose σ = 1. Put (a, b) = T−1(i). Then T−1(i+1) = (a+ j+1, b+ j) for some j ∈ Z.

If j < 0, then we have (a, b−1) ∈ λ̂/µ and i+1 = T(a+ j+1, b+ j) ≤ T(a, b−1) < T(a, b) = i.

This is a contradiction. If j > 0, then (a + 1, b) ∈ λ̂/µ and i + 1 > T(a + 1, b) > i. This is

a contradiction too. Therefore, we must have j = 0 and hence T−1(i + 1) = (a + 1, b). But



Double Affine Hecke Algebras 1639

then we have

wT0(a, b) = siT(a, b) = i + 1 > i = siT(a + 1, b) = wT0(a + 1, b) (3.34)

and this contradicts the assumptionwT0 ∈ TabRC(λ̂/µ). Therefore, σ �= 1.

Suppose σ = −1. Put (a, b) = T−1(i). Then similar argument as above implies that

T−1(i + 1) = (a, b + 1). This yields a contradiction too.

Therefore, we havew ∈ Ż
λ̂/µ

T0
and thus we proved that TabRC(λ̂/µ) = Ż

λ̂/µ

T0
T0.

Step 2. By Step 1, for each T ∈ TabRC(λ̂/µ), there existswT ∈ Ż
λ̂/µ

T0
such that T = wTT0.

First we will show that zw−1
T ∈ Ż

λ̂/µ

T for all z ∈ Ż
λ̂/µ

T0
.

Assume that zw−1
T /∈ Ż

λ̂/µ

T for some z ∈ Ż
λ̂/µ

T0
. Then there exists α ∈ R(zw−1

T ) such

that 〈ζT | α∨〉 = ±1.

If α ∈ wTR
+, then putting β = w−1

T (α), we have β ∈ R(z) and 〈ζT0
| β∨〉 =

〈ζwT T0
| wT (β∨)〉 = ±1. This contradicts the choice z ∈ Ż

λ̂/µ

T0
.

If α /∈ wTR
+, then putting β = −w−1

T (α), we have β ∈ R(wT ) and 〈ζT0
| β∨〉 = ±1.

This contradicts the choicewT ∈ Ż
λ̂/µ

T0
.

Therefore, zw−1
T ∈ Ż

λ̂/µ

T for all z ∈ Ż
λ̂/µ

T0
. Similarly, one can show that zwT ∈ Ż

λ̂/µ

T0

for all z ∈ Ż
λ̂/µ

T . Hence, the correspondence z �→ zw−1
T gives a bijection from Ż

λ̂/µ

T0
to Ż

λ̂/µ

T ,

whose inverse is given by z �→ zwT . Therefore, we have

zT = zwTT0 ∈
RC

Tab(λ̂/µ)⇐⇒ zwT ∈ Ż
λ̂/µ

T0
⇐⇒ z ∈ Ż

λ̂/µ

T . (3.35)

�

3.6 Content of standard tableaux

Let n ∈ Z≥2,m ∈ Z≥1, and 
 ∈ Z≥0. Let (λ, µ) ∈ Ĵn
m,� and T ∈ TabRC(λ̂/µ). Put κ = 
+m and

F = CT . Then it is easy to check that the map F : Z→ Z satisfies the following.

(C1) F(i + n) = F(i) − κ for all i ∈ Z.

(C2) For any p ∈ Z and i, j ∈ F−1(p) such that i < j and [i, j] ∩ F−1(p) = {i, j}, there

exist a unique k− ∈ F−1(p − 1) and a unique k+ ∈ F−1(p + 1) such that i < k− < j, and

i < k+ < j, respectively.

Notice that condition (C1) implies that �F−1(p) is finite for all p ∈ Z.

Conversely, suppose that a map F : Z → Z satisfying conditions (C1) and (C2) is

given. Then it can be seen that F is a content associated with some standard tableau on

some periodic skew diagram, as in the following proposition.
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Proposition 3.20. Let n ∈ Z≥2 and κ ∈ Z≥1. Suppose that the map F : Z → Z satisfies

conditions (C1) and (C2) above. Then there exist m ∈ [1, κ], (λ, µ) ∈ Ĵ∗n
m,κ−m, and T ∈

TabRC(λ̂/µ) such that F = CT . �

Proof

Step 1. For p ∈ F(Z)
def
= {F(i) ∈ Z | i ∈ Z}, put dp = �F−1(p), which (C1) implies is finite. Let

i
(1)
p , i

(2)
p , . . . , i

(dp)
p be the integers such that i

(1)
p < i

(2)
p < · · · < i

(dp)
p and

F−1(p) =

{
i(1)
p , i(2)

p , . . . , i
(dp)
p

}
. (3.36)

It follows from condition (C1) that dp = dp−κ and

i
(1)
p−κ = i(1)

p + n, i
(2)
p−κ = i(2)

p + n, . . . , i
(dp−κ)
p−κ = i

(dp)
p + n (3.37)

for all p ∈ F(Z).

The following statement follows easily from condition (C2) and an induction ar-

gument (on j).

Claim 1. Let p ∈ F(Z).

(i) If p + 1 ∈ F(Z) and i
(1)
p < i

(1)
p+1, then dp − dp+1 = 0 or 1, and it holds that

i(j)p < i
(j)
p+1

(
j ∈

[
1, dp+1

])
,

i(j)p > i
(j−1)
p+1

(
j ∈

[
2, dp

])
.

(3.38)

(ii) If p + 1 ∈ F(Z) and i
(1)
p > i

(1)
p+1, then dp − dp+1 = 0 or −1, and it holds that

i(j)p > i
(j)
p+1

(
j ∈

[
1, dp

])
,

i(j−1)
p < i

(j)
p+1

(
j ∈

[
2, dp+1

])
.

