

250A Homework 1

Due Monday October 11

Question 1 Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a linear operator. Show that T has 1 and 2 dimensional invariant subspaces.

Question 2 Let M be the space of 3 matrices. What is $\dim(M)$? Now define the linear operator $T : M \rightarrow M$ by

$$M \ni m \xrightarrow{T} \frac{1}{2} \left[\begin{pmatrix} 1 & & \\ & 2 & \\ & & 1 \end{pmatrix} m + m \begin{pmatrix} 1 & & \\ & 2 & \\ & & 1 \end{pmatrix} \right].$$

Compute $\det T$.

Question 3 *Van der Monde Determinant.* Let A be the $(n \times n)$ matrix with entries

$$A_{ij} = (x_i)^j.$$

Show that $\det A = \prod_{i>j} (x_i - x_j)$.

Question 4 *(Anti)commutators.* Let V be a finite dimensional vector space. Show that the mapping

$$[\cdot, \cdot] : L(V) \times L(V) \rightarrow L(V)$$

where

$$[\cdot, \cdot] : (M, N) \mapsto MN - NM \equiv [M, N],$$

obeys the Leibnitz rule $[M, NR] = [M, N]R + N[M, R]$. In addition, verify the Jacobi identity

$$[M, [N, R]] + [N, [R, M]] + [R, [M, N]] = 0.$$

Generalize the above laws to the mapping $\{\cdot, \cdot\} : (M, N) \mapsto MN + NM \equiv \{M, N\}$. Include also new rules which mix both operations.

Question 5 *Baker Campbell Hausdorff Formula.* Let V be a finite dimensional vector space and $M, N \in L(V)$. Show that

$$\exp(M + N) = \exp(M) \exp(N) \exp\left(-\frac{1}{2}[M, N]\right),$$

if $0 = [M, [M, N]] = [N, [M, N]]$. Hint: Develop and solve a differential equation for $R(\lambda) \equiv \exp(\lambda M) \exp(\lambda N) \in L(V)$.