22A Homework 4

Due Friday April 27, 5pm Wellman Boxes

KOIL \equiv Kolman/Hill, Edition 8, "Introductory Linear Algebra"

Question 1 Elementary Matrices: Let A be an $m \times n$ matrix. Write down $m \times m$ matrices E_{rs} , $D_r(\lambda)$ and $T_{rs}(\mu)$ such that upon multiplying A on the left

- E_{rs} swaps rows r and s,
- $D_r(\lambda)$ multiplies row r by λ ,
- $T_{rs}(\mu)$ adds μ times row s to row r.

Compute the determinant of the three matrices you found.

Question 2 Let

$$A = \left(\begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \end{array}\right) \,.$$

Compute det A. The trace of a matrix (denoted "tr") is defined to be the sum of its diagonal elements (for example tr $A \equiv a + e + i$). Compute $\alpha = \text{tr}A$, $\beta = \text{tr}A^2$ and $\gamma = \text{tr}A^3$. Work out a formula for det A as a polynomial in α , β and γ^{-1} .

Question 3 In class we defined powers of matrices. The exponential of an $n \times n$ matrix A is defined by a power series

$$\exp(A) \equiv 1 + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots$$

Study the special case

$$A_{\lambda} = \left(\begin{array}{cc} 0 & \lambda \\ 0 & 0 \end{array}\right)$$

Compute $\exp(A_{\lambda})$. Prove $\exp(A_{\lambda+\mu}) = \exp(A_{\lambda}) \exp(A_{\mu})$.

¹For example, if A is any 2×2 matrix, it is easy to see that det $A = \frac{1}{2}(trA)^2 - \frac{1}{2}trA^2$.

Question 4 In 50 words or less evaluate the course to date. Include suggestions for how the presentation could be improved. Comment on how you think you are faring so far!

Question 5 KOIL 1.8, p 113, qq 1, 2, 5, 6.

Question 6 KOIL pp 114-116, qq S2, S8, S16, S18, S28, S30.

Question 7 KOIL pp 116-117, qq T4, T6, T23.

Question 8 KOIL pp 117-118, qq C2, C8.

Question 8 KOIL 3.1, pp 192-194, qq 1, 2, 4, 6abc, 10, 16a, 22, 24.

Question 9 KOIL 3.1, pp 194-195, qq T6, T12, T18

Question 10 Prove det(AB) = det A det B for 2×2 matrices.

Question 11 *Relax!*