

185A Homework 2

Question 1 Show that the complex derivative has the following properties (for problems (3)-(7) we assume that f and g are analytic on an appropriate open set):

(1) If $f'(z_0)$ exists, then f is continuous at z_0 .

$$(2) \quad \frac{d}{dz} z^n = nz^{n-1}$$

$$(3) \quad \frac{d}{dz} (f + g) = \frac{df}{dz} + \frac{dg}{dz}$$

$$(4) \quad \frac{d}{dz} (cf) = c \frac{df}{dz} \quad \text{for } c \in \mathbb{C}$$

$$(5) \quad \frac{d}{dz} (f \cdot g) = \frac{df}{dz} g + f \frac{dg}{dz}$$

$$(6) \quad \frac{d}{dz} \left(\frac{f}{g} \right) = \frac{\frac{df}{dz} g - f \frac{dg}{dz}}{g^2} \quad \text{for } g(z) \neq 0$$

$$(7) \quad \frac{d}{dz} f(g(z)) = f'(g(z))g'(z)$$

Question 2 Compute df/dz when it exists for

- (i) $f(z) = 1/z$
- (ii) $f(z) = x^2 + iy^2$
- (iii) $f(z) = z\text{Im}(z)$
- (iv) $f(z) = \bar{z}$

Question 3 Study

$$f(z) = \begin{cases} \frac{x^3y(y-ix)}{x^6+y^2} & \text{for } z \neq 0, \\ 0 & \text{for } z = 0. \end{cases}$$

Show that even though $[f(z) - f(0)]/z \rightarrow 0$ as $z \rightarrow 0$ for any straight line through the origin, $f(z)$ is nevertheless not complex differentiable at $z = 0$.

Question 4 Use the Cauchy–Riemann relations to show that an analytic function that takes only real values in some neighborhood, must be constant there.

Question 5 Define the symbols $\partial f / \partial z$ and $\partial f / \partial \bar{z}$ by

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + \frac{1}{i} \frac{\partial f}{\partial y} \right)$$

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - \frac{1}{i} \frac{\partial f}{\partial y} \right).$$

- (i) Show that the Cauchy–Riemann equations are equivalent to $\partial f / \partial \bar{z} = 0$.
- (ii) An antianalytic function is defined by the condition $\partial f / \partial z = 0$. Derive the Cauchy–Riemann relations for antianalytic functions.
- (iii) Show that if f is analytic, then $f' = \partial f / \partial z$.
- (iv) If $f(z) = z$, show that $\partial f / \partial z = 1$ and $\partial f / \partial \bar{z} = 0$.
- (v) If $f(z) = \bar{z}$, show that $\partial f / \partial z = 0$ and $\partial f / \partial \bar{z} = 1$.
- (vi) Show that the symbols $\partial / \partial z$ and $\partial / \partial \bar{z}$ obey the sum, product, and scalar multiple rules for derivatives.
- (vii) Show that the expression

$$\sum_{n=0}^N \sum_{m=0}^M a_{nm} z^n \bar{z}^m$$

with scalar $a_{nm} \in \mathbb{C}$ is an analytic function if and only if $a_{nm} = 0$ whenever $m \neq 0$.

Question 6 Let us study the Cauchy–Riemann relations in polar coordinates. In what follows, assume that $f(z)$ is analytic and that $z = r \exp(i\theta)$.

- (i) Using that df/dz can be computed for any direction of approach $dz \rightarrow 0$, show that

$$\frac{df}{dz} = e^{-i\theta} \frac{\partial f}{\partial r}, \quad \frac{df}{dz} = \frac{1}{iz} \frac{\partial f}{\partial \theta}.$$

- (ii) Now, calling $f = u + iv$, deduce that

$$\partial_r u = \frac{1}{r} \partial_\theta v, \quad \frac{1}{r} \partial_\theta u = -\partial_r v.$$

- (iii) These relations are just Cauchy–Riemann in polar coordinates. Check that they yield Laplace’s equation $\Delta u = 0 = \Delta v$ where $\Delta = \partial_r^2 + r^{-1} \partial_r + r^{-2} \partial_\theta^2$.
- (iv) Verify that the function $u(r, \theta) = r^2 \cos(2\theta)$ is harmonic. Use the polar form of Cauchy–Riemann to find the conjugate harmonic function $v(r, \theta)$. Express your final answer $f = u + iv$ in terms of z .