115 Homewor k 3 Solutions

Due Friday October 22

Question 1 Show that a matrix with integer entries can have determinant 1 only if
the greatest common divisor of every row and column is also 1.

Proof:

Suppose we have an n x n matrix A = [a,;] where at least one of the rows or
columns has greatest common divisor different than 1.

case i) suppose row i is such that (a;1, aso, . .., a:) = k # 1 Then we can write
det A =
a1 Q12 ... Qip a1 12 “e Q1
det . . - . _ det . . - .
;1 Qg2 ... Qzp k(azl/k) k(alg/k) “e . k(am/k)
a11 12 c. A1n a11 12 ce. Q1n
det | £ = kdet

(an/k) (an/k) ... (asm/k) (an/k) (ain/k) ... (asm/k)

This product is clearly not equal to 1 since & is an integer not equal to 1 and clearly
all the entries of the matrix

a1 a19 Ce Q1

(an/k) (an/k) ... (am/k)

are integers, which ensures its determinant is an integer and thus its determinant
multiplied by & is not equal to 1.

case ii) suppose column j is such that (a1, asj, - . ., anj) = k # 1 Then we know
from linear algebra that det A = det A* and we can apply the same argument



as in case i). Thus we see by contraposition that a matrix having determinant one
implies that the matrix must have rows and columns with greatest common divisor
1.

Question 2 (Rosen 3.2.20) Show that (ay,...,a,) iS the least positive integer
linear combination mya; + - - - mya,.

Proof:

We will induct on n. The base case, that (a1, a»), is the least positive integer linear
combination of a; and a», is theorem 3.8 (pg.81) in the text. For the inductive
step, we use lemma 3.2 (pg.83) in the text. Thus

(a1,...,0,) = (a1,..., (@n-1,0)) = maa1 + - - - Mp_1(Ap_1, ay),
by the inductive hypothesis. Now
myay + -+ - My—1(An-1, an) = myay + -+ - My_1(M),_10n—1 + M, a,) =

! !
miay + - - Mp_1My,_10p—1 + My_1M,, Q.

Thus we see that (aq,...a,) is the least positive integer linear combination of
Aly...,0n.

Question 3 (Rosen 3.3.4a,c) Use the (extended) Euclidean algorithm to compute
(51,87) and (981, 1234) and express your answers as linear combinations.

a.) From exercise 2 we have (51,87) = 3
3=15—-2-6=(51—36) —2(36 —2-15) = 51 — 3(87 — 51) + 4(51 — 36) =

8(51) — 3(87) — 4(87 — 51) = 12(51) — 7(87).

b.) From exercise 2 we have (981,1234) = 1
1 =31-6-5 = (253—222)—6(222—7-31) = (1234—981)—7(981—3-253)+42(253—222) =

1234—8(981)+63(1234—981)—42(981—3-235) = 64(1234)—113(981)+126(1234—981) =
—239(981) 4 190(1234).



Question 4* (Rosen 3.3.21,22) The Game of Euclid

Two players start with a pair of positive integers {z, y}, (x > y). They take turns
replacing {z,y} — {max(z — ty,y), min(x — ty,y)} where z — ty > 0. The
game is won by moving to a pair with one vanishing element. Show:

(i) The game always ends and at {(z, ), 0} to boot!

(ii) The player starting can always win if z =y or z > y(1 ++/5/2), otherwise
the second player can always win.

Proof:

i)Note that (z,y) = (z—ty, y), as any divisor of = and y is also a divisor of z —ty.
So, every move in the game of Euclid preserves the greatest common divisor of
the two numbers. Since (a,0) = q, if the game beginning terminates, then it must
do so at {(a,b),0}. Since the sum of the two numbers is always decreasing and
positive, the game must terminate.

i) We will first show that if y < 2 < y(1 + v/5)/2, then there is a unique move
from {z, y} that goes to a pair {y, z} with y > z(1 + sqrt5)/2. For convenience,
let ¢ = (1 + sqrt5)/2. If y < x < y@, then the move {z,y} to {y,z — y} is
a legal move. But z — 2y < =z — y¢ < 0, so there is only one legal move. In
this case, since ¢> = ¢ + 1, we have that x < y¢ — z¢ < y(¢ + 1) and hence
(x—y)¢ < y,asdesired. Now if z = y the first player wins immediately. Suppose
x > yp. Thenlet k bedefined by ky < z < (k+1)y. fz —ky <y < (v — ky) o,
then the first player makes the move {y, x — ky } which leaves the second player in
the exact situation above: = — ky < y < (x — ky)¢. Therefore, the second player
has only one move, which puts the player back into the situation with z > y¢
again. If, on the other hand, (x — ky)¢ < y, then the first player makes the move
{y,z — (k—1)y}, in which case, we have y¢ > (z — ky)¢? = (z — ky)(¢+ 1) =
(x — ky)p + (x — ky) > y+ (r — ky) = x — (k — 1)y. Therefore, the second
player is again put into the same situation above. Hence a player in the position
x > yo¢ can always force the other player to be in the first situation which is a
losing situation.



Question 5 (Rosen 3.4.8) Show that every positive integer is the product of
possibly a square and a “square-free” integer (no factor other than 1 appears more
than once).

Proof:

Suppose that the primes in the factorization of n that occur to an even power are
p1,...,pr and let the power of p; in the factorization be 2b; and suppose that the
primes that occur to an odd power are ¢, ..., and let the power of g; in the
factorization be 2¢; + 1. Then

by c1 .,c2

n=('py - prai' e - q) (g - q)-
This is the factorization of n into a perfect square and a square-free integer.

Question 6 Develop and prove an algorithm for writing (a, b) = ma + nb. Feel
free to use Rosen Theorem 3.13.

Proof:

From Rosen Theorem 3.13 we have that (a,b) = s,a + t,b where s,, and ¢,, are
the nth terms of the sequences defined recursively by

So = 1,t0 :0,81 = O,tl =1
and
Sj = 8j_2 — Qj_18j_1,t; = tj_2 — qj_1l;_1

for j = 2,3,...,n where ¢g; = [r;41/r;] from the division algorithm. The proof of
this algorithm is the proof of Theorem 3.13.



