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Introduction 1

AdS/CFT relates the dynamics of fields in AdSd+1 to that of
operators in a CFTd that lives on the boundary. [Maldacena,
Witten, Gubser-Klebanov-Polyakov]

In some limit, bulk is classical and the boundary is quantum:
Einstein’s equations “know” QFT!

Symmetries:

ds2 =
dr2

r2
+

1

r2
ηijdx

idx j

Isometries of AdS ⇔ global sym. group of the QFT SO(d , 2).

Precise dictionary of various quantities in each side

e−IAdS [φ(0)] = 〈e
∫
φ(0)O〉CFT
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Introduction 2

For a scalar field of mass m2 in AdSd+1, there are in principle two
dual operators of dimension

∆± =
d

2
±
√
m2 −m2

BF m2
BF = −d2

4

BF stability bound: tachyonic masses are allowed as long as
m2 > m2

BF .

The boundary conditions play a crucial role: they select between
∆−/∆+ (determine the operator content)

If m2 > m2
BF + 1 we have ∆− <

d
2 − 1 in conflict with unitarity

bound for scalar operators, so we expect “something” to go wrong.

But what exactly happens in the bulk if we go below the bound?
arXiv:1105.6337 (DM and TA)
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Set up

Take a scalar field with mass m2 = m2
BF + ν2 with 1 < ν < 2 in

AdSd+1

I0 = −1

2

∫
M

√
g [gµν∂µφ∂νφ+ m2φ2],

φ = rd/2−ν(φ(0) + r2φ(1) + r2νφ(ν) + . . .) φ(1) =
1

4(ν − 1)
�0φ

(0)

Impose the (N) boundary condition φ(ν) = 0, so the dynamical
operator has dimension ∆− = d/2− ν. We take the action to be

IN = I0+

∫
∂M

√
γ

[
ρµ∂

µφφ− 1

2
(d/2− ν)φ2 +

1

4(ν − 1)
γij∂iφ∂jφ

]
,

which satisfies δIN =
∫
∂M φ(0)δφ(ν).
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Inner product

For ν > 1, the usual KG inner product

(φ1, φ2)bulk = −i
∫

Σ

√
gΣn

µφ∗1
↔
∂ µ φ2

diverges. Using the prescription of arXiv:0805.1902 [GC and DM],
we can construct a finite and conserved i.p. (valid for 1 < ν < 2)

(φ1, φ2)ren = (φ1, φ2)bulk −
1

2(ν − 1)
(φ1, φ2)bndy

Not manifestly positive definite! expect ghosts in the bulk as a
result of ∆− < d/2− 1.

To do: find spectrum, compute norms and look for ghosts. Include
D results for comparison.
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Spectrum and norms

Look for solutions of the form φ = e ik·xψ(r). Defining
m2

bndy = −kik i , we have

I m2
bndy > 0: p.w. normalizable at PP, (φ, φ) > 0 for D/N even

when ν > 1

I m2
bndy < 0: ruled out for D/N bc’s. In principle allowed for

“mixed” bc’s

I m2
bndy = 0: ψ = rd/2±ν . For N bc’s, becomes normalizable

when ν > 1. Pure gauge

For N bc’s and ν > 1 do not find negative norms...how is this
consistent?

The operator is not gauge invariant, so UB does not apply.

Let’s take a closer look at the theory and investigate the 2-point
function.
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Neumann 2-point function

We expand the field as

φ(x , r) =

∫
V+

ddk[a†(k)uk(x , r) + a(k)u∗k(x , r)] u = e ik·xψ

Fixing the gauge we obtain

(u1, u2)N = C 2
ν δ

(d)(k i1 − k i2)(mbndy ,1)2ν

The commutator is given by [a, a†] = (u, u)−1. Using this we find

〈φ(x1, r1)φ(x2, r2)〉 = C−2
ν

∫
ω≥|~k|

dωdd−1~ke ik·(x1−x2)ψN(r1, k)ψN(r2, k)

(ω2 − |~k |2)ν

Diverges near mbndy = 0 (“IR”) for ν > 1, so the theory does not
exist.