(3.39)

(iii) If p + 1 /∈ F(Z), then dp = 1.

Step 2. Fix p0 ∈ F(Z) and r ∈ Z. We will define a subset Λ = Λp0,r of Z2 as follows.

For p ∈ F(Z), define p̃ as the minimum number in F(Z) ∩ Z>p.

There exists a unique sequence {(a
(1)
p , b

(1)
p )}p∈F(Z) in Z2 satisfying the initial con-

dition

(
a(1)

p0
, b(1)

p0

)
=

(
r, p0 + r

)
(3.40)
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(i)

i
(1)
p i

(1)
p+1

(ii)

i
(1)
p

i
(1)
p+1

(iii)

i
(1)
p

i
(1)
p̃

Figure 3.4 (i) i
(1)
p < i

(1)
p+1 , (ii) i

(1)
p > i

(1)
p+1 , and (iii) p̃ > p+ 1.

and the recursion relation

(
a

(1)
p̃ , b

(1)
p̃

)
=






(
a

(1)
p , b

(1)
p + 1

)
if p̃ = p + 1, i

(1)
p < i

(1)
p+1, Figure 3.4(i),

(
a

(1)
p − 1, b

(1)
p

)
if p̃ = p + 1, i

(1)
p > i

(1)
p+1, Figure 3.4(ii),

(
a

(1)
p − 1, b

(1)
p + p̃ − p − 1

)
if p̃ > p + 1, Figure 3.4(iii).

(3.41)

Put

(
a(j)

p , b
(j)
p

)
=

(
a(1)

p + j − 1, b(1)
p + j − 1

) (
p ∈ F(Z), j ∈

[
2, dp

])
, (3.42)

and put

Λ =
{(
a(j)

p , b
(j)
p

)
∈ Z2

∣∣ p ∈ F(Z), j ∈
[
1, dp

]}
. (3.43)

Note that (a
(1)
p , b

(1)
p ) will be the most northwest box in λ̂/µ on the diagonal with content p.

Step 3. Now, we will check that the set Λ satisfies conditions (D1), (D2), and (D3) in

Definition 3.2.

Check (D1). For p ∈ F(Z), put


p = �
{
s ∈ [p, p + κ − 1] ∩ F(Z) | s̃ = s + 1, i(1)

s < i
(1)
s+1

}
, (3.44)

and put mp = κ − 
p. Then 
p,mp ∈ [0, κ] and mp = a
(1)
p − a

(1)
p+κ by (3.41). Moreover, it

follows from (3.37) that the number 
p is independent of p, and so ism = mp.

Since b
(1)
p − a

(1)
p = p, we have (a

(1)
p−κ, b

(1)
p−κ) = (a

(1)
p +m,b

(1)
p − κ +m), and hence

(
a

(j)
p−κ, b

(j)
p−κ

)
=

(
a(j)

p +m,b(j)
p − κ +m

)
(3.45)

for all j ∈ [1, dp]. Therefore, Λ satisfies condition (D1) with γ := (m,−κ +m).
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Check (D2). Put E = {(a
(j)
p , b

(j)
p ) | p ∈ [1, κ] ∩ F(Z), j ∈ [1, dp]}. Then E gives a fundamental

domain of the action of Zγ on Λ, and the set E is in one to one correspondence with the

set F−1([1, κ]), by the definition of dp. Hence, we have �E = �F−1([1, κ]) = n by (C1) and thus

condition (D2) is checked.

Check (D3). Note that Claim 1 above implies that

(a, b), (a + 1, b + 1) ∈ Λ =⇒ (a + 1, b), (a, b + 1) ∈ Λ. (3.46)

Suppose that condition (D3) does not hold. Then there exist (a, b) ∈ Λ and (i, j) ∈ Z≥0 ×

Z≥0 \ {(0, 0), (1, 0), (0, 1)} for which it holds that

(a + i ′, b + j ′) ∈ Λ⇐⇒ (i ′, j ′) = (0, 0) or (i, j). (3.47)

Fix such (a, b) and (i, j).

First, suppose that j − i = 0. Then by (3.42), i(= j) must be 1. This implies that

(a + 1, b), (a, b + 1) ∈ Λ. This is a contradiction and hence i − j �= 0.

Next, suppose that j − i > 0. Let (a, b) = (a
(r)
s , b

(r)
s ) and (a + i, b + j) = (a

(k)
p , b

(k)
p ).

Note that p − s = j − i > 0.

If k = 1, then we have a
(1)
p − a

(r)
s = i ≥ 0. On the other hand, it follows from the

definitions (3.41), (3.42) of {(a
(j)
p , b

(j)
p )}p∈F(Z),j∈[1,dp] that a

(r)
s ≥ a

(1)
s ≥ a

(1)
p and the equali-

ties hold only if r = 1 and s, s + 1, . . . , p − 1 ∈ F(Z) and i
(1)
s < i

(1)
s+1 < · · · < i

(1)
p . This implies

that i = 0 and (a
(1)
s+j ′ , b

(1)
s+j ′) = (a, b + j ′) ∈ Λ for all j ′ ∈ [0, j]. This is a contradiction.

If k �= 1, then (a
(k−1)
p , b

(k−1)
p ) = (a+ i−1, b+ j−1) ∈ Λ and hence (a+ i, b+ j−1) ∈ Λ

by (3.46). This is a contradiction since (i, j − 1) �= (0, 0), (i, j).

By similar argument, a contradiction is derived when j − i < 0. This means that

(D3) holds for Λ, and hence Λ = Dn
(m,−κ+m). We show that Λ contains no empty rows. It

is clear that Λ contains empty rows only if m = 0, that implies F(Z) = Z and i
(1)
p < i

(1)
p+1

for all p ∈ Z by (3.41). But then it follows that i
(1)
p−κ < i

(1)
p and this contradicts (3.37).

