MAT 250A University of California Fall 2001

Homework 4
Solutions

(1) The center Z(G) of G is a subgroup of G. Hence by Lagrange’s
theorem |Z(G)| = 1, |Z(G)| = p or |Z(G)| = p*. Let us first
show that |Z(G)| = 1 cannot occur. Let z € G be a nonidentity
element. Then |z| > 2. Since |z| divides |G| either |z| = p or
|z| = p?. If |x| = p? then G = () and G is abelian. Hence we
may assume that every nonidentity element in G' has order p.
If |Z(G)| =1 this implies

Gl=p*=1+kp

for some positive integer k. The left-hand side is divisible by

p whereas the right-hand side is not since p is a prime. This

shows that |Z(G)| = p or p?. If |Z(G)| = p? then Z(G) = G

and hence G is abelian.

It remains to consider the case |Z(G)| = p. Then |G/Z(G)| =

p and hence G/Z(G) is cyclic by Corollary 10 on page 91. By
Exercise 3 on Homework 3 this implies that G is abelian.

(2) (a) Thisis clearsince |{(z1,...,,)}| = |G|?, but the condition

zy---x, = 1fixesx, = (z1---z, 1)"". Hence |S| = |G|~

(b) It suffices to show that if x = (x1,...,2,) € S then ¥ =
(T9, .. Tp,71) € S. But 2+ -zpzy = 27 (T1 -+ 7p) 71 =
7'z = 1 and hence 7 € S.

(c) Say that x ~ y if y is a cyclic permutation of z. This is
an equivalence relation: (1) ~ is reflexive since z ~ = (x
is a cyclic permutation of itself), (2) ~ is symmetric since
x ~ y implies y ~ z; if x is a cyclic permutation of y then
so is y a cyclic permutation of z, (3) ~ is transitive since
z a cyclic permutation of y and y a cyclic permutation of
z implies that x is a cyclic permutation of z.

(d) If an equivalence class contains exactly one element then all
cyclic permutations must be equal. This implies that the
element is of the form (z,...,z) with 2P = 1. Conversely,
if (x,...,2) with 27 = 1 then this forms an equivalence

class with only one element.
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(3)

(e) We show that every equivalence class has order 1 or p.
Certainly every equivalence class has order < p. Suppose
that © = (z1,...,,) has order m with 1 < m < p. This
means that (z1,...,2p) = (T14km, - - - Tp+km) for all inte-
gers k. Here we view the indices modulo p. We know that
Z/pZ is generated by any 1 < a < p if p is prime. Hence
(@1,...,%p) = (T14kms - - - » Tptrkm) for all k implies that all
x; are equal. But by (e) this means | ~ z| = 1 which
contradicts our assumptions. Hence | ~ z| = p.

This implies that |G|P~! = |S| = k + pd which is the num-
ber of equivalence classes of order 1 plus the number of
equivalence classes of order p.

(f) (1,...,1) is an equivalence class of order 1. Hence k > 1.
But p divides |G|P~, hence p must divide k. Hence k > 1
which shows that there exists and element x € G, x # 1
such that 2P = 1.

We have

Gl =G H|-|H|
Gl =1G: K| |K|
K| = |K : H]| - |H].

Hence |G| =|G: K|-|K|=|G: K|-|K : H|-|H|. Comparing
with |G| = |G : H|- |H| yields |G : H| = |G : K|-|K : H|.
These equations still make sense when |G| = oco. Namely,
setting n = |G : K| and m = |K : H| they mean that G and
K are partitioned by the following disjoint sets G = U} ;a; K
and K = U™ b;H where a; 'a; ¢ K if i # j and b, 'b; ¢ H if
1 # j. Hence G is also partitioned into to following disjoint sets
G=U U abjH (namely a;b;H = axb,H implies that i = k
and j = [ since b;H and b H are both subsets of K and hence
i = k. This in turn implies j = [ since then b, 'b; € H).
If p is prime the order of (Z/pZ)* is p—1. If a = 0 the assertion
holds trivially. If a # 0 then @ € (Z/pZ)*. Consider H = (a).
By Lagrange’s theorem, |a| divides p—1 so that a?~! =1 mod p
or a?» =a mod p.
The lattice is given by MN x 1 < G x G, M x N<G x G,
MNON x1<dMN x1and MNN x1< M x N. By the second
isomorphism theorem G/(M N N) = (G/M) x (G/N).
We have a group G with |G| = p®m where p does not divide m,
P < G with |P| = p® and N<G with |N| = p’n where p does
not divide n. Since P < PN the order of P must divide the
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order of PN. Since PN is a subgroup of G, this implies that
|PN| = p°k for some positive integer k. Since N is a subgroup
of PN, p®k must be divisible by p’n so that |PN| = p®ni for
some positive integer ¢ which does not divide p. Now

|PIIN| _p°

IPN| i’

Since this has to be an integer it follows that ¢ = 1. By the
second isomorphism theorem we have PN/N = P/P N N so
that |PN/N|=|P/PNN| = p*®.

Let G be a group of order 6. By Cauchy’s theorem we know
that there is an element € G of order 3 and an element y € G
of order 2. If zy = yz then (zy)® = 2%°% = 1. Note that
2y = 1 would imply y = 22, but 22 has order 3 and not 2.
Also (zy)? = 22, (zy)’ =y, (zy)* = =, (vy)° = 2y # 1 since
otherwise x = y. Hence xy has order 6 which implies that
G = Zg. This shows that xy # yx if G is nonabelian so that
ryz~' # y. Hence the subgroup (y) of G is nonnormal. By
Corollary 5 on page 123 the subgroup (z) is normal so that
yry~! = 2% a = 0 would imply = = 1 which contradicts that
x has order 3. a = 1 contradicts zy # yx. Hence a = 2.
This shows that G is generated by =z and y with the relations
2 = y2 = 1 and zy = yx? which shows that G = S;. Hence
the only groups of order 6 are S3 and Zs.

|[PNN| =



