

Fields

The aim is to teach yourself the basic notions of fields. A field $\mathbb{F} := (F, \oplus, \odot)$ is a set F whose elements can be thought of as numbers as well as rules \oplus and \odot for “adding” and “multiplying” them. The set F must contain special elements $0, 1 \in F$ that play the *rôle* of zero and one. If \mathbb{F} is a finite field (F has finitely many elements), we can encode the rules for addition and multiplication in tabular form. The simplest example of a field $\mathbb{Z}_2 = \{0, 1\}$ has only a zero and unit element (often called “bits”) with addition and multiplication tables:

\oplus	0	1
0	0	1
1	1	0

\odot	0	1
0	0	0
1	0	1

These are often called addition and multiplication modulo two, since the usual $1 + 1 = 2$ is replaced by $1 \oplus 1 = 0$.

Here are some exercises for you to try:

- (1) Find out the definition of a field. For each rule, give an example of how it works for ordinary real numbers.
- (2) Check that the rules given above for \mathbb{Z}_2 obey all the field axioms.
- (3) Give the addition and multiplication tables for \mathbb{Z}_3 (*i.e.* addition and multiplication modulo 3). Do the same for \mathbb{Z}_4 . Which of these is a field. Why?
- (4) Find out what complex numbers and quaternions are. Explain how to add and multiply them. Which of these is a field and why?