Therefore, we have Λ ∈ D∗n
(m,−κ+m), or, equivalently, Λ = λ̂/µ for some (λ, µ) ∈ Ĵ∗n

m,�.

Step 4. Define the map T : Λ → Z by T(a
(j)
p , b

(j)
p ) = i

(j)
p . Obviously, we have F = C ◦ T−1. It

follows from (3.37) and (3.45) that T is a tableau onΛ. Moreover,Claim 1 in Step 1 implies

that T is row-column increasing, namely, T ∈ TabRC(λ̂/µ). This completes the proof. �

Form ∈ Z≥1, define an automorphismωm of Zm by

ωm · λ =
(
λm + 
 + 1, λ1 + 1, λ2 + 1, . . . , λm−1 + 1

)
, (3.48)
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for λ = (λ1, λ2, . . . , λm) ∈ Zm. Let 〈ωm〉 denote the free group generated by ωm, and let

〈ωm〉 act on Zm ×Zm byωm · (λ, µ) = (ωm ·λ,ωm ·µ) for (λ, µ) ∈ Zm ×Zm. Note that 〈ωm〉

preserves the subsets Ĵn
m,� and Ĵ∗n

m,� of Zm × Zm.

Proposition 3.21. Let m, m ′ ∈ [1, n] and 
, 
 ′ ∈ Z≥0. Let (λ, µ) ∈ Ĵ∗n
m,� and (η, ν) ∈ Ĵ∗n

m ′,� ′ .

The following are equivalent:

(a) C
λ̂/µ

T = C
η̂/ν

S for some T ∈ TabRC(λ̂/µ) and S ∈ TabRC(η̂/ν),

(b) m = m ′, 
 = 
 ′ and λ̂/µ = η̂/ν + (r, r) for some r ∈ Z,

(c) m = m ′, 
 = 
 ′ and (η, ν) = ωr
m · (λ, µ) for some r ∈ Z. �

Proof. First we will prove (a)⇔(b).

It is easy to see that (b) implies (a). To see that (a) implies (b), recall the proof

of Proposition 3.20, where the relations (3.41), (3.42) together with the initial condition

(3.40) determine the periodic skew diagram Λp0,r = {(a
(j)
p , b

(j)
p ) | p ∈ F(Z), j ∈ [1, dp]} and

its period uniquely for each p0 ∈ F(Z) and r ∈ Z.

Note that

Λp0,r ′ = Λp0,r + (r ′ − r, r ′ − r) (3.49)

for r, r ′ ∈ Z.

Put F = CT . As in the proof of Proposition 3.20, we put dp = �F−1(p) for p ∈ F(Z),

and let i
(1)
p < i

(2)
p < · · · < i

(dp)
p be the integers such that F−1(p) = {i

(1)
p , i

(2)
p , . . . , i

(dp)
p }.

Put (a
(j)
p , b

(j)
p ) = T−1(i

(j)
p ). Then it is easy to see that the sequence {(a

(j)
p ,

b
(j)
p )}p∈F(Z),j∈[1,dp] satisfies the relations (3.41), (3.42). Therefore, we have

λ̂/µ =
{
T−1

(
i(j)p

)
| p ∈ F(Z), j ∈

[
1, dp

]}
= Λp0,r (3.50)

for some p0 ∈ F(Z) and r ∈ Z. Similarly, we have η̂/ν = Λp0,r ′ for some r ′ ∈ Z (with the

same p0 ∈ F(Z)). Now, it follows from (3.49) that (a) implies (b).

The equivalence (b)⇔(c) follows from Proposition 3.4 and the formula

ωr
m · λ/ωr

m · µ = λ̂/µ − (r, r) (r ∈ Z),
����

����

(3.51)

which is verified by a simple calculation. �

4 Representations of the double affine Hecke algebra

Let F denote a field whose characteristic is not equal to 2.
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4.1 Double affine Hecke algebra of type A

Let q ∈ F.

The double affine Hecke algebra was introduced by Cherednik [2, 4].

Definition 4.1. Let n ∈ Z≥2.

(i) The double affine Hecke algebra Ḧn(q) of GLn is the unital associative algebra

over F defined by the following generators and relations:

(1) generators:

t0, t1, . . . , tn−1, π
±1, x±1

1 , x±1
2 , . . . , x±1

n , ξ±1; (4.1)

(2) relations for n ≥ 3:

(
ti − q

)(
ti + 1

)
= 0

(
i ∈ [0, n − 1]

)
,

titjti = tjtitj
(
j ≡ i± 1modn

)
,

titj = tjti
(
j �≡ i± 1modn

)
,

ππ−1 = π−1π = 1,

πtiπ
−1 = ti+1

(
i ∈ [0, n − 2]

)
, πtn−1π

−1 = t0,

xix
−1
i = x−1

i xi = 1
(
i ∈ [1, n]

)
,

xixj = xjxi

(
i, j ∈ [1, n]

)
,

tixiti = qxi+1

(
i ∈ [1, n − 1]

)
, t0xnt0 = ξ−1qx1,

tixj = xjti
(
j �≡ i, i + 1modn

)
,

πxiπ
−1 = xi+1

(
i ∈ [1, n − 1]

)
, πxnπ

−1 = ξ−1x1,

ξξ−1 = ξ−1ξ = 1, ξ±1h = hξ±1
(
h ∈ Ḧn(q)

)
;

(4.2)

(3) relations for n = 2:

(
ti − q

)(
ti + 1

)
= 0

(
i ∈ [0, 1]

)
,

ππ−1 = π−1π = 1, πt0π
−1 = t1, πt1π

−1 = t0,

xix
−1
i = x−1

i xi = 1
(
i ∈ [1, 2]

)
, x1x2 = x2x1,

t1x1t1 = qx2, t0x2t0 = ξ−1qx1,

πx1π
−1 = x2, πx2π

−1 = ξ−1x1,

ξξ−1 = ξ−1ξ = 1, ξ±1h = hξ±1
(
h ∈ Ḧ2(q)

)
.