Try to fix it adding terms that are relevant in the IR.
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Deformed theory

AdS/CFT dictionary: adding deformations is dual to modifying the
boundary conditions.

We consider

Iκ,λ = IN − ν
∫
∂M

ddx

√
g (0)[κ∂iφ

(0)∂ iφ(0) + λ(φ(0))2],

which requires
φ(ν) + κ�0φ

(0) − λφ(0) = 0.

κ and λ are dimensionful and the theory flows to ∆+ in the IR, i.e.

(φ, φ)def ≈ (mbndy )−2ν for mbndy ≈ 0

This solves the IR issue, but...

now we do find tachyon-ghosts for all values of κ, λ.
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Extensions

Neumann boundary conditions are pathological for
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I Gravitons: odd d 2-pt function ill-defined; even d ghosts. [GC
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I Maxwell-Chern-Simons AdS3, even when bulk Ω can be used
[with JJ and RL].

I Holographic CFT(A)dS : find ghosts (with CU)
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Can we get rid of the ghosts? (with TF and DM)

Try adding UV modification in addition to the IR deformation.

We
consider a UV wall as a model of a “physical” UV cut-off (e.g.
provided by a domain wall)

Iκ,λ = IN − ν
∫
∂M

√
γr2ν

0 [
κ

r2
0

(∂φ)2 + λφ2]

where ∂M corresponds to r = r0.

κ >
1

4ν(ν − 1)r
2(ν−1)
0

only time-like 

excitations

1 real tachyon

non-ghost

1 real tachyon-ghost

Two real or complex  tachyons 

(one d.o.f. is a ghost)

Κ

Λ
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Conclusions

Bulk theories with holographic duals that violate the unitarity
bound are indeed pathological.

The specific pathologies depend on where the CFT lives.

It seems that it is possible to remove the ghosts by adding a “UV
cut-off”

It would be interesting to find a physical realization of the cut-off.
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Thank you!



Extra Slides



Maxwell fields ∇µF
µν = 0

In the radial gauge, for d > 2 (there are logs in even d)

Ai = A
(0)
i + rd−2A

(d−2)
i + . . . , ∂iA

(d−2)
i = 0

A(0) ⇔ gauge field (res. U(1)) ; A(d−2) ⇔ U(1) current

N bc’s allow A(0) to fluctuate. Gauge invariant operator F
(0)
ij ,

∆F = 2. ∆UB = max(d − 2, 2).

Conflict with UB for d > 4: find ghosts (even d) or IR divergence
(odd d)

d = 4: F (0) saturates UB. But ∂ iF
(0)
ij 6= 0 and ghosts appear.

d = 3: F (0) dual to j = ?F (0), which saturates UB. But! dj = 0
(Bianchi), so no ghosts are expected and indeed they do not arise.

d = 2: Neumann allows j to fluctuate, so satisfies “UB”
(conformal sym. is lost). Find ghosts. Implications for HSC.



Gravitons Gµν = Λgµν

(Most of this is in arXiv:0805.1902 [GC and DM]).

ds2 =
dr2

r2
+

1

r2
(g

(0)
ij + rdg

(d)
ij )dx idx j

g (0) ⇔ metric in the CFT ; g
(d)
ij ∼ Tij

N bc’s allow g (0) to fluctuate and bndy diff are gauge. Gauge

invariant operator transverse part of R
(0)
ij , which has ∆R = 2 for

d > 2. In this case ∆UB = d .

Conflict with UB for d > 2: find ghosts (even d) or IR divergence
(odd d)

For d = 2, no obvious conflict with UB but still find ghosts.



MCS in AdS3

I0 = −1

4

∫
M
d3x
√
g(F 2 + αεµνλAµFνλ)

For 0 < α < 1, AdS asymptotics are preserved. In addition, it
turns out that Ω can be take to be simply the bulk expression.

The asymptotic expansion reads

Ai = A
(0)
i + r−αA

(−)
i + rαA

(+)
i

where F
(0)
ij = 0, A

(+)
v = 0, A

(−)
u = 0.

A
(−)
i is a vector operator of dimension ∆− = 1− α < ∆UB = 1.

Accordingly, find ghosts for bc’s that allow A(−) to fluctuate.


