

185A Homework 4

Question 1 Let $f : G \rightarrow \mathbb{C}$ be a continuous function on an open set $G \subset \mathbb{C}$ and let $\gamma : [a, b] \rightarrow \mathbb{C}$ be a piecewise smooth curve in G .

- (a) Find a counterexample demonstrating that the inequality

$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| dz$$

no longer makes sense for integrals along a curve γ .

- (b) Show that

$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz|$$

where the latter is defined by

$$\int_{\gamma} |f(z)| |dz| = \int_a^b |f(\gamma(t))| |\gamma'(t)| dt.$$

Question 2 Deduce from Question 1 that

$$\left| \int_{\gamma} f(z) dz \right| \leq M \ell(\gamma)$$

where $M \geq 0$ is a real constant such that $|f(z)| \leq M$ for all points z on γ and

$$\ell(\gamma) = \int_a^b |\gamma'(t)| dt = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt$$

is the length of the curve.

Question 3 Let γ be the arc of the circle $|z| = 2$ in the first quadrant ($x, y > 0$). Establish the inequality

$$\left| \int_{\gamma} \frac{dz}{1+z^2} \right| \leq \frac{\pi}{3}$$

without performing the integral explicitly.

Question 4 Compute $\int_{\gamma} f(z) dz$ for the following

- (a) $f(z) = -y^2 + x^2 - 2ixy$ and γ the straight line from 0 to $-1 - i$.
- (b) $f(z) = (2+z)/z$ and γ the semi-circle $z = \exp(i\theta)$, $0 \leq \theta \leq \pi$.
- (c) $f(z) = 1/z$ and γ any path in the right half plane $\operatorname{Re}(z) \geq 0$ beginnng at $-i$, ending at i , avoiding the origin.

Question 5 Let f, g be continuous functions, c_1, c_2 complex constants and $\gamma, \gamma_1, \gamma_2$ piecewise smooth curves. Show that

$$(a) \quad \int_{\gamma} (c_1 f + c_2 g) = c_1 \int_{\gamma} f + c_2 \int_{\gamma} g$$

$$(b) \quad \int_{-\gamma} f = - \int_{\gamma} f$$

$$(c) \quad \int_{\gamma_1 + \gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f,$$

where $\gamma_1 + \gamma_2$ denotes concatenation of curves.