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1. H = L?(SY): the space of square integrable complex-valued
functions on S* with normalized Haar measure dz/27.

2. H: the closed subspace of H spanned by {z°:i > 0}.
3. H_: the closed subspace of H spanned by {z%:i < 0}.
4. my : 'H — Hy the orthogonal projections.

Definition
The infinite dimensional Grassmannian Gr(#) is the collection of
closed subspaces W of ‘H such that

(1) m_|w : W — H_ is a Fredholm operator (i.e. the kernel is
finite-dimensional and the image has finite codimension);

(2) my|lw : W — H, is a compact operator.
For each W € Gr(#), define

indW =ind7_|w = dimker 7_ — dim coker m_.

ind W is called the index of W.



. G: Lie group

. EG: a contractible G-space so that G acts freely on it.
. BG = EG/G: the classifying space of G.

4. M: a G-space.

5. EG xg M: the quotient space of EG x G modulo the relation ~,
where (pg,q) ~ (p,g9q) with p € EG, g € M and g € G.

W N

Definition
The equivariant cohomology of a space M associated with G is
defined to be

Hi:(M) = H(EG xg M).

This is a module over H (pt) = H*(BG)

If G = S! then the classifying space is the infinite dimensional
complex projective space P> and H}, (pt) = Clu], where u is a degree
2 element.



The group S! acts naturally on H: to every a obeying |a| =1 we
assign a map f(z) — f(az). This action (we will call it standard
action) generates an action of S! on Grassmannian . Representing a
function on a circle as a Fourier series f(z) = > a,2", we see that the
standard action sends a, — a*aj. One can consider more general
actions of ST on H sending a, — a™ ay where ny € Z is an arbitrary
doubly infinite sequence of integers. This action also generates an
action of S' on Grassmannian.

One can consider the infinite-dimensional torus T and its action on
the Grassmannian. Algebraically the infinite torus T is the infinite
direct product [[;c, S L. The action of T on Grassmannian
corresponds to the action on ‘H transforming ax — ajay, where

(ax) € Tand f =", a,z" € H. This action specifies an embedding
of T into the group of unitary transformations of H; the topology of T
is induced by this embedding. One can prove that the equivariant
cohomology Hr(pt) (cohomology of the classifying space Br) is
isomorphic to the polynomial ring Cu] where u stands for the doubly
infinite sequence uy.



Let x = (z,)nen be a sequence of variables obeying x,, = 0 for n >> 0
and y = (y;)icz be a doubly infinite sequence of variables. Denote the
set of pairs (z,y) by R. Let us consider a function f(z|y) such that its
restriction f, to the subset Ry specified by the condition

Tkl = Tht2 = --- = 0 is a polynomial for every k € N. We say that f
is shifted symmetric if f,, symmetric with respect to the variables

x; =x; +y_; for 1 < i < n. In other words,

@, anly) = fale) —y—1,.. 2, — y-nly)

is symmetric with respect to o’ = (zf,...,2)).

If we replace y; by constant + j, we obtain the definition of the shifted
symmetric functions given by Okounkov and Olshanski. An essentially
equivalent notion was introduced by Molev. Instead of R one can
consider a set R of pairs (z,y) where z = (2, )nen and y = (y;)iez are
sequences obeying x,, = y_, for n >> 0. Shifted symmetric functions
on R correspond to symmetric functions on R; this correspondence
can be used to relate our approach to Molev’s approach. It is obvious
that shifted symmetric functions on R constitute a ring; we denote
this ring by A*(z|ly). This ring is isomorphic to the ring A(z|y) of
symmetric functions on R considered by Molev.

The equivariant cohomology Hy(Grqa(H)) is isomorphic to the ring

A (zlly).



Let © = (x1, -+ ,2,) be an n-tuple of variables and y = (y;)iez be a
doubly infinite sequence. Recall that, the double Schur function
"sx(z1, ,wply) is I a symmetric polynomial in z = (21, ,2,)
with coefficients in C[y| defined by

"sa(r, e aaly) = det [(wily) 7] / det [(ify)" ]

where (z;|y)? = ?:1(%’ —y;). Let us introduce the shift operator on
Cly] given by
(7Y)i = Yi1, €L

Then the double Schur function satisfies the generalized Jacobi-Trudi
formula :

n

ns)\(xlv T 7$n|y) = det [h)\i+j7i(x1) T 7$n|7'j71y)]i7j:1 ’ (]‘)
where

hyp(z1, -+ 2ply) = Z (Tiy —¥Yir) - (@i, = Yiptp—1), P21
1<i1 <--<ip<k

1We add the index n to the conventional notation sy to emphasize that the
function depends on n variables xy.



