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Gravitational turbulent instability of AdS

Motivation

The AdS/CFT correspondence relates a (d− 1)−QFT with a
d−dimensional theory of gravity.

Any gravitational phenomena should have an equivalent CFT analog,
and vice-versa.
Seems a natural arena to study field theory open questions:
transport properties in strongly coupled field theories, quantum
turbulence, etc. . . .
Also works the other way around in its strong version: weak coupling
CFT as a definition for non-perturbative String Theory.

In this work we want to study far from equilibrium dynamics in
gravity, and try to understand its field theory interpretation.

A poor’s man approach: break down of perturbation theory - onset
of interesting dynamics.
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Gravitational turbulent instability of AdS

Anti-de Sitter spacetime

Anti-de Sitter spacetime - 1/2

Anti-de Sitter space is a maximally symmetric solution to

S =
1

16πG

�
ddx

√
−g

�
R+

(d− 1)(d− 2)

L2

�
,

which in global coordinates can be expressed as

ds2 ≡ ḡabdx
adxb = −

�
r2

L2
+ 1

�
dt2 +

dr2

r2

L2 + 1
+ r2dΩ2

d−2.

The Poincaré coordinates

ds2 = R2(−dτ2 + dx · dx) + L2dR2

R2

do not cover the entire spacetime.
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Gravitational turbulent instability of AdS

Anti-de Sitter spacetime

Anti-de Sitter spacetime - 2/2

Conformally, AdS looks like the interior of a cylinder

Poincaré coordinates cover the brown-shaded
region.

The instability described in this talk will occur
in global AdS only.

The dual field theory lives on Rt × Sd−2.

With energy preserving boundary conditions,
waves bounce off infinity and return in finite
time.
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Gravitational turbulent instability of AdS

Minkowski, dS and AdS

Minkowski, dS and AdS spacetimes

At the linear level, Anti de-Sitter space-time appears just as stable
as the Minkowski or de-Sitter spacetimes.

For the Minkowski and de-Sitter spacetimes, it has been shown that
small, but finite, perturbations remain small - D. Christodoulou and
S. Klainerman ‘93.

Why has this not been shown for Anti de-Sitter?

It is just not true!

Claim:

Generic small (but finite) perturbations of AdS become large and
eventually form black holes.

The energy cascades from low to high frequency modes in a manner
reminiscent of the onset of turbulence.
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Gravitational turbulent instability of AdS

Folklore

Folklore - 1/2

Doesn’t this claim contradict the fact that Anti de-Sitter is
supersymmetric?

Doesn’t this contradict the fact that there is a positivity of energy
theorem for Anti de-Sitter?

The short answer, is NO :

Positivity energy theorem: if matter satisfies the dominant energy
condition, then E ≥ 0 for all nonsingular, asymptotically AdS initial
data, being zero for AdS only.

This ensures that AdS cannot decay.

It does not ensure that a small amount of
energy added to AdS will not generically
form a small black hole.

That is usually ruled out by arguing that
waves disperse. This does not happen in
AdS.
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Gravitational turbulent instability of AdS

Folklore

Folklore - 2/2

Example (Dafermos):

Consider the following action:

S =

�
ddx

√
−g

�
R− (∇φ)2

�
.

There is a positivity energy theorem for all nonsingular asymptotically flat
initial data, and small finite perturbations remain small -
D. Christodoulou and S. Klainerman ‘93.

Consider now the same action, but with the wrong sign for the scalar
kinetic term:

S =

�
ddx

√
−g

�
R+ (∇φ)2

�
.

There is no positivity energy theorem, but Minkowski space is still
nonlinearly stable.
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Gravitational turbulent instability of AdS

Heuristics

Why is AdS unstable?

AdS acts like a confining finite box. Any generic finite excitation
which is added to this box might be expected to explore all
configurations consistent with the conserved charges of AdS -
including small black holes.

Special (fine tuned) solutions need not lead to the formation of
black holes.

We will see that for each linearized gravitational mode there
will be a corresponding nonlinear solution - geon.
These solutions are special since they are exactly periodic in
time and invariant under a single continuous symmetry.
Geons are analogous to gravitational plane waves.