(4.3)
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(ii) Define the affine Hecke algebra Ḣn(q) of GLn as the subalgebra of Ḧn(q) generated by

{t0, t1, . . . , tn−1, π
±1}.

Remark 4.2. It is known that the subalgebra of Ḧn(q) generated by

{
t1, t2, . . . , tn−1, x

±1
1 , x±1

2 , . . . , x±1
n

}
(4.4)

is also isomorphic to Ḣn(q).

For ν =
∑n

i=1 νiεi + νcc
∗ ∈ Ṗ, put

xν = xν1

1 xν2

2 · · · xνn
n ξνc . (4.5)

Let X denote the commutative group {xν | ν ∈ Ṗ} ⊆ Ḧn(q). The group algebra

F[X] = F[x±1
1 , x±1

2 , . . . , x±1
n , ξ±1] is a commutative subalgebra of Ḧn(q).

Forw ∈ Ẇ with a reduced expressionw = πrsi1
si2

· · · sik
, put

tw = πrti1
ti2

· · · tik
. (4.6)

Then tw does not depend on the choice of the reduced expression, and {tw}w∈Ẇ forms a

basis of the affine Hecke algebra Ḣn(q) ⊂ Ḧn(q).

It is easy to see that {twx
ν}w∈Ẇ,ν∈Ṗ and {xνtw}w∈Ẇ,ν∈Ṗ, respectively, form basis

of Ḧn(q). In particular, we have following.

Proposition 4.3. Ḧn(q) = Ḣn(q)F[X] = F[X]Ḣn(q). �

Define an element φi of Ḧn(q) by

φi = ti
(
1 − xαi

)
+ 1 − q

(
i ∈ [0, n − 1]

)
. (4.7)

By direct calculations, we have the following.

Lemma 4.4. The following hold in Ḧn(q):

φiφj = φjφi

(
i, j ∈ [0, n − 1], j �≡ i± 1modn

)
,

φiφjφi = φjφiφj

(
i, j ∈ [0, n − 1], j ≡ i± 1modn

)
,

φ2
i =

(
1 − qxαi

)(
1 − qx−αi

) (
i ∈ [0, n − 1]

)
.

(4.8)

�

Forw ∈ Ẇ with a reduced expressionw = πrsi1
si2

· · · sik
, put

φw = πrφi1
φi2

· · ·φik
. (4.9)
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Then φw does not depend on the choice of the reduced expression by Lemma 4.4. For an

Ḧn(q)-moduleM, the element φw ∈ Ḧn(q) is regarded as a linear operator onM, and φw

is called an intertwining operator.

The following formula follows easily.

Lemma 4.5. φwx
ν = xw(ν)φw for anyw ∈ Ẇ and ν ∈ Ṗ. �

Lemma 4.6. Forw ∈ Ẇ,

φw = tw
∏

α∈R(w)

(
1 − xα

)
+

∑

y∈Ẇ,y≺w

tyfy (4.10)

for some fy ∈ F[X]. �

Proof. The proof follows from the expression (2.17) of R(w) and induction on l(w). �

Let X∗ denote the set of characters of X:

X∗ = Homgroup

(
X,GL1(F)

)
. (4.11)

Consider the correspondence Ṗ → X∗ which maps ζ ∈ Ṗ to the character qζ ∈ X∗ defined

by

qζ
(
xi

)
= q〈ζ|ε∨

i 〉
(
i ∈ [1, n]

)
, qζ(ξ) = q〈ζ|c〉, (4.12)

or, equivalently, defined by qζ(xν) = q〈ζ|ν∨〉 (ν ∈ Ṗ). Through this correspondence, Ṗ is

identified with the subset

{
χ ∈ X∗ | χ

(
xν

)
∈ qZ

(
∀ν ∈ Ṗ

)}
(4.13)

of X∗, where qZ = {qr | r ∈ Z}.

For an Ḧn(q)-module M and ζ ∈ Ṗ, define the weight space Mζ and the general-

ized weight spaceM
gen
ζ of weight ζwith respect to the action of F[X] by

Mζ =

{
v ∈M

∣∣ (
xν − q〈ζ|ν∨〉

)
v = 0 for any ν ∈ Ṗ

}
,

M
gen
ζ =

⋃

k≥1

{
v ∈M

∣∣ (
xν − q〈ζ|ν∨〉

)k
v = 0 for any ν ∈ Ṗ

}
.

(4.14)

For an Ḧn(q)-module M, an element ζ ∈ Ṗ is called a weight of M if Mζ �= 0, and an

element v ∈ Mζ (resp.,M
gen
ζ ) is called a weight vector (resp., generalized weight vector)

of weight ζ.
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The following statement can be verified by direct calculations.

Proposition 4.7. Let M be an Ḧn(q)-module. Let ζ ∈ Ṗ and v ∈ Mζ. Then the following

hold, for allw ∈ Ẇ:

(i) φwMζ ⊆Mw(ζ) and φwM
gen
ζ ⊆M

gen

w(ζ);

(ii) φw−1φwv =
∏

α∈R(w) (1 − q1+〈ζ|α∨〉)(1 − q1−〈ζ|α∨〉)v. �

For ζ ∈ Ṗ, put

Żζ =
{
w ∈ Ẇ |

〈
ζ|α∨

〉
/∈ {−1, 1} ∀α ∈ R(w)

}
. (4.15)

Note that ŻζT
= Ż

λ̂/µ

T for (λ, µ) ∈ Ĵn
m,� and T ∈ TabRC(λ̂/µ).

As a direct consequence of Proposition 4.7, we have the following.

Proposition 4.8. Suppose that q is not a root of 1. Let M be an Ḧn(q)-module and ζ ∈ Ṗ.

