250A Homework 1

Solution by Jagjeong Lee

Question 1 Let T : R* — RR® be a linear operator. Show that 7" has 1 and 2
dimensional invariant subspaces.

Solution The characteristic polynomial of 7" is real cubic, so it has at least one
real root \ and an eigenvector v € R? such that Tv = \v. Note that span{v} C
ker(T — M) is a 1-dimensional invariant subspace of R® and rank(T — \I) =
dim im(T — AI) = 3 — dim ker(T — A) < 3. Now if rank(T — \I) = 0,
then T = \I and any 2-dimensional subspace of R* is invariant under 7'. If
rank(T —AXI) = 1, then ker(T — \I) is a 2-dimensional invariant subspace, since
for v € ker(T — AI) we have (T — A\I)(Tv) = T(Tv — Av) = T(0) = 0 and
hence T'(ker(T — A\I)) C ker(T — AI). If rank(T — M) = 2, then im(T — AI)
is a 2-dimensional invariant subspace since T'((T' — Al)v) = (T — X )(Tv) €
im(T — AI). Therefore, in any case, 7" has a 2-dimensional invariant subspace,
too.

Question 2 Let M be the space of 3 matrices. What is dim(A/)? Now define the
linear operator 7 : M — M by

1
M>m—— 2 2 m+m 2
Compute det 7.

Solution The standard basis for M is {e;; | 1 < 4,5 < 3}, where e;; is a matrix
unit with its only nonzero entry being 1 at (4, j). Thus dim(M) = 9. We compute

mi; M2 Mas 2my1 3mig 2mgs
T |mor moe mo3 | =< | 3mar 4mge 3mgs |,
ms; Mgy M3z 2mg1 3mgza 2ms3

so the eigenvectors of 7" are {e;; | 1 < ¢, < 3} and the corresponding eigenval-

uesare {1,2,1,3,2,3,1,3 1}. Therefore, det T = [](eigenvalues) = &.



Question 3 Van der Monde Determinant. Let A be the (n x n) matrix with entries
Ay = (@)
Show that det A = [],_;(a; — a:).

Solution Note that

1 o (al)z (al):j
A 1 a (a.g) (ay)
1 a, (a,)? -+ (a,)"!

We use induction on n. When n = 2, we verify

1 a
det (1 ai) = a9 — Q.

Assume now the assertion is true up to n — 1 and let

1 aq (a1)2 s (al)”_l

1 a9 (CLQ)Q .. (ag)”_l
f(z) = det . : :

1 Ap—1 (an—1)2 Tt (an—l)n_l

1 =z x? 1

Since f(x) is a polynomial of degree n — 1 and f(a;) =0for1 <i<n—1,we
have

f(z)
1 aq (al)”_z

e I ()

= (=1)"""det 5 5 5 (x—a1)(x—az) - (x — ap_1)
1 Qp—1 (anfl)n_2

= ( H (a; — az‘)) (z —a)(z —a2) - (z — ap-1),



by the induction hypothesis. Therefore, we finally get

1 a (a1)z (“1)::1
dot 1 as (a?) (az)
1 an (an)? (an)"
= f(an)
B ( H (a; ai)) (an — a1)(an — az) - (an — an-1)
= H (a; — a;)

and the assertion is true for n.

Question 4 (Anti)commutators. Let V' be a finite dimensional vector space. Show
that the mapping
[]: L(V) x L(V) = L(V)

where
[,]: (M,N)— MN — NM = [M, N,

obeys the Leibnitz rule [M, NR] = [M, N|R + N[M, R]. In addition, verify the
Jacobi identity

[M,[N, R]] + [N, [R,M]] + [R,[M,N]] =0.

Generalize the above laws to the mapping {-,-} : (M,N) — MN + NM =
{M, N}. Include also new rules which mix both operations.

Solution We want to find a kind of the Leibnitz rule
F(NxR)=F(N)* R+ N x F(R)

incases F(-) = [M, -]or {M,-}and N *x R = NR, [N, R], or {N, R}. For
example, when F(-) = [M, -]and N * R = NR, we have

[M,NR] = [M, N|R + N[M, R] (1)



and when F'(-) = [M, -]and N x R = [N, R], we have
[M, [N, R]] = [[M, N], R] + [N, [M, R]]. (2)

Now I present a trick to find such rules. (It may not be a trick but a principle.
Because | don’t know why it works, to me, it is a trick.)

