

### Homework 3

Solutions

1. Certainly  $\text{SL}_n(\mathbb{R})$  is a subgroup of  $\text{GL}_n(\mathbb{R})$ : it is closed under matrix multiplication since  $\det AB = \det A \det B = 1$  if  $A, B \in \text{SL}_n(\mathbb{R})$ , the inverse of  $A \in \text{SL}_n(\mathbb{R})$  is in  $\text{SL}_n(\mathbb{R})$  since  $\det A^{-1} = (\det A)^{-1} = 1$  and the identity matrix is also in  $\text{SL}_n(\mathbb{R})$ .

Now let  $S \in \text{SL}_n(\mathbb{R})$  and  $G \in \text{GL}_n(\mathbb{R})$ . Then  $\det GSG^{-1} = \det G(\det G)^{-1} = 1$  so that  $GSG^{-1} \in \text{SL}_n(\mathbb{R})$  for all  $G \in \text{GL}_n(\mathbb{R})$ . Hence  $G\text{SL}_n(\mathbb{R})G^{-1} = \text{SL}_n(\mathbb{R})$  which shows that  $\text{SL}_n(\mathbb{R})$  is a normal subgroup of  $\text{GL}_n(\mathbb{R})$ .

2. The center of  $\text{GL}_2(\mathbb{R})$  is

$$Z(\text{GL}_2(\mathbb{R})) = \left\{ \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mid \lambda \in \mathbb{R} \setminus \{0\} \right\}.$$

3. All elements in  $G/Z(G)$  are of the form  $gZ(G)$  where  $g \in G$ . Suppose that  $G/Z(G)$  is cyclic of order  $n$ . Then there is an  $x \notin Z(G)$  such that

$$(xZ(G))^n = x^n Z(G) = Z(G).$$

This implies that  $x^n \in Z(G)$ . Now  $G/Z(G) = \langle xZ(G) \rangle = \{x^i Z(G) \mid i = 0, 1, \dots, n-1\}$ . Hence every  $g \in G$  can be expressed as  $g = x^i z$  where  $z \in Z(G)$ . Let  $h = x^j z'$  be another element in  $G$ . Then

$$gh = x^i zx^j z' = zx^i x^j z' = zx^j x^i z' = x^j z' x^i z = hg$$

since  $z, z'$  are in the center of  $G$ . This shows that any two elements  $g, h \in G$  commute and hence  $G$  is abelian.

4. Let  $A = \{aH \mid a \in G\}$  be the set of all left cosets of  $H$ . Then  $|A| = n$ .  $G$  acts on  $A$  as  $g \cdot (aH) = (ga)H$ . We showed in class that every left group action of  $G$  and  $A$  is in bijective correspondence to a homomorphism  $\varphi : G \rightarrow S_A$  given by  $g \mapsto \sigma_g$  where  $\sigma_g : A \rightarrow A$  with  $aH \mapsto (ga)H$ . The kernel of  $\varphi$  is a normal subgroup of  $G$ . Hence the index of  $\ker \varphi$  is  $[G : \ker \varphi] \leq n!$  which is the order of  $S_A$ .
5. First we prove the forward direction. Take  $\bar{x}, \bar{y} \in \bar{G}$ . Then  $\bar{x} = xN$  and  $\bar{y} = yN$  for some  $x, y \in G$ . If  $\bar{x}\bar{y} = \bar{y}\bar{x}$  then  $xyN = yxN$  or equivalently  $x^{-1}y^{-1}xyN = N$  which implies that  $x^{-1}y^{-1}xy \in N$ .

For the reverse direction note that all steps are also true in the reverse direction.