Forw ∈ Żζ, the map

φw : Mζ −→Mw(ζ) (4.16)

is a linear isomorphism. �

4.2 X-semisimple modules

Remark 4.9. Throughout Section 4.2, the lemmas and propositions are still true and re-

quire almost no modification of their statements or proofs, even if κ is not an integer or

if q is a root of unity. However, we impose these restrictions so that the combinatorics

developed in Section 3 describes the structure of the X-semisimple modules. When we

relax the condition κ ∈ Z but still require q generic, one can extend the combinatorial

description with appropriate reformulation.

Fix n ∈ Z≥2. Let q ∈ F and suppose that q is not a root of 1.

Fix κ ∈ Z and put Pκ = P + κc∗ = {ζ ∈ Ṗ | 〈ζ | c〉 = κ}.

Definition 4.10. Define Oss
κ (Ḧn(q)) as the set consisting of those Ḧn(q)-modulesMwhich

is finitely generated and admits a decomposition

M =
⊕

ζ∈Pκ

Mζ (4.17)

with dimMζ <∞ for all ζ ∈ Pκ.
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We say that a moduleM ∈ Oss
κ (Ḧn(q)) is X-semisimple.

In the following, we will see some general properties of Ḧn(q)-modules in

Oss
κ (Ḧn(q)). The results and argument used in the proofs are essentially the same as those

for the affine Hecke algebra (see, e.g., [9]).

Lemma 4.11. LetM ∈ Oss
κ (Ḧn(q)). Let i ∈ [0, n− 1] and let ζ ∈ Pκ be such that 〈ζ | α∨

i 〉 = 0.

ThenMζ = {0}. �

Proof. Suppose that there exists v ∈Mζ \ {0}. Then we have

(
xαi − 1

)
tiv = 2(1 − q)v �= 0,

(
xαi − 1

)2
tiv = 0.

(4.18)

This implies tiv ∈M
gen
ζ \Mζ, which contradicts the assumptionM =

⊕
ζ∈Pκ

Mζ. �

Lemma 4.12. Let L be an irreducible Ḧn(q)-module which belongs to Oss
κ (Ḧn(q)). Let v be

a nonzero weight vector of L. Then L =
∑

w∈Ẇ Fφwv. �

Proof. Put N =
∑

w∈Ẇ Fφwv ⊆ L. Since L =
∑

w∈Ẇ Ftwv by Proposition 4.3, it is enough

to prove that twv ∈ N for allw ∈ Ẇ. We proceed by induction on l(w).

It is clear that twv ∈ N forw of length zero.

Let k ∈ Z≥1 and suppose that twv ∈ N for all w ∈ Ẇ with l(w) < k. Take w ∈ Ẇ

with a reduced expression w = πrsi1
si2

· · · sik
(and hence l(w) = k). By Lemma 4.6, we

have φwv =
∑

x∈Ẇ,x	w gwxtxvwith some coefficients gwx ∈ F.

If gww �= 0, then twv = g−1
ww (φwv −

∑
x≺w gwxtxv) ∈ N.

Suppose gww = 0. By Lemma 4.6, this means

∏

α∈R(w)

(
1 − q〈ζ|α∨〉

)
= 0, (4.19)

where ζ ∈ Pκ is the weight of v. Hence, there exists p ∈ [1, k] such that

∏

α∈R(y)

(
1 − q〈ζ|α∨〉

)
�= 0,

∏

α∈R(sipy)

(
1 − q〈ζ|α∨〉

)
= 0, (4.20)

where y = sip+1
sip+2

· · · sik
. This implies 〈ζ | y−1(α∨

ip
)〉 = 〈y(ζ) | α∨

ip
〉 = 0. By Lemma 4.11,

we have Ly(ζ) = 0 and hence φyv = 0.
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Let φyv =
∑

x∈Ẇ,x	y gyxtxv with gyx ∈ F. Multiplying the equality φyv = 0 by

πrti1
ti2

· · · tip
, we have

gyytwv = −
∑

x≺y

gyxπ
rti1

ti2
· · · tip

txv. (4.21)

Note that gyy =
∏

α∈R(y)(1 − q〈ζ|α∨〉) �= 0 by (4.20), and it is easy to verify that the right-

hand side of (4.21) is inN using the induction hypothesis. Therefore, twv ∈ N. �

For ζ ∈ Pκ, let Ẇ[ζ] denote the stabilizer of ζ:

Ẇ[ζ] =
{
w ∈ Ẇ | w(ζ) = ζ

}
. (4.22)

Lemma 4.13. Let L be an irreducible Ḧn(q)-module which belongs to Oss
κ (Ḧn(q)). Let ζ be

a weight of L and let v ∈ Lζ. Then φwv = 0 for allw ∈ Ẇ[ζ] \ {1}. �

Proof. Letw ∈ Ẇ[ζ] \ {1} with a reduced expressionw = πrsi1
si2

· · · sik
.

Put Ṙ[ζ] = {α ∈ Ṙ | 〈ζ | α∨〉 = 0}.

Then, Ṙ[ζ] is a subroot system of Ṙ and Ẇ[ζ] is the corresponding Coxeter group.

Moreover, it follows that a system of positive (resp., negative) roots is given by Ṙ[ζ] ∩ Ṙ+

(resp., Ṙ[ζ] ∩ Ṙ−).

Therefore, for w ∈ Ẇ[ζ] \ {1}, there exists a reflection sα (α ∈ Ṙ[ζ] ∩ Ṙ+) such that

w(α) ∈ Ṙ[ζ] ∩ Ṙ− ⊆ Ṙ−.