A perhaps more convincing intuitive picture: colliding exact plane
waves produces singularities - Penrose - ’71.
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Gravitational turbulent instability of AdS

Perturbative construction

Perturbative construction - 1/3

Expand the metric as

g = ḡ +
�

i

�ih(i).

At each order in perturbation theory, the Einstein equations yield:

∆̃Lh
(i)
ab = T (i)

ab ,

where T (i) depends on {h(j≤i−1)} and their derivatives and

2∆̃Lh
(i)
ab ≡ −∇̄2h(i)

ab − 2R̄ c d
a b h(i)

cd − ∇̄a∇̄bh
(i) + 2∇̄(a∇̄ch(i)

b)c.

Any smooth symmetric two-tensor can be expressed as a sum of
fundamental building blocks, T �m

ab , that have definite transformation
properties under the SO(d− 1) subgroup of AdS.
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Gravitational turbulent instability of AdS

Perturbative construction

Perturbative construction - 2/3

For concreteness, set d = 4. Perturbations come in three classes:

Scalar-type perturbations: perturbations are constructed from
spherical harmonics on S2 - Y�m.
Vector-type perturbations: perturbations are constructed from vector
harmonics on S2 - these are �S2∇Y�m.
Tensor-type perturbations: only exist in d ≥ 5.

We go beyond linear order: need real representation for Y�m -
Y c
�m = cosφLm

� (θ) and Y s
�m = sinφLm

� (θ).

At each order, we can reduce the metric perturbations to 4 gauge
invariant functions satisfying (Kodama and Ishibashi ’03 for i = 1):

�2Φ
α,(i)
�m (t, r) + V (i)

� (r)Φα,(i)
�m (t, r) = T̃α,(i)

�m (t, r),

where α ∈ {c, s} and �2 is the w. op. in the (t, r) orbit space.

Choice of initial data relates Φc,(i)
�m and Φs,(i)

�m : 2 PDEs to solve.
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harmonics on S2 - these are �S2∇Y�m.
Tensor-type perturbations: only exist in d ≥ 5.

We go beyond linear order: need real representation for Y�m -
Y c
�m = cosφLm

� (θ) and Y s
�m = sinφLm

� (θ).

At each order, we can reduce the metric perturbations to 4 gauge
invariant functions satisfying (Kodama and Ishibashi ’03 for i = 1):

�2Φ
α,(i)
�m (t, r) + V (i)

� (r)Φα,(i)
�m (t, r) = T̃α,(i)

�m (t, r),

where α ∈ {c, s} and �2 is the w. op. in the (t, r) orbit space.

Choice of initial data relates Φc,(i)
�m and Φs,(i)

�m : 2 PDEs to solve.
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Gravitational turbulent instability of AdS

Perturbative construction

Perturbative construction - 3/3

Boundary conditions:

Regularity at the origin (r = 0) requires

Φα,(i)
�m ∼ O(r�).

Close to the AdS conformal boundary (as r → +∞)

Φα,(i)
�m (t, r) ∼ R�m(t) +

S�m(t)

r
+ . . . .

Surprisingly, if we want to keep the boundary metric fix, we need to
choose

S�m(t) = 0.

This is also the choice that conforms with finite energy for the
standard definition of “gravitational energy’’.
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Gravitational turbulent instability of AdS

Linear Perturbations

Linear Perturbations

At the linear level (i = 1) we can further decompose our
perturbations as

Φα,(i)
�m (t, r) = Φα,(i),c

�m (r) cos(ω�t) + Φα,(i),s
�m (r) sin(ω�t).

Because AdS acts like a confining box, only certain frequencies are
allowed to propagate

ω2
�L

2 = (1 + �+ 2p)2,

where p is the radial overtone. These are the so-called normal modes
of AdS. The fact that ω2L2 > 0 means that AdS is linearly stable.

For simplicity, we will take p = 0, in which case one finds

Φα,(1),κ(r) = Aα,(1),κ r�+1

(r2 + L2)
�+1
2

,

where Aα,(1),κ is a normalization constant.
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Gravitational turbulent instability of AdS

General Structure

General Structure

1 Start with a given perturbation Φα,(i),κ
�m (r), and determine the

corresponding h(i)
�m(t, r, θ,φ) through a linear differential map.

2 Compute T (i+1)
ab and decompose it as a sum of the building blocks

T �m
ab .

