

185A Homework 5

Question 1 Compute $\oint_{\Gamma} dz \pi \exp(\pi \bar{z})$ where Γ is the square with vertices at $0, 1, 1 + i$ and i traversed in the positive sense.

Question 2 The Maximum Modulus Principle: Harmonic functions cannot take local maxima or minima. A similar statement holds for the modulus of an analytic function $f(z) \neq \text{constant}$. In this exercise we show that the modulus of an analytic function cannot take a maximum within its domain of analyticity D .

- (i) Proceed by contradiction and assume $|f(z_0)|$ is a local maximum for $z_0 \in D$. Write a formula for $f(z_0)$ in terms of an integral around a small circle, center z_0 .
- (ii) Rewrite this integral as a line integral with parameter θ by calling $z = z_0 + \varepsilon e^{i\theta}$.
- (iii) Obtain an inequality by studying the modulus of both sides of your result in (ii).
- (iv) Now subtract $|f(z_0)|$ from your inequality and insert the triviality $1 = \frac{1}{2\pi} \int_0^{2\pi} d\theta$ judiciously.
- (v) Employ continuity of $f(z)$ and the assumption that $|f(z_0)|$ was a maximum to derive an absurdity.

Question 3 Use Cauchy's integral formula, contour integration and the identity $2\cos(\theta) = z + 1/z$ for $z = \exp(i\theta)$ to show

$$\int_0^{2\pi} \frac{d\theta}{13 - 12\cos\theta} = \frac{2\pi}{5}.$$