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1. H = L2(S1): the space of square integrable complex-valued
functions on S1 with normalized Haar measure dz/2π.

2. H+: the closed subspace of H spanned by {zi : i ≥ 0}.
3. H−: the closed subspace of H spanned by {zi : i < 0}.
4. π± : H → H± the orthogonal projections.

Definition
The infinite dimensional Grassmannian Gr(H) is the collection of
closed subspaces W of H such that

(1) π−|W : W → H− is a Fredholm operator (i.e. the kernel is
finite-dimensional and the image has finite codimension);

(2) π+|W : W → H+ is a compact operator.

For each W ∈ Gr(H), define

indW = indπ−|W = dim kerπ− − dim cokerπ−.

indW is called the index of W .



1. G: Lie group

2. EG: a contractible G-space so that G acts freely on it.

3. BG = EG/G: the classifying space of G.

4. M : a G-space.

5. EG×GM : the quotient space of EG×G modulo the relation ∼,
where (pg, q) ∼ (p, gq) with p ∈ EG, q ∈M and g ∈ G.

Definition
The equivariant cohomology of a space M associated with G is
defined to be

H∗G(M) = H∗(EG×GM).

This is a module over H∗G(pt) = H∗(BG)
If G = S1 then the classifying space is the infinite dimensional
complex projective space P∞ and H∗S1(pt) = C[u], where u is a degree
2 element.



The group S1 acts naturally on H: to every α obeying |α| = 1 we
assign a map f(z)→ f(αz). This action (we will call it standard
action) generates an action of S1 on Grassmannian . Representing a
function on a circle as a Fourier series f(z) =

∑
anz

n, we see that the
standard action sends ak → αkak. One can consider more general
actions of S1 on H sending ak → αnkak where nk ∈ Z is an arbitrary
doubly infinite sequence of integers. This action also generates an
action of S1 on Grassmannian.
One can consider the infinite-dimensional torus T and its action on
the Grassmannian. Algebraically the infinite torus T is the infinite
direct product

∏
i∈Z S

1. The action of T on Grassmannian
corresponds to the action on H transforming ak → αkak, where
(αk) ∈ T and f =

∑
n anz

n ∈ H. This action specifies an embedding
of T into the group of unitary transformations of H; the topology of T
is induced by this embedding. One can prove that the equivariant
cohomology HT(pt) (cohomology of the classifying space BT) is
isomorphic to the polynomial ring C[u] where u stands for the doubly
infinite sequence uk.



Let x = (xn)n∈N be a sequence of variables obeying xn = 0 for n >> 0
and y = (yi)i∈Z be a doubly infinite sequence of variables. Denote the
set of pairs (x, y) by R. Let us consider a function f(x|y) such that its
restriction fn to the subset Rk specified by the condition
xk+1 = xk+2 = · · · = 0 is a polynomial for every k ∈ N. We say that f
is shifted symmetric if fn symmetric with respect to the variables
x′i = xi + y−i for 1 ≤ i ≤ n. In other words,

f ′n(x′1, . . . , x
′
n|y) = fn(x′1 − y−1, . . . , x′n − y−n|y)

is symmetric with respect to x′ = (x′1, . . . , x
′
n).

If we replace yj by constant + j, we obtain the definition of the shifted
symmetric functions given by Okounkov and Olshanski. An essentially
equivalent notion was introduced by Molev. Instead of R one can
consider a set R̃ of pairs (x, y) where x = (xn)n∈N and y = (yi)i∈Z are
sequences obeying xn = y−n for n >> 0. Shifted symmetric functions
on R correspond to symmetric functions on R̃; this correspondence
can be used to relate our approach to Molev’s approach. It is obvious
that shifted symmetric functions on R constitute a ring; we denote
this ring by Λ∗(x‖y). This ring is isomorphic to the ring Λ(x‖y) of
symmetric functions on R̃ considered by Molev.
The equivariant cohomology H∗T(Grd(H)) is isomorphic to the ring
Λ∗(x‖y).



Let x = (x1, · · · , xn) be an n-tuple of variables and y = (yi)i∈Z be a
doubly infinite sequence. Recall that, the double Schur function
nsλ(x1, · · · , xn|y) is 1 a symmetric polynomial in x = (x1, · · · , xn)
with coefficients in C[y] defined by

nsλ(x1, · · · , xn|y) = det
[
(xi|y)λj+n−j

]
/ det

[
(xi|y)n−j

]
,

where (xi|y)p =
∏p
j=1(xi − yj). Let us introduce the shift operator on

C[y] given by
(τy)i = yi−1, i ∈ Z.

Then the double Schur function satisfies the generalized Jacobi-Trudi
formula :

nsλ(x1, · · · , xn|y) = det
[
hλi+j−i(x1, · · · , xn|τ j−1y)

]n
i,j=1

, (1)

where

hp(x1, · · · , xn|y) =
∑

1≤i1≤···≤ip≤k

(xi1 − yi1) · · · (xip − yip+p−1), p ≥ 1.