3 Compute source term T̃α,(i+1)
�m (t, r), and determine Φα,(i+1)

�m (t, r).

4 If T̃α,(i+1)
�m (t, r) has an harmonic time dependence cos(ω t), then

Φα,(i+1)
�m (t, r) will exhibit the same dependence, EXCEPT when ω

agrees with one of the normal frequencies of AdS:

Φα,(i+1)
�m (t, r) = Φα,(i+1),c

�m (r) cos(ω t) + Φα,(i+1),s
�m (r) t sin(ω t).

This mode is said to be resonant.

5 If for a given perturbation one can construct Φα,(i)
�m to any order,

without ever introducing a term growing linearly in time, the
solution is said to be stable and is unstable otherwise.
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Gravitational turbulent instability of AdS

Example I - Geons

Example I - 1/2

Start with a single mode � = m = 2 initial data.

At second order there are no resonant modes and the solution can
be rendered regular everywhere.
At third order there is a resonant mode, but one can set the
amplitude of the growing mode to zero by changing the frequency
slightly

ωL = 3− 14703

17920
�2.

The structure of the equations indicate that there is only one
resonant term at each odd order, and that the amplitude of the
growing mode can be set to zero by correcting the frequency.
One can compute the asymptotic charges to fourth order, and they
readily obey to the first order of thermodynamics:

Eg =
3Jg
2L

�
1− 4901 Jg

7560πL2

�
, ω2 =

3

L

�
1− 4901 Jg

3780πL2

�
,

where we defined � by Jg = 27
128πL

2�2.
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Gravitational turbulent instability of AdS

Example I - Geons

Example I - 2/2

The symmetry of the exact solution is not the same as the linearized
solution.

We adjust our initial data such that the time dependence of our
linear mode can always be recast as cos(ω t−mφ) which is invariant
under

K =
∂

∂t
+

ω

m

∂

∂φ
.

At the nonlinear level, we have the same type of symmetry, but ω
changes.

Resonances occur because normal modes of AdS take integer values:

Geons are likely to be “more” stable than AdS because the
normal modes of the Geons correspond to continuous
deformations of the AdS normal modes.
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Gravitational turbulent instability of AdS

Example II - Colliding Geons

Example II - 1/2

Start with a linear combination of � = m = 2 and � = m = 4.

Alike the single mode initial data, at second order there are no
resonant modes and the solution can be rendered regular everywhere.

At third order, there are four resonant modes:

The amplitude of the growing modes in two of the resonant
modes can be removed by adjusting the frequency of the initial
data (ω2 L = 3 and ω4 L = 5) just like we did for the single
mode initial data.
The amplitude of the growing mode of smallest frequency is
automatically zero.
The amplitude of the growing mode with the largest frequency
cannot be set to zero (ωL = 7, � = m = 6)!

AdS is nonlinearly unstable!
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Gravitational turbulent instability of AdS

Example II - Colliding Geons

Example II - 2/2

The frequency of the growing mode is higher than any of the
frequencies we started with!

The “energy” is transferred to modes of higher frequency.
Expect this to continue. When the ωL = 7, � = m = 6 mode grows,
it will source even higher frequency modes with growing amplitude.

Conjecture:

The endpoint of this instability is a rotating black hole.

Spherical scalar field collapse in
AdS - Bizon and Rostworowski,
’11.

No matter how small you make
the initial amplitude, the
curvature at the origin grows and
you eventually form a small black
hole.

18 / 24
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the initial amplitude, the
curvature at the origin grows and
you eventually form a small black
hole.

2

Numerical results. We solved the system (4-6) numeri-
cally using a fourth-order accurate finite-difference code.
We used the method of lines and a 4th-order Runge-
Kutta scheme to integrate the wave equation (4) in time,
where at each step the metric functions were updated
by solving the hamiltonian constraint (5) and the slicing
condition (6). Preservation of the momentum constraint
Ȧ + 2 sinx cosxA2e−δΦΠ = 0 was monitored to check
the accuracy of the code.
Solutions shown in Figs. 1 and 2 were generated from

