

Change of Orthonormal Basis Worksheet

In the change of basis worksheet, we saw that a pair of bases (v_1, \dots, v_n) and (v'_1, \dots, v'_n) for a vector space V could be related by a invertible change of basis matrix P defined by

$$(v'_1, \dots, v'_n) = (v_1, \dots, v_n)P.$$

The columns of P were calculated by computing the component of the vectors (v'_1, \dots, v'_n) in the basis (v_1, \dots, v_n) . Also if M is the matrix of $f \in \text{end}(V)$ in the basis (v_1, \dots, v_n) , its matrix M' in the basis (v'_1, \dots, v'_n) is given by

$$M' = P^{-1}MP.$$

If you are lucky enough to have orthonormal bases, life is easier..... For example, consider \mathbb{C}^3 with standard inner product $\langle(z_1, z_2, z_3), (w_1, w_2, w_3)\rangle = \sum_{i=1}^3 \bar{w}_i z_i$. An orthonormal basis is $f_1 = (1, i, 0)/\sqrt{2}, f_2 = (1, -i, 0)/\sqrt{2}, f_3 = (0, 0, 1)$. To compute the components of a vector v in this basis, you only have to compute $\langle v, f_1 \rangle, \langle v, f_2 \rangle, \langle v, f_3 \rangle$. *Calculate the components of the vector $v = (1, 1, 1)$ in the basis (f_1, f_2, f_3) using the inner product.*

Now let $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$ be the canonical (orthonormal) basis for \mathbb{C}^3 . *Calculate the change of basis matrix P from the basis (e_1, e_2, e_3) to (f_1, f_2, f_3) . Remember that P^\dagger is obtained from P by taking the transpose and complex conjugate. Compute P^\dagger and $P^\dagger P$. What can you say about P^\dagger ? EXPLAIN YOUR OBSERVATION!*