We define the shifted double Schur function by

n

si(@1, o, wnly) =" sa(@r+y—1, 22+ Y2, T Hy_n|T"y). (2)

Under the change of variables «} = x; + y_; for 1 < ¢ < n, the shifted

double Schur function "s}(z1,- - ,2,|y) becomes the double Schur
function "sy (2, - , 2, |7"T1y). Notice that the shifted double Schur
function "s}(x1,- - ,x,|y) coincides with the shifted Schur function

defined by Okounkov and Olshanski if y = (yx)x is the sequence
defined by the relation y; = constant + k for all k.



One can prove that the shifted double Schur functions
"si(z1,- -+, xn|y) have the following stability property:
If (M) < n, then

e (@, @, 0ly) =" 83 (21, L @aly).

Here I(\) is the length of a partition A.

Using this property, we can define the shifted double Schur function
s3(z|y) depending on infinite number of arguments z = (x;);en and
y = (y;)jez (we assume that only finite number of variables z; does
not vanish). Namely, we define

n

sx(@ly) = "sx(z1,- - xnly)

where n is chosen in such a way that n > I(\) and x; =0 for i > n.
The shifted double Schur functions {s}(x|y)} form a linear basis for
A*(z|ly) considered as C[y]-module.



The Grassmannian Gr(#) has a stratification in terms of Schubert
cells having finite codimension; it is a disjoint union of T-invariant
submanifolds Y g labeled by S, where S is a subset of Z such that the
symmetric difference Z_AS is a finite set. The Schubert cells ¥g are
in one-to-one correspondence with the T-fixed points Hg, where Hg is
the closed subspace of H spanned by {z° : s € S} (the fixed point Hg
is contained in the Schubert cell Xg). Instead of a subset S of Z, we
can consider a decreasing sequence (s,,) of integers. It is easy to check
that s,, = —n + d for n > 0, where d is the index of Hg. The complex
codimension of the Schubert cell X g is given by the formula

o0

Zs = Z(Si“‘i_d)-

i=1

The closure Xg of Xg is called the Schubert cycle of characteristic
sequence S. It defines a cohomology class in H*(Gr(#)) having
dimension equal to 2Xg. Since the Schubert cycle g is T-invariant, it
specifies also an element QL in H3(Gr(#)). Denote A\, = s, + n—d
for n > 1. Then (\,) form a partition. Instead of using the sequence
S to label the (equivariant) cohomology class QL, we use the notation
QF. Then the dimension of Q7 is equal to 2|\|. Similarly, we denote
25 by E)\.



The inclusion map ts : {Hs} — Grg(H) induces a homomorphism:
ts: H5 (Grg(H)) — Hi ({Hs))

called the restriction map. Denote by § = (4;) the partition
corresponding to S, i.e. §; = s; +i — d. Assume that A = ()\;) is a
partition such that [(X) < 1(9).
Then

QT = WP (61, 05,00,

Here s is the shifted Schur function defined by Okounkov and
Olshanski.
Similar statement is true for T -equivariant cohomology.



We can introduce a comultiplication in the ring H#(Grq(H)) using the
map

p: Gro(H') x Gro(H") — Gro(H & H") (3)

defined by (V,W) — V @& W. Namely, we take H' = Heyen (the
subspace spanned by 2%%) and H” = H,q4 (the space spanned by
z2k+1) Then H' @ H"” = H and the map p determines a
homomorphism of T- equivariant cohomology

HT(GI‘()<H>) — HT(GID(Heven) X GYO(Hodd))-

It is easy to prove that Hy(Gro(Hepen) X Gro(Hodd)) is isomorphic to
tensor product of two copies of Hf(Gro(H)); we obtain a
comultiplication A in HF(Gro(H)).

Let us introduce the notion of the k-th shifted power sum function in

Nl )
prlaly) = [(zi+y-)F —o*,]. (4)
i=1

Here we assume that x,, = 0 for n > 0; hence (4) is a finite sum. We
will prove that

App,=pr®@1+1®@py, k>1. (5)