Gaussian-type initial data of the form

Φ(0, x) = 0 , Π(0, x) =
2ε

π
exp

�
−4 tan2x

π2σ2

�
, (9)

with fixed width σ = 1/16 and varying amplitude ε. For
such data the scalar field is well localized in space and
propagates in time as a narrow wave packet. For large
amplitudes the wave packet quickly collapses, which is
signalled by the formation of an apparent horizon at a
point xH where A(t, x) drops to zero. As the amplitude
is decreased, the horizon radius xH decreases as well and
goes to zero for some critical amplitude ε0. This behavior
is basically the same as in the asymptotically flat case,
because for xH � π/2 the influence of the AdS bound-
ary is negligible. At criticality the Λ term becomes com-
pletely irrelevant, hence the solution with amplitude ε0
asymptotes (locally, near the center) the discretely self-
similar critical solution discovered by Choptuik in the
corresponding model with Λ = 0 [9]. For amplitudes
slightly below ε0 the wave packet travels to infinity, re-
flects off the boundary, and collapses while approaching
the center. Lowering gradually the amplitude we find
the second critical value ε1 for which xH = 0. As ε keeps
decreasing, this scenario repeats again and again, that is
we obtain a decreasing sequence of critical amplitudes εn
for which the evolution, after making n reflections from
the AdS boundary, locally asymptotes Choptuik’s solu-
tion. Specifically, we verified that in each small right
neighborhood of εn the horizon radius scales according
to the power law xH(ε) ∼ (ε−εn)γ with γ � 0.37. Fig. 1
shows that xH(ε) has the shape of the right continuous
sawtooth curve with finite jumps at each εn. Notice that
T (εn+1) − T (εn) ≈ π, where T (ε) denotes the time of
collapse. We stress that xH is the radius of the first ap-
parent horizon that forms on the t = const hypersurface;
eventually all the matter falls into the black hole and
the solution settles down to the Schwarzschild-AdS black
hole with mass equal to the initial mass M (cf. [10]). It
appears that limn→∞ εn = 0, indicating that there is no
threshold for black hole formation, however we did not
determine precise values of εn for n > 10 because the
computational cost of bisection increases rapidly with n
(since, in order to resolve the collapse, solutions have to
be evolved for longer times on finer grids ).
Let us mention that the analogous problem in 2+1 di-

mensions was studied previously by Pretorius and Chop-
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FIG. 1: Horizon radius vs amplitude for initial data (9). The
number of reflections off the AdS boundary before collapse
varies from zero to nine (from right to left).

tuik [11] who emphasized the challenges inherent in nu-
merical simulations of AdS dynamics, however their anal-
ysis was primarily focused on the threshold for black
hole formation before any reflection off the AdS boundary
takes place (as for our data with amplitude ε0).
In the following we consider the development of gen-

eral (gaussian and other) small initial data, focusing at-
tention on early and intermediate pre-collapse phases of
evolution. We found that the Ricci scalar at the center,
R(t, 0) = −2Π2(t, 0)/�2−12/�2, can serve as a good indi-
cator for the onset of instability. This quantity oscillates
with frequency ≈ 2 (as it takes time ≈ π for the wave
packet to make the round trip from and back to the cen-
ter). An upper envelope of these oscillations is shown in
Fig. 2a, where several clearly pronounced phases of evolu-
tion can be distinguished. During the first phase the am-
plitude remains approximately constant but after some
time there begins a second phase of (roughly) exponen-
tial growth, followed by subsequent phases of steeper and
steeper growth, until finally the solution collapses. We
find that the time of onset of the second phase scales as
ε−2 (see Fig. 2b), which means that arbitrarily small per-
turbations eventually start growing. Note that this be-
havior is morally tantamount to instability of AdS space,
regardless of what happens later, in particular whether
the solution will collapse or not. In the remainder of this
Letter we sketch a preliminary attempt to explain the
mechanism of this instability in the framework of weakly
nonlinear perturbation theory.

Weakly nonlinear perturbations. We seek an approximate
solution of the system (4-6) with initial data (φ, φ̇)|t=0 =
(εf(x), εg(x)) in the form

φ =
∞�

j=0

φ2j+1ε
2j+1, A = 1−

∞�

j=1

A2jε
2j , δ =

∞�

j=1

δ2jε
2j ,

(10)
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Gravitational turbulent instability of AdS

String Theory Embedding & Field theory implications

What happens in String Theory?