Now, Lemma 2.2(ii) implies that there exists p ∈ [0, n − 1] such that wsα =

πrsi1
si2

· · · sip−1
sip+1

· · · sik
. Putting y = sip+1

sip+2
· · · sik

, we have 〈ζ | y−1(α∨
ip

)〉 =

〈y(ζ) | α∨
ip
〉 = 0. Lemma 4.11 implies that Ly(ζ) = 0 and hence φwv = φπrsi1

si2
···sip

φyv = 0.

�

Proposition 4.14. Let L be an irreducible Ḧn(q)-module which belongs to Oss
κ (Ḧn(q)).

Then dimLζ ≤ 1 for all ζ ∈ Pκ. �

Proof. The proof follows directly from Lemma 4.12 and Lemma 4.13. �

Lemma 4.15. Let L be an irreducible Ḧn(q)-module which belongs to Oss
κ (Ḧn(q)). Let ζ be

a weight of L and let i ∈ [0, n − 1] such that 〈ζ | α∨
i 〉 ∈ {−1, 1}. Then φiv = 0 for v ∈ Lζ. �

Proof. Suppose 〈ζ | α∨
i 〉 = ±1 and let v ∈ Lζ \ {0}. Suppose φiv �= 0. Put Ẇ ′ = {w ∈ Ẇ |

wsi ∈ Ẇ[ζ]}. Then it follows from Lemma 4.12 that

∑

w∈Ẇ ′

awφwφiv = v (4.23)

for some {aw ∈ F}w∈Ẇ ′ .
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For w ∈ Ẇ ′ such that l(wsi) < l(w), we have φw = φwsi
φi. Proposition 4.7(ii)

implies that

φwφiv = φsiwφ
2
i v = φsiw

(
1 − q1+〈ζ|α∨

i 〉
)(
1 − q1−〈ζ|α∨

i 〉
)
v (4.24)

and it is 0 as 〈ζ | α∨
i 〉 = ±1.

For w ∈ Ẇ ′ such that l(wsi) > l(w), we have φwφiv = φwsi
v = 0 by Lemma 4.13.

Therefore, the left-hand side of (4.23) is 0 and this is a contradiction. �

4.3 Representations associated with periodic skew diagrams

In the rest of this paper, we always assume that q is not a root of 1.

Let n ∈ Z≥2,m ∈ Z≥1, and 
 ∈ Z≥0.

For (λ, µ) ∈ Ĵn
m,�, set

V̈(λ, µ) =
⊕

T∈TabRC(λ̂/µ)

FvT . (4.25)

Define linear operators x̃i (i ∈ [1, n]), π̃, and t̃i (i ∈ [0, n − 1]) on V̈(λ, µ) by

x̃ivT = qCT (i)vT ,

π̃vT = vπT ,

t̃ivT =






1 − q1+τi

1 − qτi
vsiT −

1 − q

1 − qτi
vT if siT ∈ TabRC(λ̂/µ),

−
1 − q

1 − qτi
vT if siT /∈ TabRC(λ̂/µ),

(4.26)

where

τi = CT (i) − CT (i + 1) = 〈ζT | α∨
i 〉

(
i ∈ [0, n − 1]

)
. (4.27)

The following lemma is easy and ensures that the operator t̃i is well defined.

Lemma 4.16. CT (i) − CT (i + 1) �= 0 for any i ∈ [0, n − 1] and T ∈ TabRC(λ̂/µ). �

Theorem 4.17. Let (λ, µ) ∈ Ĵn
m,�. There exists an algebra homomorphism θλ,µ : Ḧn(q) →

EndF(V̈(λ, µ)) such that

θλ,µ(ti) = t̃i
(
i ∈ [0, n − 1]

)
, θλ,µ(π) = π̃,

θλ,µ(xi) = x̃i

(
i ∈ [1, n]

)
, θλ,µ(ξ) = q�+m.

(4.28)

�
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Proof. The defining relations of Ḧn(q) can be verified by direct calculations (see [9], for a

sample of calculation for the affine Hecke algebra). �

Note that the Ḧn(q)-module V̈(λ, µ) for (λ, µ) ∈ Ĵn
m,� belongs to Oss

κ (Ḧn(q)) with

κ = 
 +m.

Theorem 4.18. Let (λ, µ) ∈ Ĵn
m,�.

(i) V̈(λ, µ) =
⊕

T∈TabRC(λ̂/µ)
V̈(λ, µ)ζT

, and V̈(λ, µ)ζT
= FvT for all T ∈ TabRC(λ̂/µ).

(ii) The Ḧn(q)-module V̈(λ, µ) is irreducible. �

Proof. (i) The proof follows directly from Proposition 3.16.

(ii) LetN be a nonzero submodule of V̈(λ, µ). SinceN contains at least one weight

vector, we can assume that vT ∈ N for some T ∈ TabRC(λ̂/µ).

Let S ∈ TabRC(λ̂/µ). By Theorem 3.19, there exists wS ∈ Ż
λ̂/µ

T such that S = wST .

Put ṽS = φwS
vT ∈ N. Since the intertwining operator

φwS
: V̈(λ, µ)ζT

−→ V̈(λ, µ)wS(ζT ) = V̈(λ, µ)ζS
(4.29)

is a linear isomorphism by Proposition 4.8, we have ṽS ∈ V̈(λ, µ)ζS
\ {0}.

Now, it follows from (i) that
⊕

S∈TabRC(λ̂/µ)
FṽS = V̈(λ, µ). Therefore, we have N ⊇

V̈(λ, µ) and henceN = V̈(λ, µ). Therefore, V̈(λ, µ) is irreducible. �

4.4 Classification of X-semisimple modules

Fix n ∈ Z≥2 and κ ∈ Z≥1. Let q ∈ F and suppose that q is not a root of 1.

Our next and final purpose is to show that the modules V̈(λ, µ) we constructed in

Section 4.3 exhausts all irreducible modules in Oss
κ (Ḧn(q)).