1We add the index n to the conventional notation sλ to emphasize that the
function depends on n variables xk.



We define the shifted double Schur function by

ns∗λ(x1, · · · , xn|y) =n sλ(x1 +y−1, x2 +y−2, · · · , xn+y−n|τn+1y). (2)

Under the change of variables x′i = xi + y−i for 1 ≤ i ≤ n, the shifted
double Schur function ns∗λ(x1, · · · , xn|y) becomes the double Schur
function nsλ(x′1, · · · , x′n|τn+1y). Notice that the shifted double Schur
function ns∗λ(x1, · · · , xn|y) coincides with the shifted Schur function
defined by Okounkov and Olshanski if y = (yk)k is the sequence
defined by the relation yk = constant + k for all k.



One can prove that the shifted double Schur functions
ns∗λ(x1, · · · , xn|y) have the following stability property:
If l(λ) < n, then

n+1s∗λ(x1, · · · , xn, 0|y) =n s∗λ(x1, · · · , xn|y).

Here l(λ) is the length of a partition λ.
Using this property, we can define the shifted double Schur function
s∗λ(x|y) depending on infinite number of arguments x = (xi)i∈N and
y = (yj)j∈Z (we assume that only finite number of variables xi does
not vanish). Namely, we define

s∗λ(x|y) = ns∗λ(x1, · · · , xn|y)

where n is chosen in such a way that n > l(λ) and xi = 0 for i > n.
The shifted double Schur functions {s∗λ(x|y)} form a linear basis for
Λ∗(x‖y) considered as C[y]-module.



The Grassmannian Gr(H) has a stratification in terms of Schubert
cells having finite codimension; it is a disjoint union of T-invariant
submanifolds ΣS labeled by S, where S is a subset of Z such that the
symmetric difference Z−∆S is a finite set. The Schubert cells ΣS are
in one-to-one correspondence with the T-fixed points HS , where HS is
the closed subspace of H spanned by {zs : s ∈ S} (the fixed point HS
is contained in the Schubert cell ΣS). Instead of a subset S of Z, we
can consider a decreasing sequence (sn) of integers. It is easy to check
that sn = −n+ d for n� 0, where d is the index of HS . The complex
codimension of the Schubert cell ΣS is given by the formula

ΣS =

∞∑
i=1

(si + i− d).

The closure Σ̄S of ΣS is called the Schubert cycle of characteristic
sequence S. It defines a cohomology class in H∗(Gr(H)) having
dimension equal to 2ΣS . Since the Schubert cycle Σ̄S is T-invariant, it
specifies also an element ΩTS in H∗T(Gr(H)). Denote λn = sn + n− d
for n ≥ 1. Then (λn) form a partition. Instead of using the sequence
S to label the (equivariant) cohomology class ΩTS , we use the notation
ΩTλ . Then the dimension of ΩTλ is equal to 2|λ|. Similarly, we denote
ΣS by Σλ.



The inclusion map ιS : {HS} → Grd(H) induces a homomorphism:

ι∗S : H∗S1(Grd(H))→ H∗S1({HS})

called the restriction map. Denote by δ = (δi) the partition
corresponding to S, i.e. δi = si + i− d. Assume that λ = (λi) is a
partition such that l(λ) < l(δ).
Then

ι∗SΩTλ = u|λ|s∗λ(δ1, · · · , δi, · · · ).

Here s∗λ is the shifted Schur function defined by Okounkov and
Olshanski.
Similar statement is true for T -equivariant cohomology.



We can introduce a comultiplication in the ring H∗T(Grd(H)) using the
map

ρ : Gr0(H′)×Gr0(H′′)→ Gr0(H′⊕H′′) (3)

defined by (V,W ) 7→ V ⊕W . Namely, we take H′ = Heven (the
subspace spanned by z2k) and H′′ = Hodd (the space spanned by
z2k+1). Then H′⊕H′′ = H and the map ρ determines a
homomorphism of T- equivariant cohomology

HT(Gr0(H))→ HT(Gr0(Heven)×Gr0(Hodd)).

It is easy to prove that HT(Gr0(Heven)×Gr0(Hodd)) is isomorphic to
tensor product of two copies of H∗T(Gr0(H)); we obtain a
comultiplication ∆ in H∗T(Gr0(H)).
Let us introduce the notion of the k-th shifted power sum function in
Λ∗(x‖y):

pk(x|y) =

∞∑
i=1

[
(xi + y−i)

k − yk−i
]
. (4)

Here we assume that xn = 0 for n� 0; hence (4) is a finite sum. We
will prove that

∆pk = pk ⊗ 1 + 1⊗ pk, k ≥ 1. (5)