Consider IIB string theory on AdS5 × S5, with AdS length scale L.

There are two energy scales: the Planck energy and the string energy
Es < Ep.

Possibilities:

If the initial energy is larger than E > N2

L , one forms a 5D AdS
black hole.

If the initial energy is Ecorr < E < N2

L , one forms a 10D black hole.
Here, Ecorr is the energy of a black hole of the string scale size.

If the initial energy is Es < E < Ecorr, one forms an excited string.

If E < Es, the cascades stops at frequencies ω = E, and one gets a
gas of particles in AdS.
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Gravitational turbulent instability of AdS

String Theory Embedding & Field theory implications

Field theory implications - 1/2:

The fact that one evolves to a state of maximum entropy can be viewed
as thermalization - not in the canonical ensemble, but in the
microcanonical.

All theories with a gravity dual will show this cascade of energy like the
onset of turbulence.

Puzzle:

In 2+1 dimensions, classical turbulence has an inverse energy cascade due
to an extra conserved quantity - the enstrophy. Our results indicate that
in a strongly coupled quantum theory, there is a standard energy cascade.

Caveat: This intuition comes from solving the Navier Stokes equations in
2+1 dimensions. Because our regime is non-hydro, we don’t know how
to define enstrophy.
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Gravitational turbulent instability of AdS

String Theory Embedding & Field theory implications

Field theory implications - 2/2:

Perhaps more intriguing, from the CFT perspective, is the existence
of Geons.

At the linear level, these are spin 2 excitation.
A nonlinear geon is like a bose condensate of these excitations.

These high energy states do NOT thermalize!!

The boundary stress-tensor contains regions of negative and positive
energy density around the equator:

It is invariant under

K =
∂
∂t

+
ω
m

∂
∂φ

,

which is timelike near the poles
but spacelike near the equator.
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Gravitational turbulent instability of AdS

Gravitational hairy black holes with a single U(1).

Gravitational hairy black holes with a single U(1) - 1/2.

One can add a small black hole inside a geon: the only constraint is
that the Killing field of the Geon must be null on the horizon:

ΩH =
ω

m
.

There are infinitely (countable) many Geons labeled by the quantum
numbers m: a new class of black holes with a single U(1):

This seems to contradict rigidity theorems - Hawking, ’72;
Hollands, Ishibashi, Wald, ’06; Isenberg, Moncrief, ’06 - which
show that stationary black holes must be axisymmetric.

These theorems are not applicable to this new class of black
holes, because the Killing vector field is normal to the horizon.

The Kerr-AdS is not the unique stationary black hole in AdS.
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Gravitational turbulent instability of AdS

Gravitational hairy black holes with a single U(1).

Gravitational hairy black holes with a single U(1) - 2/2.

These black holes can be seen as metastable configurations in a time
evolution towards the endpoint of superradiance.

Superradiance:

If a wave e−iωt+mφ scatters off a rotating black hole with
ω < mΩH , it can return with a larger amplitude - superradiance.

In AdS, the outgoing wave reflects off infinity, and the process
repeats itself - superradiance instability.
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repeats itself - superradiance instability.

What is the endpoint?

Simple systems with a single unstable mode: the final state will be
the rotating black hole with a single U(1) or oscillations thereof.

Superposition of modes: superradiance cause them to grow;
turbulent instability will cause higher frequency modes to be created.
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In AdS, the outgoing wave reflects off infinity, and the process
repeats itself - superradiance instability.

Two possibilities:

1 If the black hole absorbs the higher frequency modes faster than
they can be created, might stabilize with gravitational waves
sloshing around outside the black hole .

2 The black hole exterior might continue to evolve toward higher and
higher frequency - black moon?
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Conclusions & Open questions

Conclusions:

Anti-de Sitter spacetime is nonlinearly unstable: generic small
perturbations become large and (probably) form black holes.

For each linearized gravity mode, there is an exact, nonsingular geon.

Dual field theory shows generic turbulent cascade to maximum
entropy state but there are special states (geons) that do not
thermalize

Open questions:

Understand why the energy cascade in 2+1 quantum theory is
different from the classical theory.

Prove a singularity theorem for anti-de Sitter.

Understand the late time behavior of the superradiance instability.

Understand the space of CFT states that do not thermalize.
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