Lemma 4.19. Let L be an irreducible Ḧn(q)-module which belongs to Oss
κ (Ḧn(q)). For any

weight ζ ∈ Pκ of L and i, j ∈ Z such that i < j and

〈
ζ | α∨

ij

〉
= 0, (4.30)

there exist k+ ∈ [i + 1, j − 1] and k− ∈ [i + 1, j − 1] such that

〈
ζ | α∨

ik+

〉
= −1,

〈
ζ | α∨

ik−

〉
= 1, (4.31)

respectively. �
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Proof. We proceed by induction on j − i.

For any weight ζ of L and i ∈ Z, we have 〈ζ | α∨
i 〉 �= 0 by Lemma 4.11. Therefore,

we have nothing to prove when j − i = 1. Let r > 1 and assume that the statement holds

when j − i < r.

In order to complete the induction step, it is enough to prove the existence of k±

for a weight ζ of L and i, j ∈ Z such that j − i = r and

{
k ∈ [i + 1, j − 1] |

〈
ζ | α∨

ik

〉
= 0
}

= ∅. (4.32)

Fix a nonzero weight vector v ∈ Lζ.

Case 1. Suppose〈ζ | α∨
i 〉 = ±1 and 〈ζ | α∨

j−1〉 = ±1. Then the statement holds with k± =

j − 1 and k∓ = i + 1.

Case 2. Suppose 〈ζ | α∨
i 〉 = −1 and 〈ζ | α∨

j−1〉 = 1. Then we have 〈ζ | α∨
i+1j−1〉 = 0. If i + 1 �=

j − 1, then there exist k ′
−

∈ [i + 1, j − 1] such that 〈ζ | α∨
i+1k ′

−

〉 = 1, and hence 〈ζ | α∨
ik ′

−

〉 =

〈ζ | α∨
i 〉 + 〈ζ | α∨

i+1k ′
−

〉 = 0. In this contradicts the choice (4.32) of i, j. Therefore we have

j − i = 2. This case, we have 〈ζ | α∨
i 〉 = −1 and 〈ζ | α∨

i+1〉 = 1. Hence, Lemma 4.15 implies

that φiv = 0 and φi+1v = 0, which gives tiv = qv and ti+1v = −v, respectively. But then we

have

−q2v = titi+1tiv = ti+1titi+1v = qv, (4.33)

and this is a contradiction as q is not a root of 1. Therefore, this case is not possible.

Case 3. Suppose 〈ζ | α∨
i 〉 = 1 and 〈ζ | α∨

j−1〉 = −1. A similar argument as in Case 2 implies

that this case is not possible.

Case 4. Suppose 〈ζ | α∨
i 〉 �= ±1. Then φiv �= 0 by Proposition 4.7 and hence si(ζ) is a

weight of L. By 〈si(ζ) | α∨
i+1j〉 = 0, the induction hypothesis implies that there exists

k± ∈ [i + 2, j − 1] such that 〈ζ | α∨
ik±

〉 = 〈si(ζ) | α∨
i+1k±

〉 = ∓1. Hence the statement holds.

Case 5. Suppose 〈ζ | α∨
j−1〉 �= ±1. Then φj−1v �= 0 and a similar argument as in Case 4

implies that there exists k± ∈ [i + 1, j − 2] such that 〈ζ | α∨
ik±

〉 = ∓1.

This completes the proof. �

Theorem 4.20. Let n ∈ Z≥2 and κ ∈ Z≥1. Let L be an irreducible Ḧn(q)-module which be-

longs to Oss
κ (Ḧn(q)). Then there existm ∈ [1, κ] and (λ, µ) ∈ Ĵ∗n

m,κ−m such that L ∼= V̈(λ, µ).

�
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Proof

Step 1. Let ζ ∈ Pκ be a weight of L. Define Fζ : Z→ Z by Fζ(i) = 〈ζ | ε∨
i 〉 (i ∈ Z).

It is easy to see that Fζ satisfies condition (C1) in Proposition 3.20, and the ex-

istence of k± in condition (C2) follows from Lemma 4.19. Note that the uniqueness of

k± in (C2) follows automatically from the condition that [i, j] ∩ F−1
ζ (p) = {i, j}, setting

p = Fζ(i) here. Suppose, without loss of generality, that there were another choice of k ′
±,

with k± < k ′
±. It follows 〈ζ | α∨

k±k ′
±

〉 = 0, and applying Lemma 4.19 here gives the ex-

istence of an i ′ between k± and k ′
± and hence i < i ′ < j with 〈ζ | α∨

ii ′〉 = 0. This gives

i ′ ∈ F−1
ζ (p), a contradiction.

Therefore, Proposition 3.20 implies that there exist m ∈ [1, n], T ∈ Tab(λ̂/µ), and

(λ, µ) ∈ Ĵ∗n
m,κ−m such that Fζ = CT , or, equivalently, ζ = ζT .

Step 2. Recall that Żζ = Ż
λ̂/µ

T . Take u ∈ Lζ \ {0}. For eachw ∈ Ż
λ̂/µ

T , put

σw =
∏

α∈R(w)

(
1 − q1+〈ζ|α∨〉

)
,

uw = σ−1
w φwu.

(4.34)

Here, note that σw �= 0 and uw �= 0 for allw ∈ Ż
λ̂/µ

T by Proposition 4.8.

Put N =
∑

w∈Żζ
Fφwu =

∑
w∈Ż

λ̂/µ

T

Fuw ⊆ L. Since uw ∈ LζwT
and each weight

space is linearly independent by Proposition 3.16, we haveN =
⊕

w∈Ż
λ̂/µ

T

Fuw.

By Theorem 3.19, one can definewS ∈ Ż
λ̂/µ

T by S = wST for all S ∈ TabRC(λ̂/µ), and

define a linear map ρ : V̈(λ, µ)→ L by ρ(vS) = uwS
(S ∈ TabRC(λ̂/µ)). It is obvious that ρ is

injective and its image isN.