Matrices can be assigned two attributes, even and odd. If M isassigned odd,
we mark it M’, and if even, leaveit asitis.

Stepl Write down (1) or (2).

eg. [M,NR] = [M,N]R+ N[M, R]

Step2 Assign attributes to M, N, R arbitrarily.

eg. [M',N'R]=[M',N'|R+ N'[M', R]

Step3 Regard (odd,odd)-pair and (even,even)-pair as even and other pairs as
odd.

eg. N'Risodd, so [M', N'R] iseven. [M', N'] iseven and [M', R] is odd.
Step4 If you fi nd [odd, odd], replace |-, -] by {-, - }.

eg. {M',N'R} ={M',N'}R+ N'[M', R]

Step5 If an odd, as an operator, goes past ancther odd, then replace + by —.
eg. {M',N'R} ={M',N'}R — N'[M’, R] (M’ goes past N')

Step6 Remove markings ' and declare you found arule.

eg. {M,NR}={M,N}R — N[M, R|

Examplel. [M,NR] = {M,N}R — N{M, R}.

Stepl [M, NR] = [M,N]R + N[M, R).

Step2 [M', N'R'] = [M', N'|R' + N'[M', R']
Step3 Observe [M’, N'] and [M', R'].

Step4 [M',N'R'] = {M',N'}R' + N'{M', R'}
Step5 [M', N'R'] = {M',N'}R' — N'{M', R'}
Step6 [M, NR] = {M,N}R — N{M, R}

Example2. [M,{N,R}] = [{M, N}, R] — [N,{M, R}|.

Stepl [M, [N, R]] = [[M, N], B] + [N, [M, R].
Step2 [M', [N, R']] = [[M',N'], R'| + [N',[M", R']]
Step3 Observe [N', R'], [M', N'], and [M', R'].

Step4 [Mla {Nla RI}] = [{Mla NI}’ RI] + [Nla {Mla RI}]
Step5 [MI’ {N,’ R,}] = [{M,’ Nl}a RI] - [N,a {M,’ R,}]
Step6 [M7 {NvR}] = [{MaN}aR] - [N7 {MaR}]



Example3. [M,{N, R}] = {[M, N], R} + {N,[M, R]}.

Stepl [M, [N, R]) = [[M, N}, B] + [N, [M, R]).

Step2 [Ma [N,’ RI]] = [[M’ NI]’ RI] + [N,’ [M’ RI]]

Step3 [N', R'] iseven, [M, N'] and [M, R'] are odd.

Step4 [M,{N', R'}] = {[M, N'], R'} + {N',[M, R']}

Step5 [M, {N', R'}] = {[M, N'], R'} + {N',[M, R']} (No change)
Step6 [M, {N, R}] = {[M, N], R} + {N,[M, ]}

Find more on your own. Note that you never get { M, { N, R}} because of Step3
and Step4.

Question 5 Baker Campbell Hausdorff Formula. Let V' be a finite dimensional
vector space and M, N € L(V'). Show that

1
exp(M)exp(N) = exp(M + N + E[M’ NJ),
if 0 = [M, [M,N]] = [N,[M,N]]. Hint: Develop and solve a differential equa-
tionfor R(\) = exp(AM) exp(AN) € L(V).
Solution We need the identity e’ Ne =AM = ¢AM-I N (proved below) to see

iR(A) = MR()\) + e Ne™MR())

dX
= (M + M IN) R())
= (M + N + \[M, N]) R()),

the last equality coming from the commutativity assumptions. Since R(0) = 0 we
get the unique solution

R()) = MM+
(Verify this. We need the commutativity assumptions again. To solve f'(z) =

(a + bz) f(z) we observe (log f(z))' = a + bz.) Plugging A = 1 we get the
desired equality. To show e* Ne MM = AM-IN let Ly, (-) = [M, -] and



compute the Taylor expansion for e} Ne—*M;

d
— M Ne MM — VMM N AM _ AM N =AM 3 p

dA
— [M, e/\MNef/\M]
= Ly (M Ne M),
d2

WGAMN(?_)‘M — [M, ie)‘MNe_’\M]

d
= LMLM(G)\MNeiAM),
and so on. Therefore

1
AMNe ™M = N 4 ALy (N) + §A2LMLM(N) +..

= MmN,