6. Let  $G$  be a group and  $N$  a subgroup of index 2. If  $a \in N$  then  $aN = Na$ . If  $a \notin N$  then  $aN \neq N$  since  $N$  has index 2. Similarly  $Na \neq N$ . Since  $N$  has index 2 this implies that  $aN = Na$  so that  $aNa^{-1} = N$ . Hence for all  $a \in G$  we have  $aNa^{-1} = N$  so that  $N$  is a normal subgroup.
7. The only candidates for normal subgroups of  $S_4$  are conjugacy classes or unions thereof. By the extra problem on Problem set 2 we know that all conjugacy classes of  $S_n$  can be described by partitions of  $n$ . The partitions of 4 are  $(1, 1, 1, 1)$ ,  $(2, 1, 1)$ ,  $(2, 2)$ ,  $(3, 1)$ ,  $(4)$ . Certainly  $\{1\}$  and  $S_4$  are normal subgroups of  $S_4$ . The set of odd permutations cannot form a subgroup since the composition of two odd permutations is an even permutation. Since the 4-cycles and 2-cycles are odd they cannot form a subgroup. The set of 3-cycles does not form a subgroup since for example  $(123)(124) = (13)(24)$  which is not a 3-cycle. Hence the only candidates for non-trivial normal subgroups are the alternating group  $A_4$  of permutations which can be written by an even number of transpositions and  $K = \{1, (12)(34), (13)(24), (14)(23)\}$ . Note that  $K$  is isomorphic to the Klein 4-group.  $K$  is a normal subgroup since for all  $\sigma \in S_4$  we have  $\sigma(ab)(cd)\sigma^{-1} = (\sigma(a)\sigma(b))(\sigma(c)\sigma(d)) \in K$  where all  $a, b, c, d$  are distinct and  $\sigma 1 \sigma^{-1} = 1 \in K$ . One can check that  $A_4$  is a subgroup of  $S_4$  and has order 12. Since hence the index of  $A_4$  in  $S_4$  is 2 it follows by Problem 6 that  $A_4$  is normal.
8. Set  $T = \{g \in G \mid |g| < \infty\}$ . Then  $T$  is nonempty since  $1 \in T$ . Let  $g, h \in T$ . Then there exist integers  $n, m$  such that  $g^n = h^m = 1$ . Hence  $(gh^{-1})^{nm} = g^{nm}h^{-nm} = 1$  since  $G$  is abelian. This shows that  $T$  is a subgroup of  $G$ .

Take the non-abelian group  $G = \text{GL}_2(\mathbb{R})$  and

$$x = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad y = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}.$$

Both elements have order 6, but  $xy = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$  has infinite order.

Hence in this case  $T$  is not a subgroup of  $G$ .

9. (a) The elements in  $\mathbb{Q}/\mathbb{Z}$  are of the form  $a + \mathbb{Z}$ . Hence the rational number satisfying  $0 \leq a < 1$  give all the representatives.
- (b) Take  $a \in \mathbb{Q}$  with  $0 \leq a < 1$ . Then  $a = \frac{n}{m}$  for some  $n, m \in \mathbb{Z}$ ,  $n \geq 0, m > 0$  and  $\gcd(n, m) = 1$ . Hence  $ma + \mathbb{Z} = \mathbb{Z}$  so that  $a$  has order  $m$ . Since  $m$  can be arbitrarily large, the order can be arbitrarily large.

- (c) No  $a + \mathbb{Z}$  has finite order if  $a$  is irrational since  $am$  is never an integer for any positive integer  $m$ . By part (b) all elements in  $\mathbb{Q}/\mathbb{Z}$  have finite order. Hence the torsion group of  $\mathbb{R}/\mathbb{Z}$  is  $\mathbb{Q}/\mathbb{Z}$ .
- (d) Define the map  $\varphi : \mathbb{Q}/\mathbb{Z} \rightarrow \mathbb{C}^\times$  given by  $a + \mathbb{Z} \mapsto e^{2\pi i a}$ . This map is well-defined since  $e^{2\pi i m} = 1$  for all  $m \in \mathbb{Z}$ . It is a homomorphism since  $\varphi((a + \mathbb{Z}) + (b + \mathbb{Z})) = \varphi((a + b) + \mathbb{Z}) = e^{2\pi i(a+b)} = e^{2\pi i a}e^{2\pi i b} = \varphi(a + \mathbb{Z})\varphi(b + \mathbb{Z})$ . It is easy to see that  $\varphi$  is injective and surjective.