Let us see that ρ is an Ḧn(q)-homomorphism.

Letw ∈ Ż
λ̂/µ

T . Let i ∈ [0, n−1] be such that l(siw) < l(w). Then we have siw ∈ Ż
λ̂/µ

T

and σw = (1 − q1+〈ζ|(siw)−1(α∨

i )〉)σsiw. Therefore,

φiuw = σ−1
w φiφwu = σ−1

w φ2
iφsiwu

=
(
1 − q1+〈siw(ζ)|α∨

i 〉
)(
1 − q1−〈siw(ζ)|α∨

i 〉
)
σ−1

w φsiwu

=
(
1 − q1+〈w(ζ)|α∨

i 〉
)
usiw.

(4.35)

Let i ∈ [0, n − 1] be such that l(siw) > l(w). If siw �∈ Ż
λ̂/µ

T , then 〈ζ | w−1(α∨
i )〉 = ±1 and

hence φiuw = 0 by Lemma 4.15. If siw ∈ Ż
λ̂/µ

T , then we have σsiw = (1− q1−〈ζ|w−1(α∨

i )〉)σw
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and

φiuw = σ−1
w φiφwu = σ−1

w φsiwu

=
(
1 − q1+〈w(ζ)|α∨

i 〉
)
usiw.

(4.36)

Therefore, in both cases, we have

φiuw =






(
1 − q1+〈w(ζ)|α∨

i 〉
)
usiw

(
siw ∈ Ż

λ̂/µ

T

)
,

0
(
siw �∈ Ż

λ̂/µ

T

)
.

(4.37)

This implies

ρ
(
tivS

)
= tiρ

(
vS

) (
i ∈ [0, n − 1], S ∈

RC

Tab(λ̂/µ)
)
. (4.38)

Moreover, it is easy to see that

ρ
(
xivS

)
= xiρ(vS) (i ∈ [1, n]), ρ(ξvS) = ξρ(vS), ρ(πvS) = πρ(vS) (4.39)

for all S ∈ TabRC(λ̂/µ). Therefore, ρ is an Ḧn(q)-homomorphism and it gives an isomor-

phism V̈(λ, µ) ∼= N of Ḧn(q)-modules. Since L is irreducible, we have L = N ∼= V̈(λ, µ). �

Corollary 4.21. Let L be an irreducible Ḧn(q)-module which belongs to Oss
κ (Ḧn(q)). Let

v ∈ L be a nonzero weight vector of weight ζ ∈ Ṗκ. Then

L =
⊕

w∈Żζ

Fφwv, (4.40)

and φwv �= 0 for allw ∈ Żζ. �

Theorem 4.22. Letm,m ′ ∈ Z≥1 and 
, 
 ′ ∈ Z≥0. Let (λ, µ) ∈ Ĵ∗n
m,� and (η, ν) ∈ Ĵ∗n

m ′,� ′ . Then

the following are equivalent:

(a) V̈(λ, µ) ∼= V̈(η, ν),

(b) m = m ′, 
 = 
 ′ and λ̂/µ = η̂/ν + (r, r) for some r ∈ Z,

(c) m = m ′, 
 = 
 ′ and (η, ν) = ωr
m · (λ, µ) for some r ∈ Z. �

Proof. The proof follows from Step 1 in the proof of Theorem 4.20 and Proposition 3.21.

�

Let IrrOss
κ (Ḧn(q)) denote the set of isomorphism classes of all simple modules

in Oss
κ (Ḧn(q)). Combining Theorems 4.20 and 4.22, we obtain the following classification

theorem, which is announced in [5] in more general situation.
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Corollary 4.23 (cf.[5]). Let n ∈ Z≥2 and κ ∈ Z≥1. The correspondences (λ, µ) �→ λ̂/µ and

(λ, µ) �→ V̈(λ, µ) induce the following bijections, respectively:

⊔

m∈[1,κ]

D∗n
(m,−κ+m)/Z(1, 1)

∼←−
⊔

m∈[1,κ]

(
Ĵ∗n

m,κ−m/〈ωm〉
)

∼
−→ IrrOss

κ

(
Ḧn(q)

)
. (4.41)

�

Remark 4.24. We gave a direct and combinatorial proof for Theorems 4.20 and 4.22 and

Corollary 4.23 based on the tableaux theory on periodic skew diagrams.

An alternative approach to prove these results is to use the result in [10, 11],

where the classification of irreducible modules over Ḧn(q) of a more general class is ob-

tained. Actually, it is easy to see that the Ḧn(q)-module V̈(λ, µ) coincides with the unique

simple quotient L̈(λ, µ) of the induced module M̈(λ, µ) with the notation in [10].

Remark 4.25. It is easy to derive the corresponding results for the degenerate affine

Hecke algebra by a parallel argument.

Remark 4.26. There exists an algebra involution ι : Ḧn(q)→ Ḧn(q) such that

ι
(
ti

)
= qt−1

i

(
i ∈ [0, n − 1]

)
, ι(π) = π,

ι
(
xi

)
= x−1

i

(
i ∈ [1, n]

)
, ι(ξ) = ξ−1.

(4.42)

The composition θλ,µ ◦ ι : Ḧn(q)→ V̈(λ, µ) gives an Ḧn(q)-module structure on V̈(λ, µ) on

which ξ acts as a scalar q−�−m. We let V̈ι(λ, µ) denote this Ḧn(q)-module. The correspon-

dence (λ, µ) �→ V̈ι(λ, µ) induces a bijection

⊔

m∈[1,κ]

(
Ĵ∗n

m,κ−m/〈ωm〉
)
−→ IrrOss

−κ

(
Ḧn(q)

)
(4.43)

for all κ ∈ Z≥1.
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