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Chapter 6 PWE 1

Let dim(U) = m and dim(V) = n. m < n since U is a subspace of V. Take a basis of
U and let it be {uy,us, ..., um}. According to the Basis extension theorem, one can
extend it to get a basis of V, which is {uy, uz, ..., um, Um+1; ---, Un }- Define the linear
transformation on V' such that, for v € V = ciu; + ... 4+ cipum + Cmt1Umt1 + oo+ CrUn,
T(w) = c18(u1) + ... + cmS{tm).
e First, T = S on U.
e Second, T is linear. For any v; € V = A1U1 + oo+ AUy F Oy 1 Vg1 .o+ QU
and v € V = byuy + ... + b, + bt 1Vma1 + .. + bpuy,
T(Ul -+ 'Ug) - ((ll + bl)S(Ul) + ...+ (am + bm)S(um),
and
T(v1) = a18(u1) + ... + @S (),
T(vy) = biS(u1) + ... + b S(ty).
Hence, T'(v; + v2) = T(v1) 4+ T(vq). On the other hand,

T(Mr) = (Aa1)S(ur) + ... + (Aam)S(um) = AT (v1).
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